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CHAPTER 1

INTRODUCTION

1.1 THESISMOTIVATION

The world we live in has drastically changaekrthe pasfew decades. The development of the

first computers and their availability and usage on l@gge has played a significant role in this
change. The computational power was initially available only within researtiersand army
institutes andafterwards within large companies. Lately, the computational power became
available to almost anyone in the form of personal computers, -pmanes, PDAS, etc.
Nevertheless, the regular consumer is not familiar with the humaahine interfaces available

today and the further spreading of higgth is somehow constrained by this issue. The human
being is used to speak, to gesticulate, to think,astopposed to type or use a mouse. This is the
main reason for which humamachine interfaces have latelgdome an important topic for the
research community. Spoken dialogue systems are apparently the most natural communication
systems between humans and machines because speech is in fact the most natural
communication method used by humans to exchange iafam The human user is not
required to have any special skills to be able to use a spoken dialogue system. On the other hand,
the computer requires sophisticated tools to be able to understand what the user is speaking
(speech recognition and understamdisystems) and to be able to speak (speech synthesis
systems).

The field of Automatic Speech Recognition (ASR) has been a hot topic in the international
scientific community for over twenty years now. This led to the developwieresources and
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methodsand eventuallyhigh-performance commercial systems for most of the internaticnally
spoken languages such as Englistench Mandarin etc One importantadvantage for these
languages was the fact that speech resources needed to build robust acoussicanubtett
resources needed to build general or dorsgiecific language models were widely available on

the Internetor were systematically provided by the evaluation programs organizE\B A
(Defense Advanced Research Projects AgenByST (National Institute of Standards and
Technologies)and otherorganizations On the opposite side, famany other languages the
performance of ASR systems is directly dependent on the amount of available resources and is
generally passable only in very particularesassmall vocabulary, or isolated words recognition

or closed task grammar, etc. Moreover, the task of creating new language or acoustic resources
for a given spoken language is typically a costly and tedious task. Given these facts, the amount
of effort aurrently being invested into porting and adapting language and acoustic resources and
even models from highesourced languages to lewsourced languages is perfectly motivated.

For Romanian, the target language of this thesis, there are practicallfewespeech and text
resources available. Most of the existing resources have been developed by research groups and
are notwidely available. Even though several Romanian research groups focus on speech
recognition, the lack of resourcés probably the mai reason for which dargevocabulary
continuous speeclecognition (LMCSR) systenfior Romaniarhas not been developed yet.

This thesis ignotivated by thsefacts and was started with the purpose of creatingV-CSR
system for Romanian argkttingup a methodology for the development of domajpecific
ASR systems for lowesourced languages.

1.2 THE FIELD OF SPEECHRECOGNITION

The automatic speech recognition (ASR) process addresses the problem of mapping an acoustic
signal to a sequence of word&utomatic speech understanding (ASU) extends this goal to
producing some sort of understanding of the sentence, rather than just thelmrdshe input

acoustic signal contains speech uttered by different speakers, the ASR task can be regarded as a
two-step proess: speaker diarization (who spoke when?) and sgiedekt transcription (what

did he say?).

Automatic speech recognition has a wide range of applicabiline most important domain
seems to be that of hanfise and eyefree interfaces to computers ather devices. There are
many applications in which the users need to use their hands and eyes for something else and
speech remains their only alternative to being efficient. Moreover, as emphasized in the previous
section, speech is the most naturalameof communication for human beings. Other major
application areas are spoken dialogue systems for call centers and-tgpseeéch translation
systems. Speedi-speech translation is at this moment a very hot topic in many academic and
industrial resea@h centersFinally, ASR s applied to dictationtranscription of an extended
monologue by a single specific speaker. Dictation is common in several fields, such as law,
where many trials or official meetings need to be transcribed for further refeEasateof these
applicatons is typically more restrictivihan the generaglroblem which requires the automatic
transcrigion of naturally spoken contimus speech, by an unknown speaker any
environment.The various sources of speech variability, whieii be discussed furtheon,
makethe generatask a very challenging onélevertheless,ni many practical situations, the
variability is restrictedFor example, there may be a single, knowrakpg or the speech to be
recoquized may be carefully dided text rather than a spontaneous conversatiorther
recording environment may be quiet and -mewerberant. In speedb-text transcription a
distinction is made between paraddressing acoustic variatyil(acoustic modeling), and parts
addressingithguistic uncertainty (languageodeling).

16
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One of the most important factors which influence the difficulty of the speech transcription
process is the specifispeech recognition taskThis includes the language, the size of the
vocabulary to be recognizeaind the linguistic uncertainty of theomain. Different spoken
languages present different challenges for a speech recodfozex.large number of languages

there are very few speech and text resources available. Theabesbow-resourced languages

are spoken by a large number of people, but no prior work of collecting and organizing speech
and/or text resources has been done. Consequently the task of designing an ASR system has to
include resource collection alsbhere areotherlanguagesnd dialetswhich are mostly spoken

and havepractically no written resourcder language modeling. In this case the situation is
even worse, because there is no way of acquiring the language resources and, in general, the
linguistic rules are very loose.

Otherbnguages fdAsuffer o f rFormexaaplech mopphoogylanguagep h ol o
such as French and Romanian have larger vocabularies thampgahological languages such

as English. In Romanian the present tense of the teego has five morphologidly different

for ms: Amer go, Amer gi 03 Of mairmee @,0, A mehri d emai,n
Avaiso, Afvasao, Anvao, nall onso, nal |l ez o, v
mor phol ogically dif fGemannand Thrkishrensome df theogalled i g 0 e ¢
agglutinativelanguages In these laguagesa large number of new words can be formed by
concatenation of morphemes. This also leads to larger vocabudadesonsequently makes

automatic speech recoigjon a more challenging task.

The size of the vocabulang an important factor becauges obvious that a digits recognition

task (with a ten words vocabulary) is much simpler than a spontaneous telephone speech
recognition task (with a 64k words vocabulary). Neverthelasget vocabularies do natways

mean a more difficult ASR tasKhe linguistic uncertaintyof the possible speech utterane¢so

plays a significant role. For exampketourismspecific ASR task witla 64k words vocabulary

which mostly containgroper names(places, restaurants, hotels, ets.)not as difficult as a
spontaneous telephone speech recognition task widgaalsizevocabulary. The low linguistic
uncertainty (perplexity) of the first task makes it less difficult.

The rough percentage of incorrect words on several standard speech recognition tasks is
presaéted inTable 1.1. The data refers to stabd-the-art ASR systems designed for English
[Jurafsky, 200R The word error rate (WER) is the standard performance figure used for ASR
evaluation (see Sectighb).

Table 1.1 WER results reported around 2005 for ASR on various tasks [Jurafsky, 2009]

ASR Task Vocabulary size WER [%]
TI Digits 11 words (zeraine, oh) 0.55
Wall Street Journal read speech 5000 wods 3.0
Wall Street Journal read speech 20000 words <6.6
Broadcast News 64000+ words 9.9
Conversational Telephone Speech 64000+ words 20.7

Another important factor which influences the difficulty of the speech process is the speaking
style. The speakingtyle refers to how fluent, natural or conversational the speech is. Obviously,
isolated wordsspeechrecognition in which each word isurroundedoy some sort of pause, is
much easier than recogniziegntinuous speedhn which words run into each othand have to

be segmented. In facty ithe early days of automatic speech recognition, systems sihleed
problem of where to locate word boundaries by requiring the speaker topleases between
words: the pioneering diation product Dragon Dictat&gker, 1989]is a good example of a
largevocabularyisolated wordsecognitionsystem
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Continuous speech taskbemselves vary greatly in difficulty. For example, the task of
recognizingread speechs much easier than the task of recognizing more nattykdssof
speech such a®nversationabr spontaneous speechhe greater acoustic variability makes the
latter task more challenging. This differenicedifficulty between continuous speech tasks is
reflected in the increaseword error rates faspontaneus speech recognition compareith the
recognition ofreadspeech{seeTablel1.1).

The difficulty and consequently the accuracy of the speech recognition process is also
influenced by theacoustic environmenin which the speechs recorded, along with any
transmission channelOutside of quiet ofies and laboratories, theexe usually multiple
acoustic sources including other talkers, environmental nagk electrical or mechanical
devices. Irmany cases, it is a sigr@ntproblem toseparate the different acoustic signals found

in an environmentThe microphone used for recording also has a significant impact on the
speech recognition accuracy. Commercial dictation systems and most of the laboratory research
in speech recagtion are done with higlgquality, heaemounted microphones. Other types of
microphones come with different disadvantages which contribute to the quality of the ASR
systemVariations in transmission channedl@diveccur
to the microphone and transmission across a telephone network imtetheet. Probably the
largest disparity between the accuracy of automatic spescignition compared with human
speech recognition occurs in situations wiigh additive noise mutiple acoustic sourcesor
reverberant environmentfNoisy speech with dow signatto-noise ratiocan cause the word

error rates to go up by 2 to 4 times compared to clean speech.

Finally, the speaker characteristics have also a significant impact @at¢heacy of a speech
recognizer. The variability in speaker characteristics resides in the speaker accent, the
language/dialect he uses, whether he is a native or -maie speaker, the speech rate, the
speaker age and of course the differences irspleech production anatomy and physiology.
Moreover, different speakers exhibit different degrees of intrinsic variability based on the
emotional state, temporary health problems, etc. The-spteaker variability can be dealt with

by designingspeakerdependentASR systems. The drawback here is that a new acoustic model
has to be created for every new speakéis leads to a more complex system, but also raises
several trainability issues (insufficient training data for every speaker and others). @hdhe
hand, speaketfindependentASR systems are simpler and more flexible (they can be used to
recognize the speech of any speaker). Nevertheless, a spedmendent system is less
accurate for a given speaker when compared to a speefgendent systeffor that particular
speaker (if sufficient training data is available for the spealdifiough speaker adaptation
algorithms have made great progressger the past 15 years, it is still the case that the
adaptability and robustness thfferent speakerexhibited by automatic speech recognition
systems is verliimited compared with human performance.

The speaker characteristics variability is evidamdl very annoyingn native versus nenative

speech. Although human beings can understand quite welhatore speech, the automatic
speech recognition systems exhibit very limited robustness when they are required to recognize
this type of speech. Several studies reported huge differences in performance for native versus
nortnative speech on the same AS&K. For example, the word error rate on Vietnamese
accented-rench andChineseaccented French has been reported to be about 5 times higher than
for native speakers on the same task [Tan, 2008]. Simildréyword error rate on Korean
accented English Babeen reported to be about 9 times higher than for native speakers [Oh,
2007]. Obviously, the differences also depend on the speaking level for thrtiges and on

the relationship between the two languages. For example, [Wang, 2003] reports thatdhe w
error rate on Germaaccented English is only 3 times higher than for native speakethe

same taskNevertheless, nenative speech recognition is still an open issue and a high number
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of studies(among which we mentiofiran, 2007; Oh, 2007; TanP@8; Sam, 201]) have been
published in the past few years on this subject.

Although the field of speech recognition is very broad and different applications and possible
solutions can be imagined, our focus in this thesis idaoge-vocabulary continuouspeech
recognition (LV-CSR) systems. Largeocabulary generally means that the systems have a
vocabulary of roughly 20k to 60k words. As described above, continuous speech means that the
words run into each other naturally. Moreover, our focus ismealer-independensystems
(systems that are able to recogngmeakers to which the system has never been exposed
before).

The stateof-the-art paradigm for large vocabulary contous speech recognition is the hidden
Markov nodel (HMM). The HMM framework haseenintroduced as a viable candidate fbe
acoustic modeling part adpeech recognitiotack in 1975 [Baker, 1975].For LV-CSR in
particular, the HMMbased acoustic model ised n conjunction with an4gram modekhich

is responsiblefor the languagemodeling part.Statistical language models-@gnams) have
become the statef-the-art solution for language modeling since the tremendous expamfkion
the Internet, which provideénough data to suitably train these systeh@gevocabulary
continuous spech recognition systenand the specific problems they pose explored in
depth inChapter 2

1.3 AUTOMATIC SPEECHRECOGNITION SYSTEMSFORROMANIAN

The field of speech recognition for the Romanian language has been approacbedktray
research groups in Romani a; sDmikgegt nkehdbe €idstd 81008s!
studiesfocused onsimple tasks such as vowels recognition [Grigore, 1998], isolated words
recognition [Burileanu, 1998; Valsan, 13&abac, 1998Burileanu, 200jand word spotting
algorithms Valsan, 1998; Burileanu, 208].

The main problenmwhich inhibited the development of higierformance continuous speech
recognition systems was the absence of standard speech and text resources for Romanian.
Specific speech databases have been created over the years by ASR resaps;ibgt these
resources have not been standardized and are not publicly available. The authors of [Munteanu,
2006; Dumitru, 2008; Kabir, 2011] explicitly assert that there are no speech resources available
for Romanian and that they were required to terepeech databases before starting any research

in continuous speech recognition. Due to this fdatgevocabulary continuous speech
recognition systems for Romanian are still a future plan. The latest work in speech recognition is
still limited to smal-vocabularytasks basic wordoop grammarsor basic rgram language

models and pseudo speakdependencyFor example, in [Oancea, 2004] the authors report
smallvocabulary (approximately 3000 words) continuous speech recognition results for a
generalASR task modeled with a basic welabp language model. The number of speakers is
limited to 10, so speakéndependencys out of the question. Further development and research

on speech recognition algorithrasd techniquess reported in [Dumitru, 2008]This work is

still limited to a smalvocabulary taskapproximately 4000 wordsdnd presents recognition
results for only 11 speakers. The first study which uses more complex language megielm(bi

LMs) for Romanian is [Militaru, 2009]. This work idsa closer to speak@ndependency, as it

uses speech data from 30 speakers. Nevertheless this paper does not approach a general, large
vocabulary task, but amallvocabulary (approximately 500 words), domapecific ASRtask
(broadcasted forecast news)

In order to overcome the small speech database problem, researchers have tried to come up with
innovativespeechrecognition methodologies. Several types of voice features were evaluated in
[Gakt t Puim@ra, ;2008] andots of parametetuning experiments were performed in
[Munteanu, 2006]. Moreover, several other recognition frameworks (different from thefktate
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the-art HMM framework) were tried out. Neural network based approaches asenpzd in
[Dumitru, 2008 D o mo k o K], a vectorquantization algorithm is illustrated in [Burileanu,
2004]and more complex, hybrid recognition techniques (feid®Ms and neural networks plus
HMMs) are proposed and evaluated in [Dumitru, 2008].

Some Roranian speech recognition studies discuss a more important issue ifaeethational
scientific community: speech recognition robustness to various fadteestobustness to noise

is dealt with by [Munteanu, 2008]. In this paper a masiijile training me&hodology is proposed

and evaluatedn a Romanian speech databadee results show that the proposed methodology

is very effective even for sigréd-noise values as low as 10 dB.[Giurgiu, 2011] the authors
propose a methodology (vocal tract normdl@a) to increase ASR robustness to irgpeaker
variations. The methodology is evaluated on clean and noisy speech. The paper concludes that
vocal tract normalization is only able to improve the ASR performance on clean speech.

In conclusion,up until nov several steps have been made towards developing & large
vocabulary continuous speech recognition system for Romanian, but the final goal has not been
reached yet. Moreover, speakedependency which is directly dependent on speaker
variability of the training speech database has not been obtained. These two attributes: large
vocabulary and speakerdependent are indispensable for a gergugbosespeech recognition
system.

1.4 THESISOBJECTIVESAND OUTLINE

Given the review of the speech recognitiontegs for Romanian illustrated above, the main
objective of this thesis was the development of a speallependent largeocabulary
continuous speech recognition system for Romanian. This system should be able to recognize
general Romanian continuous splegroduced by any speaker with a decent performance. In
order to achieve the main goal, several specific objectives were addressed:

a) The acquisition of phonetic, speech and text resources. These resources are all required
to create a speech recognitiontsys. A phonetic dictionary is needed to link the words
to their phonetic form, a speech database is needed to create and evaluate the acoustic
model, while text corpora are required to create general and/or depetific language
models.

b) The developmenbf specific tools needed to create and process the above mentioned
resources and required to create and optimize the acoustic and language models.

c) The design, implementation and evaluation of a Romaniai€tER system using state
of-the-art techniques: thédMM framework for acoustic modeling and thegram
paradigm for language modeling.

d) The design, implementation and evaluation of an ASR doadéptation methodology
for underresourced languages.

The thesis is organized in eight chapters, as follows:

Chaper 1introduces the reader to the field of speech recognition and makes a brief summary of
the main issues in this field. The first chapter continues with a review of the various Romanian
speech recognition studies performed in the past several yearssoMesl and unsolved
problems are underlined. Based on this review, chaptentludeswith the objectives and the
outline of this thesis.

Chapter 2presents the theoretical basis for lavgeabulary speech recognition. The speech
recognition formalism isbriefly explained and the general architecture of a sihtbe-art
speech recognition system is detailed. The core of the second chapter comprises theoretical
aspects regarding the development @ram language models and the development of HMM
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acoustt modelsThe stateof-the-art tools for language modeling and acoustic modeling are also
summarized in this second chapter.

In Chapter 3we focus on presenting the main theoretical principles of statistical machine
translation (SMT). As the thesis will gv, SMT can be successfully used to help in the
development phase of automatic speech recognition systems. The following chapters use SMT
to create phonetic resources and dorspiecific language models.

Chapter 4is the first chapter that illustrates sgeccontributions of the author of this thesis.

The phonetic, speech and text resources required for the development of ASR systems are listed
and detailed in this chaptewe review the existing resources and discuss their pluses and
minuses in the corke of ASR. The core of the chapter comprises the description of the
acquisition and processing tasks for these various resources. The analysiscofldtied
resources is also very important as this leads to various conclusions regarding the Romanian
language. This chapter also presents several tois and speech acquisition tools developed

by the author of this thesis.

Chapter 5deals with the development and optimization of the acoustic models. The extensive
experiments that were performed in ordefitd the best setup for the HMM acoustic model are
presented in this chapter. Besides these, chapter 5 proposes several methodologes\vimgi

the recognition speed for isolated words. Isolated words recognition and continuous speech
recognition reslis are giverin this chapter

Chapter 6describes our efforts towards creating a general language model for the Romanian
language. We have experimented with two types of language models: finite state grammars and
n-gram language models. The second apgroaas successful and was adopted to develop a
largevocabulary speech recognition system. This chapter presents the #GERWesults for
Romanian. The second part of chapter 6 proposes an-&gdd domain adaptation
methodology for ASR systems (the sad main contribution of the author).

Chapter 7 briefly deals with the speakémdependency issue. The best -I06R system
presented in the previous chapter is evaluatedmore general setup, includisgeakers which
were not part of the training databa3$he chapter concludes with some remasdgarding the
speakefindependencyf the LV-CSR system

Chapter 8s ummar i zes t he mai n conclusions o f t h
contributions. Moreover, this last chapter briefly discusses the engifuture developments.
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CHAPTER 2

LARGE-VOCABULARY
CONTINUOUS SPEECHRECOGNITION

2.1 THE AUTOMATIC SPEECHRECOGNITION FORMALISM

The automatic speech recognition (ASR) process addresses the problem of mapping an acoustic
signal to a sequence of words. This taskis® called speeeto-text transcription. ASR is one of

the first fieldsin which datadriven, machine learning, statistical modeling approach became
standardThe basicstatistical framework wasreated andleveloped during almost two decades

by Baker [B&er, 1975],a team at IBM [Jelinek, 197@ahl, 1983] anda team at AT&T
[Levinson, 1983;Rabiner, 1989]The speeckto-text task can be formulated in a probabilistic
manner as follows:

What is the most likely sequence of wandsin the language L, givetine speech utterance X?

The formal representation uses the argmax function, which selects the argument that maximizes
the word sequence probability:

wr=argmaxrwix) (2.1)
w
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Equation2.1 specifies the most probable word sequence as the one wilighest posterior
probability, given the speech utteranBayesrule is used to computthis posterior probability
and the most probable word sequence becomes:

. _ P(X W) p(W)
W —argvcnax 0(X) (2.2)
p(X), the probability of the speech utterance is independetitea$equence of word¥, thus it
can be ignored. Consequently, Equation 2.2 becomes:

w* = argmaxp(x iw)pw) (2.3)

Equation 2.3 exhibits two interesting factors which can be directly estimated. The initial
problem(of estimating the word sequence givéie speech utterance) hasw beensplit into
two simpler problemsa) the estimation of the prior probability of the word sequéex(@é and
b) the estimation of the likelihood ofi¢ acoustic data given the word sequepgW). The
probability ofthe word sequence can be estimaigging solely a language mode while the
likelihood of the acoustic data given the words sequence can be computed basedtausao
model The two models can be constructed independently as shofigure 2.1, but will be
used together to decode a speech utteras@pecified in Equation 2.Bigure2.1 presentghe
architectureof an ASR system and also shows the methods and type ofedpt@edin the
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Figure 2.1 ASR system architecture
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Besides the acoustic model and the language model which have been mentioned in the above
formalism, the general ASR architecture also includes a phonetic model. Thes tis the fact

that, for large vocabulary systems, the acoustic model does not model all the invoine
vocabulary (due to their high numbértens of thousands), but swwords units such as
phonemes. The phonetic model is most of the times a pronuncé@itibonary which maps the

words in the vocabulary to their phonetic representation.

Figure 2.1 also shows that the ASR system does not model speech directly (at the waveform
level). A feature extraction block is employed to agtrspecific acoustic features which are
further used to create the acoustic mo@elnsequently, the same feature extraction block is also
needed and used in the recognition (or decoding) process.
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This section continues with the analysis and descriptiothe several blocks ifrigure 2.1.
Section2.2 describes various language modeling issues and evaluation metrics, Se8tion
focuses on ponetic modeling and Sectidh4 discusseseveral acoustic modeling issues.

2.2 LANGUAGE MODELING

The language modglLM) block in Figure 2.1 is utilized during decding to estimate the
probabilities of all word sequences in the seanudics.In general the purpose of a language
model is toestimate how likely is a sequence of woWiis w1, W, €, to b® a sentence in

the source languag@&he probabilityfor such a word sequendelps the acoustic decoding in

the decision process. Fexample, in the Romaam language these two phrasesapa raie

este &nttoadt (red onion is healthy) ance apar ati ied este Bnttoat (what appeararmies

kid is healthy)are acoustically very similar, but the second one does not make any sense. The
role of the language model is to assign a significantly lapgebability to the first word
sequence and consequently help the ASR system to decide in favor of the first phrase.

The probability otheword sequenc®/ = w;, wo,  €n,can tie decomposed as follows:
p(\N) = p(W1’W2""'Wn) = p(Wl) p(Wz |W1)----p(Wn |W1’W21"'Wn—1) (2-4)

This means that the ta®f estimating the probability of the word sequeMies split into
several tasks of estimating the probability of one word given a history of preceding words. Due
to computational reasons, the history of preceding words cannot extend to include aniténdefi
number of words andhas to be limited tan words. To put it another waywe make the
assumption that only a limited number of previous words affiwt probability of the next
word. This leads to theonventionah-gramlanguage model, which has repented the state of
the art for largevocabulary speech recognition filve past5 yeardRenalds 201Q. Typically,

m is chosen based on the amount of training data avai(atee training data is needed to
accuratelycreate longer history-gram langage models)Most commonly, trigram language
models are used. They consider a-4ward history to predict the third word. This requires the
collection of statistics over sequences of three wordsaled 3grams (trigrams). Language
models may also be tmated over Zgrams (bigrams), single words (unigrams), or any other
order of Agrams.

2.2.1 N-gram models @nstruction

An ngram language model is constructed by estimating the probabilities discussed above using
a large enough text corpus. For example, in thse of a bigram language maqddéie
probabilitiesp(w;|w;) for every pair of wordgw:, w) have to be estimated. In order to compute

this probability we use the maximum likelihoo@ML) principle andcount how oftenw; is
followed byw; as opposed to bér words:

B count(w; , w; )
- > count(w;, w) (2.5)

p(w; |w)

For a trigram language model one needs to estimate all the probaBliti¢s: ,w):

_count(w;, w;, W, )
p(w, [w,,w;) = S countw,, w,,w) (2.6)

A large amount of training data (typically hundreafsmillions or even billions ofwords) is
needed to accurately estimate these probabilities. Algher order n-gram language models
require larger amounts of training daféhe problem of data sparseness, which is a typical
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problem for any statistical system, has to be taken into account auftingessed in the next
subsections.

2.2.2 Addressing thelata sparsenesgroblem

2.2.2.1 Count Smoothing Methods

One of the key problems in-gram modeling is the inherent data sparseness of real training
corpora Regardless how large the training corpus is, thereheillkgrams which will not be

seen within it, but may appear in the evaluation or test corpus. In this extreme case, the
probability assigned to the unseemnam, given the maximum likelihood estimation equation

2.5 (or 2.6) is 0. Besides this case, thameother rgrams which occur only very few times (less
than ten times) in the training corpus. Moreover, this problem becomes more sevefreghiben

order ngrams are employed. In all these cases the probabilities which were estimated based on
the empircal counts that are observed in the training corpus, are very rouiglatest and need

to be adjusted.

The methodsnvolved in the adjustment process are called smoothing methods. They basically
subtract probability mass from seergrams and redistributié to unseen fgrams. There are
several smoothing methodshich tend to particularize the redistribution rfobability mass
given some specifi,easons

The most basic smoothing method is cabetitone smoothinglt simply adds a fixed number

(for exampé 1) to every sgram countThis means that evengrams which do not appear in the

training corpus, but are made up of words in the vocabulary, will dsggred nomull
probabilities. Analyzing the newly assigned probabilities, we quickly notice thaboreld
smathing gives undue credence tegrams that do not appear in the training corpus [Koehn,

2010]. One simple remedy would be to add a smalermb er U, instead of 1
addU s mo p Thismumbzer,U, will have to be empirically estimateh aheld-out corpus.

Deleted interpolation smoothing tries to adjust #wtual n-gram counts by answering the
guestion: A | {gramveetimes n she trainiag carpus, howerftdo we expect to see

it in a real application (in the evaluation corpus, for exanipfe). T h i splitsithe tradinmgl

corpus into two parts and uses one part to estimgtam counts and the second part neveer

to the above question. Secondly, by switching the roles of the two parts and interpolating the
results, this method comeip with better expected counts than thelddds mo ot hi ng met h«

Another smoothing method;o0o0d Turing, uses the actual counts) (and the counrbf-counts
statistics N is the number of qgrams which occuc times in the training corpus) to adjust the
counts €*) for all seen and ws®en rgrams:

c:*:(c+1)h (2.7)
NC
The GoodTuring method provides a principled way to adjust counts, but is not very reliable for
large ¢, for which N; is typically 0. This drawback can be solved by simply not aidigshe
counts for frequent-grams.[Koehn, 2010] compares these smoothing methods and concludes
that, on a particular analyzed corptl®e GoodTuring method obtains the best results, with the
deleted interpolation methddllowing closely.

2.2.2.2 Back-off Methods

A second approach to solve data sparseness is to use several language whattelbave
particular advantageso create an interpolated language model that may benefit from all its
constitutive parts. For example, higher ordegrams may provide Waable additional context,

but lower order rgrams are more robust. If several osddr, 2 and3) n-gram language models

p, have been already built, an interpolated language nmdsdn beconstructed by linearly
combining them:
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pl (W3 IWl’WZ) = Alpl(WS) X /12 p2 (W3 |W2) X /13 p3(W3 |W1’W2) (28)

The a-coefficients in Euation 2.10 have to be positive, sufitary numbers and should sum up
to 1. Depending on their ratio, the lower order LMs, or the higher order LMs can be given more
credit. The coefficients tuning can be done empiricalladeldout set.

The backoff mechanism usesulti-orderinterpolatedh-gram LMsto deal with unseen-grams

in a slightly different way than the smoothing methods. If we need to estimate the probability for
an ngram which was nateenor was rarely seeim the training corpus, a good idea would be to
also take into consideration the probability assigned to Hgisam by the lower order-gram
model. The optimization problem here is to choose the right balance between the highest order
n-gram models and lathe lower order models (if these are to be used at all). Severablack
methods were proposed starting with iNgtenBell smoothingmethod [Witten, 1991], which
focuses on the diversity of words that follow a history. The most comnmeiigod used tiay

is theKneserNeysmoothingmethodintroduced in [Kneser, 1995lvhich takes into account the
diversity of histories for a particular-gram. An extension to this method ihe modified
KneserNey smoothingChen, 1998]which uses a method called alhse discounting to reduce

the probability mass for seen events.

[Koehn, 2010] compares these baufk methods and concludes that, on a particular analyzed
corpus, the modified Knes&tey method leads to aB% lower perplexitysee Sectio2.2.3
than all the other methods.

2.2.3 Language radelsevaluation metrics

The role of a language model is poedict the next word given its predecessbystaking
advantage of the language redundantiie capability of prediction should be otijgely
measured if we want to be able to compare different language models and eventually improve
them.

2.2.3.1 Perplexity

The most common evaluation metric for a language model, when a speech recognition system is
available, is theword recognition error rate(Section 2.5). Alternatively, without involving
speech recognition systems, we can asses the prediction power of a language model by
measuring the probability that the language model assigns to test word sequences. A good
languag@ model should assign a high probability to a good text and a low probability to a bad
text. In this case the most common evaluation metric ipehglexity Perplexity is derived from
crossentropy, a measure which can be computed given a particularalgamgnodelLM and a
particular word sequend®’ = w;, Wy,  €p, as fallows:

1 n
_Ezk’g P (W W, W, .. W) (2.9)

1
H(pow) =—Elog Pow (W, Wy, W, ) =
i=1

The perplexity is derived from crogmtropy using a simple transformation:
PPL(p,, ) =2" P (2.10)

A higher perplexity on a particular wdbsequence means a lower capability of prediction for the
language model, given the particular word sequence. In fact, the perplexity can be computed on
both a tesket text and also on the trainisgt text and, obviously, it has slightly different
meanimgs in these two cases. The tsst perplexity evaluates the generalization and prediction
capability of the language model, while the trairg®g perplexity measures how the language
model fits the training data, like the likelihood. It is generally thead, in the context of ASR,

lower perplexity correlates with better recognition performance [Huang, 2001].

27



Towards a speakéndependent, largeocabulary continuous speetognition system for Romanian

2.2.3.2 Out of vocabulary words

All the smoothingmethods described above deal witgrams which are not part of the training
corpus, but are made up obwds which appear in the training corpus. They cannot be used to
adjust the language model to assign a-nol probability to a word which is not part of the
initial vocabulary. Thesavordsare calledout of vocabulary (OOV) wordsnd, consequently,
cannd be predicted by the language model.

These OOV words make it handto evaluate a language modeécBuse their perplexity is
infinite, it cannot be summed up to the othegrams perplexities to obtain the word sequence
perplexity. In this case, besidgerplexity, thepercentageof OOV words(among the total
number of wordsheeds to be specified and both these metrics have to be taken into account for
comparison

#OOVs

OOV %] =
M%) #words

x 100 (2.11)

2.2.3.3 N-gram hits

The n-gram hitsis another metric which can hesed to draw some important conclusions
regarding the prediction capability of angram language modeAs shown in the previous
sections, baclff models use more-gram language models to address the data sparseness
problem. For example, a trigram larage model tries to predict the current word based on a
two-precedingwords history (trigram model), but may bagcK (due to insufficient dajato a
oneprecedingword history (bigram model) or even to a null history (unigram model). For a
trigram modelthe trigram hitgpercentaggives a measure of how many times the model could
use the full tweprecedingwords history as compared to how many times the model needed to
backoff to find the probability for the currentgram:

#trigram hits y

trigram hits[%] =
#words

100 (2.12

The nrgram hits metric is an auxiliary evaluation metric, which may be very useful to compare
domainspecific language models. A highergram hits correlates with better domaidapted
language models.

2.2.4 Otherlanguagemodeltypes

Besides rgram languagenodels which represent e¢ent stateof-the-art in language modeling,
the experiments presented in this thesis also employ simpler language sumthehs wordoop
grammars and finite state grammars.

A word-loop grammaris a model which assigns equal pabilities to all the words in the
vocabularyand, implicitly, to all word sequenceslhis type of language model is, in fact, a
unigram language model with equal (not corpgmated) unigram probabilities. Of courae
word-loop grammar can be succedbfuwtilized for isolated words recognition, but is expected
to have poor results in a continuous speech recognition setup.

A finite state grammar or word network grammar is a gilagéed modeh which the nodes are

words and the directed links represelibwable word transitions. A finite state grammar
explicitly specifies all the allowable sequences of words for a givenPRaskicular costs can be
assigned to the existing links, thus specifying different probabilities for the allowable word
sequencedf the task is relatively small (digits recognition, phone dial, menu browsing, etc.)
than this type of language model can be successfully used. Moreover, finite state grammars can
be successfully used in word spotting applicatiéiswvever, this type ofanguage models is not
suitable for largevocabulary continuous speech recognition.
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2.3 PHONETIC MODELING

Generalpurpose larga/ocabulary speech recognition systems do not use words as basic speech
units because a) every new ASR task comes with specifcwew ds f or whi ch th
available training data and b) the number of different words in a language is todriatgadof

using words as basic speech uniisese systems model sulords speech unitssuch as
phonemes. Consequently, a phoneticdeiois needed to link the acoustic model (which
estimates phonemes acoustic likelihoods) to the language model (which estmeates
sequence probabilities).

A phonetic model is usually a pronunciation dictionary that maps all the words in the vocabulary
to a sequence of phones. The phonetic dictionary can be regarded as an interface between the
acoustic model, which works with phones and the language model which works with words.

The development of a phonetic dictionary is an important, but difficult tAkkough a
manually created dictionary could be very useful and would assure a perfect phonetisation, the
task is extremely timeonsuming and tedious and also requires a very good knowledge of the
language.Therefae, sveral approaches of automaticaliyilding phonetic dictionaries have

been proposed and sessfully used (seee$tion4.1.3.

2.4 ACOUSTICMODELING

The previous section has argued that st#téhe-art continuous speech recognition systems do

not estimate directlythe likelihood of the acoustic data for a given word sequepCgW) i
Section2.1). Instead they estimate the likelihood of smaller speech units, most commonly
phones.Consequently, the acoustic model corssst a set of phones models which are linked,
during the decoding process, to form words models and eventually word sequences models
(which are finally used to estima®X|W)). This generative approach has been proven to be
very well served by the HiddeMarkov Model (HMM) mathematical apparat[Baker, 1975;

Poritz, 1988; Rabiner, 1989¢linek, 1998].

HMMs are probabilistic fite state machines, which may be combined hierarchically to
construct word sequence models out of smaller units. In-laygabuéry speech recognition
systems, word sequence models are constructed from word models, which in turn are
constructed from sutwvord models (typically contexdependent phone models) using a
pronunciation dictionary.

2.4.1 Acousticfeatures

HMMs do notuse directf thetime-domainwaveform tomodel the speech signal. &Asgure2.1
has shown, a feature extraction block is employed to compute some feature vectors which will
be eventually modelelly the acoustic model.

The speech signal israther urstationary signal, therefoeespectral analysis cannot be done on
the wholetime-domain waveformbut only on short (20ms to 30ms), quskdtionary frames.
These frames are typically generated every 10ms (thus consecutive 25ms frames wdapd over
by 15ms). Each frame is multiplied by a window function. The window function is needed to
smooth the effect of using a finilzed segment for the subsequent feature extraction by
tapering each frame at the beginning and end edges. As most featuspg@ral in nature, the
Fourier Transform is employed and the multiplicative effect of the window function in the time
domain is convolutiven the spectral domain. A tapered window function creates a smoother
and less distorted spectrum. Without a sjtiwindow function the default arising from the
framing operation is that of a rectangular window effect which will generate undesirable spectral
artifacts. For the windowing process, the Hamming window is the most popular.
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The initial timedomain speechvaveform is transformed by the framing and the windowing
processes into a tirdomain sequence of quasationary frames. Several types of speech
features, which can be extracted out of these frames with the purpose to model speech, have
been proposed ev the past three decaddhe most commonly used acoustic features are
perceptual cesptral features such as the MEftequency Cepstrum Coefficients (MFCCs)
introduced by [Davis, 198QInd thePerceptual Linear Prediction (PLP) coefficients introduced

by [Hermasky, 1990]A particular advantage of cepstral representations compatiedépectral
representations is the -@errelation of cepstral coefficients, compared with the high correlations
observed between neighboring spectral coefficients.

MFCCs are basd on the log spectral envelope of the speech signal, transformed tdimeaon
frequency scale that roughly corresponds to that observed in the human auditory system. This
representation is smoothed and orthogonalized by applying a discrete cosifwgrtraresulting

in a cepstral representationhe MFCCs success arises from the use of perceptually based Mel
spaced filter bank processing of the Fourier Transform and the particular robustness and the
flexibility that can be achieved using the genergisteal analysisThe MFCCs areomputedas
presented ifigure2.2.
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Figure 2.2 Analysis block diagram for MFCC feature vectors

Perceptual linear prediction (PLP) includes an augitospired cubaoot compression and uses

an allpole modelto smooth the spectrum before the cepstoafficientsare computedThe

PLP analysis is an extension of the Linear Prediction Coding (LPC) technique, but it is more
effective because it takeshaantage of some characteristics derived from the psgcbastic
properties of the human efermansky, 1990]These characteristics are modeled by a filter
bank.The PLP coefficients ambtainedas presented Kigure2.3.
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Figure 2.3 Analysis block diagram for PLP feature vectorgHermansky, 1990]
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Even though each feature set (MFCC or PLP) is computed on a short frame of speech signal, it
is well known that information embeddéedthe tempaoal dynamics of the featuresasso useful

for recognition. Typically two kinds of dynamics have been found useful for speech recognition:
a) velocity of the features (known as delta featyresich is determined by its average first

order tenporal derivative and b) acceleration of the features (also known asiditideatures)

which is determined by its average secomnder temporal derivative. Moreover, the total log
energy of the feature and its derivatives have been proven to befassfutech recognition.

Consequently, speech recognition accuracy is substantially improved if the feature vectors are
augmented with the first and second temporal derivatives of the acoustic features, thus adding
some information about the local temporiinamics of the speech signal to the feature
representation [Furui, 1986Most commonly, ASR systems use a-dfhensional feature
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vector, corresponding to twelve MFCCs plus energy, along with their first and second temporal
derivatives.

2.4.2 The HMM/GMMframework

The previous section has detailed the features which are generally extracted out of the speech
signal for further modeling (in the training phase) or for speech recognition (in the decoding
phase).The stateof-the-art approach fomodeling basic speé units (typically sulword units

such as phones) makes use of the HMM/GMM framework.

2.4.2.1 HMM definition

An HMM is a probabilistic finite state automaton, consisting of a set of states connected by
transitions, in which the state sequence is hidden. Insteathserving the state sequence, a
sequence of acoustic feature vectors is observed, generated fnarability density function

(pdf) attached to each statBhi s i's why the Mar kov pr dtheess i
state sequence is not directlyailable to the observer. This type of Markov process has been
proven to be a very good model of speech.

A more detailed representation of an HMM is presentdéignre2.4. As the figure shows, an
HMM is characterized byheseparameters:
e statesa set of state® = qup€ O\;
e transition probabilities:a set of probabilitiesA = ajja12€ aww. Eacha; = p(glq)
represents the probability of transitioning from sidtestatq;
e observation likelihoodsa set ofobservation likelibbods B = bi(x) = p(|g), each
expressing the probability of an observatipheing generated from the state

P(ch | o) P | o) P(Cs | ds)
@ > > 2 > O3 >@
P(ch | o) P(a | o) PGk | o) PG| &)
P | o) P | &) p(x | ds)
X X X

Figure 2.4 HMM representation as a parameterized stochastic fitle state automaton

Although the definition of an HMM allows the transition from any state to any other state, in
speech recognition the models are created to disallow arbitrary transitions, figuees2.4
shows. This is becae it is important and useful to model the sequential nature of speech,
placing strong constrains on transitions backward or skipping transitions. Except in unusual
cases, HMMs for speech disallow transitions to earlier states in the model. This kiretlof fe
forward HMM structure is called Bakis network. The most common model used for speech is
even more constrained, allowing a state to transition only to itselfl¢sglj or to a single
succeeding state. The use of detips allows a subhonetic unit torepeat so as to cover a
variable amount of the acoustic input.

The observation likelihood of a stagecan be regarded as a discrete function if there is only a
finite number of possible observatioxsin the general case, the acoustic features, wariehin

fact, the output of the HMM, may have a wide range of real values. Therefore, the observation
likelihoods are discrete functions only in a simplifying approach, but in the general case they are
probability density functions (pdfsPne of themostpopularforms of output pdf for a statg is
ad-dimensional Gaussian, parameterized by a mean v@aad a covariance matri:
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1

b (¥) = p(x]q) =N 1, Z)) =—————=
(27) %%, |

1 _
eXp(_ E(X_ ) = )j (2.13)
For a typical acoustic vector comprising L2ttder MFCCs plus energy, with first and sad
temporalderivativesd equals 39.

Modeling speech using hidden Markov models makesnamassumptiongRenalds, 2010]

e Markov process: the state sequence in an HMM is assumed to be@adestMarkov
process, in which the probability of the netdte transition depends only on the current
state: a history of previous states is not necessary.

e Observation independence: all the information about the previously observed acoustic
feature vectors is captured in the current state: the likelihood ofagemeran acoustic
vector is conditionally independent of previous acoustic vectors given the current state.

These two assumptions may lead to an unrealistic model of speech, but they are needed due to
the mathematically and computationally simplificatidinsy bring. Theestimation and decoding
problems cannot be addressed, or can be addressed in a very complicated way without these
assumptions. Nevertheless, the last two decades of HMMs success in speech signal modeling
prove that t heetsoinfipbriamhi t ati onso are n

2.4.2.2 Evaluation, Decoding and Estimation

Acoustic modeling using HMMs has become the dominant approach thanksdeviiepment

of variousalgorithms which enable some key computations to be carried out efficiently. These
algorithms are basean the Markov and observation independence assumptions. To determine
the overall likelihood of an observation sequeKce (x1, %, &,, 3,being generated by an
HMM, it is necessary to sum over all possible state sequepggs gr that could resulin the
observation sequencé Rather than enumerating each sequence, it is possible to compute the
likelihood recursively, using thd-orward algorithm The key to this algorithm is the
computation of the forward probabilit(q) = p(x, €, %, & = q; | &,)the probability of
observing the observation sequenge  é;,and oeing in state; at timet. The Markov
assumption allows this to be computed recursively using a recursion of the form:

oy (qj)zzat—l(qi)aij bj (XI) (2-14)

The decoding problem for HMMisvolves finding the state sequence that is most likely to have
generated an observation sequence. This may be solved asohgnhamic programming
algorithm, often referred to agiterbi decoding which has a very similar structure to the
Forward algorithm with the exception that the summation at each time step is replaced by a
max operation, since just the most probable state sequence is refju@atkcoding problem is,

in fact, thespeechrecognition problem. The Viterbi algorithm is used to find thestrlikely
sequence of words and estimate the probahitit this seuence has generated the acoustic
observations.

The decoding and evaluation problems can be solved using the Forward and Viterbi algorithms,
given that a set of HMMs is available. In erdto obtain a set of trained models we need to
estimate the parameters of an HMM: the transition probabilities and the parameters of the output
pdf (mean vector and covariance matrix in the case of a Gaussian pdf). The most straightforward
criterion to us for parameter estimation is maximum likelihgddl), in which the parameters

are set so as to maximize the likelihood of the model generating the observed training data.
Other training criteria may be used, such as maximum a posteriori (MAP) or Bayesian
estimation of the posterior distribution, and discriminative training. Maximum likelihood
training can be approximated by considering the most probablétstaalignment, which may
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be obtained using the Viterbi algorithm. Given such an alignment, maxirikelihood
parameter estimation is straightforward: the transition probabilities are estimated from relative
frequencies, and the mean and covariance parameters from the sample estimates. However, this
approach to parameter estimation considers onlynh& probable path, whereas the probability
mass is in fact factored across all possible paths. Exact maximum likelihood estimation can be
achieved using theForwardi Backward or Baum Welch algorithm [Baum, 1972], a
specialization of thexpectatioamaximiation (EM) algorithm [Dempster, 1977]. Each step of

this iterative algorithm consists of two parts. In thet part (the Estep) a probabilistic state

time alignment is computed, assigning a state occupation probability to each state at each time,
giventhe observed data. Then thedtep estimates the parameters by an average weighted by
the state occupation grabilities. The EM algorithm halseen shown to converge in a local
maximum of the likelihood function. The key to thestep lies in the estimatioof the state
occupation probabilityx(q) = P(a: = q; | X the @xgbability of occupying statg at timet

given the sequence of observations. The state occupation probabilities can also be computed
recursively:

1
vi(Q;) =——— . (a;).(a;) 2.15
RPACEI (219
where U(q)) is the forward probability for statg at timet, B(q) = p(x+1, X2, Xr | Gk =0q;, i)
called the backward probability, aki(ge) is a normalization factor (the forward probability for
the end stategg at the end of the observation sequesntimeT). The backward probabilities are
calledsobecause they may be computed by a recursion that goes backwards in time.

The output pdfs are the most important part of this model, and restricting them to single
Gaussians results in a sigoant limtation on modeling capability. In practice, Gaussian
mixture model (GMMSs) are used as output pdfs. A GMM is a weighted sum of Gaussians:

K
b (X) = p(X|Qi):ZC|kN(X;ﬂik1zik) (2.16)

k=1
where we have a mixture &f Gaussian components, with mixture weigtitsfor everyHMM
state.Training a GMM is analogous to HMM training: for HMMs the state is a hidden variable,
for GMMs the mixture component is a hidden variable. Again the &§brithm may be
employed, with the Etep estimating the component occupatwobabilities,and theM-step
updating theneans and covariances using a weiglateztage

2.4.3 Speechunits selection contextdependacy andclustering

We have already argued that, generally, largeabulary continuous speech recognition systems
model subword units usingdHMMs. Still, there are several issues to be discussed when dealing
with selecting the type of sesord speech unitsThe authors of [Huang, 2001] sdeee high
level features that a proper speech unit must have:
e The unit should baccurate to representhe acoustic realization that appears in different
contexts.
e The unit should bérainable (there should be enough data to estimate the parameters of
the unit).
e The unit should bgeneralizableso that any new word can be derived from a predefined
unit inventory for taskindependent speech recognition.

Given this it is evenclearerwhy words cannot be used as basic speech mn&sgevocabulary
systemsthey areneithertrainable nor generalizable.

Alternatively, phones can be chosen as basic speatsh Unlike word models, phonetic models
provide no training problem because sufficient occurrences for all phones can be found in just a
couple thousand phrases. Moreover, they are also vocabulary independent by nature and can be
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trained on one task andsted on another. Thus, phones are more trainable and generalizable.
However, the phonetic model is inadequate because it assumes that a pisomEmecalin

any context. Although we may try to say each word as a concatenated sequence of independent
phonemes, these phonemes are not produced independently, because our articulators cannot
move instantaneously from one position to another. Thus, the realization of a phoneme is
strongly affected by its immediately neighboring phonemes. While word modelsicare
generalizable, phonetic models oxgameralize and, thus, lead to less accurate models.

If we make units context dependent, we can significantly improve the reilomgatcuracy,
provided there i€nough training data to estimate these condextendenparameters. Context
dependent phonemes have been widely used for-lercgbulary speech recognition, thanks to
its significantly improved accuracy and trainability. A context usually refers to the immediately
left and/or right neighboring phones.

A triphone model is a phonetic model that takes into consideration both the left and the right
neighboring phones. If two phones have the same identity but different left or right contexts,
they are considered different triphones. Wémote thalifferent realizéions of a phonemwith

the termallophones. Triphones are an example of allophones.

Triphone models are powerful because they capture the most importariicotationeffects.

They are generally much more consistent than coimependent phone modeldowever, as
contextdependent models generally have increased parameters, trainabilty becomes a
challenging issue. We need to balance the trainability and accuracy with a number of parameter
sharing techniques.

Triphone modeling assumes that every tipd context is different. Actually, many phones have
similar effects on the neighboring phones. The position of our articulators has an important
effect on how we pronounce neighboring vowels. It is desirable to find instances of similar
contexts and mergigem. This would lead to a much more manageable number of models that
can be better trained.

The trainability and accuracy balance between phonetic and word models can be generalized
further to model suphonetic events. In fact, both phonetic and-phtnetic units have the

same benefits, as they share parameters at unit level. This is the key benefit in comparison to the
word units.Papers by [Bahl, 1991; Hon, 19%wang, 1991} ee, 1988;Young, 1993]provide
examples of the application of this concéptcluster hidden Markov models. For spittonetic
modeling, we can treat the state in phonetic HMMs as the basiphsutetic unit. Hwang and
Huang further generalized clustering to the stipendent output distributions across different
phonetic modelfHwang, 1991] Each cluster thus represents a set of similar Markov states and

is called a senonélwang, 1993] A subword model is thus composed of a sequence of senones
after the clustering is finished. The optimal number of senones for a system ik main
determined by the available training corpus and can be tuned on a development set.

Each allophone model is an HMM made of states, transitions, and probability distributions. To
improve the reliability of the statistical parameters of these models, dstnbutions can be

tied. For example, distributions for the central portion of an allophone may be tied together to
reflect the fact that they represent the stable (coimelependent) physical realization of the
central part of the phoneme, utteredhadt stationary configuration of the vocal tract. Clustering

at the granularity of the state rather than the entire model can keep the dissimilar states of two
models apart while the other corresponding states are merged, thus leaditigrtpdrameter
sharing. Thisis one of the keolutions to creat&rainable contextiependent phonetic or sub
phonetic units.

In practice, senone models significantly reduce the word recognition error rate in comparison
with the modelbased clustered triphone models [Hggan 2 00 1] . It i's the
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significant reduction of the overall system parameters that enables the continuous mixture
HMMs to perform well for largevocabulary speech recognitifidwang, 1993]

2.4.4 Conclusion

To summarize the section on acoustic modeiwe need to say that staieétheart large
vocabularyspeech recognition systems use Bdgge HMMs with GMMs as output pdfs to
model speech units such as cont@ggpendent phones (triphones) or senones. The HMMs model
these speech units usipgrceptial acoustic features (MFCCs or PLP coefficients) extracted out
of the original timedomain speech signal.

The BaumWelch algorithm is used testimate the HMM parameters. The Viterbi algorithm is
used to decode the speech data: to find the most proleghlersce of states given the acoustic
features observations.

There is typically one HMM per speech unit and all these basic HMMs can be concatenated to
form words HMMs, which can be further concatenated to form word sequences HMMs. This is
the mechanism wbh allows us to eventually estimate the probability of a sequence of words
given the initial speech data.

2.5 ASREVALUATION

The task of evaluating a speech recognition systewmives comparing a reference (or correct)
word sequence with the hypothesiord squence returned by the system. The standard
evaluation metric for comparing the two word sequencéeisvord error rate (WER)Given
the correct word sequence, the first step in computing the word error rate is to compute the
minimum edit distance in wds between the reference and the hypothesized sequences. This is
usuallydone using the dynamic programming algorithm called Dynamic Time Warping (DTW)
given some standard weights for the three types of errors which can occur: insertions, deletions
and sustitutions.After the alignment and based on these three types of errors, the word error
rate is computed using the following formula:

#Insertions+ # Substitutons+ # Deletions

WER%] = x100
) #Wordsin referencdranscripion (2.17)

Note that sometimes the word error rate can be greater than 100% because the abowve equa
also includes the number of insertions.

In some applications a second evaluation metric, the sentence error rate (SER), might also be
important. The sentence error rate is based on the word error rate and can be computed as
follows:

# Sentencesvith at leastoneword error

SER%] = <100
1) # Sentences thereferenceranscripion (2.18)

2.6 SPEECHRECOGNITIONTOOLS

The mostpopular anccommonlyuseddevelopment and speech recognition toolstie¢lidden

Markov Model Toolkit (HTK) [Young, 1994] anthe CMU Sphinx [Lee, 2002]Both of them

are open source toolkits and are avadaonline. Theyoffer the possibility of developing

speakefindependent, largeocabulary, continuous speech recognition systems in any language.

HTK was intensively used during the last ten years, but lately Sphinx became more popular,

both in the scienfic community and also in the industry thanks to its free license for

commercial applicationsThe speech recognition performance of the two toolkits has been

compared by some studies. They generally conclude that similar systems developed with the two
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toolkits have a similar performance, but the acoustic modeling performed by Sphinx is slightly
better [Samudravijaya, 2003].

The evaluation of speech recognition systems can be done using the HTK/Sphirir built
evaluation tools, but the most commonly usedleation toolkit is the NIST SCTK (National
Institute of Standards and Technologie$coring Toolkit) [NIST, 2005] The scoring tool
performs the hypothesizedference alignment, computes the word error rate and provides a
series of other useful staicst. Among these, the most important ones are the words confusion
matrices, showing which words are mostly misrecognized for others. This tool also presents
summaries of the most inserted/deleted/substituted words and can compute the sentence/word
error raes in a per speakeranner

The language modeling experiments presented in this thesis have beengxbrisimg the SRI
LM Toolkit [Stolcke, 2002].There arealso severalother opersource toolkitswhich provide
language modeling facilities. Among thedee CMUSLM (Carnegie Mellon Universityi
Statistical Language Modeling) toolkit is the second most commonly used.
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CHAPTER 3

STATISTICAL MACHINE TRANSLATION
MAIN PRINCIPLES

The field of machine translation can be traced back to the early 1950s, in the era-of cod
breaking, when the translation process was firstly regarded as decodingrgpted message

In fact, this principle is still valid today: we are still talking abdetoding a foreign language

and we are still using modeling techniques suchhasnoiy-channel model Moreover, it
appears that machine translation funding is basically driven by the same motivation:
governments invest large amounts of money into translating the languages of countries which
are considered to be a threat to national sgcurit

The first approaches used basic fb#sed methods to translate words from the source language
to the target language. These methods evolved into more complex techniques that utilized
morphological and syntactic information. During the 1980sinterlinguaconcept, that aimed

to represent meaning in a languageéependent manner, was introduced and explored. These
systems required more sophisticated grammars, which could be used to analyre and
conceptualize the text in the source language and ierteto generate the text in the target
language.

Given that one of the main applications of machine translation is helping human translators, a
new idea emerged: the usageti@nslation memoriesn so-called examplebased translation
systems. These systerexploit the already available and growing parallel corpora created by
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human translators. This was the first ddteven approach to be proposed as a viable solution to
machine translation.

The success of statistical methods in the field of speech reioogmiggered their application in
machine translation. The firstatistical translation modelgere proposed in the labs of IBM
Research in the late 1980s. Although the statistical approach was very intriguing, the scientific
community continued to fosuon syntaxbased and interlingua systems throughout the 1990s.

The growth of the Internet and consequently the increasing availability of text resources along
with the development and openness of several standard tools implementing the IBM translation
mocels led to the adoption of statistical machine translation (SMT) as the de facto approach
around the year 2000. Since then a large number of academic and commercial research labs have
developed statistical machine translation systems, while several largganies are on the

market with such competitive systems.

3.1 THE STATISTICAL MACHINE TRANSLATION FORMALISM

The stateof-the-art systems in statistical machine translation are based on phrase translation
models. The notion of phrase does not refer to a grégerdences as in the strictly linguistic
sense, but to an expression, to a sequence of words. The-pasasktranslation model was
introduced in [Koehn, 2003]. These systems are the successors of the systems based on word
translation models, developeyg BM.

The machine translation task can be formulated in a probabilistic manner as follows:

What is the most likely translation sentence e in the target language E,
given the input sentence f, in the source language F?

The formal representation uses tingraax function, which selects the argument that maximizes
the translation probability:

e*=al‘gmaxp(e| f) (3.1)

Equation 3.1 specifies the most probable translation as the one with the highest posterior
probability, given the input sentence in tlogefign language. In order to factor in a language
model we can use the Bayes rule similarly as in the speech recognition case:

e-argmaneel H-argmax™ - " -argmaxeii9re  (3.2)

Although this derivation does not simplify the problem (it just changes the translation direction
from p(elf) to p(fle), the language model can help a lot in obtaining a good translation, by
assuring the fluency of the output sentence.

In the case of a phradmsed translation model, the foreign senteihee further split intol
phrasedi. The segentation of the foreign sentence is not explicitly modeled: any segmentation
is equally likely. Using this segmentation, the probability of the foreign sentence given the target
sentence(f|e) can be further decomposed into:

|
p(f Ie)=H¢(fi lg) d(skippedWds) (3.3
i=1
Equation 3.3 highlights the two components which are used to estimate the likelihood of a
phrase translation: a) the phrase translation tablg|d)) and b) the reordering modedi)(
Reordering is handled by a distaru@sed reordering model. The reordering distance is the
number of words skipped (either forward or backward) when taking foreign words out of
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sequence. If two phrases are trategddain sequence, then the lowest reordering ab&))(is
applied.

The reordering model assigns a lower cost if the phrases are translated in sequence and a higher
cost, dependent on the number of skipped words, if the phrases need to be reordered. In oth
words the reordering model assures that movements of phrases over large distances are mode
expensive than shorter movements or no movements at all.

The following equation integrates all the components that we have discussed so far (the
translation tablethe reordering model and the language model):

| d
e=argmax] [4(fi1e) diskippedwos) | | puw (e lev.60) (3.4)
e i=1 i=1

The three components contribute to producing the best possible translation by assuring that:
e the foreign phrases match the words in the target langtgge (
e the phrases are netered appropriatelydy;
e the translated phrase is fluepty).

The three contributions might be disproportionate. For example, the output could be very fluent,
but it might not be translated very well. Or, the reordering could be too strict. To congpathsat
these things, the contribution of the models could be scaled using some weighting #acégrs:

awm. The weights can be taken into account as shown in the next equation:

| ¢
e=argmax] [#(fi1e)” dskippedwos)™ [ puw (e ler..e1) ™ (3.5)
e i=1 i=1
Figure 3.1 presents the architecture of a statistical machine translation system and also includes
the operations wibh have to be performed to construct the three components of the system.

As the figure shows and as previously discussed, the text in the source language is translated in
the foreign language based on a phrase translation model, a phrase reorderingnuoael
language model for the target language. The resources needed to train these components are: a
sentencaligned parallel corpus (text paired with its translation) and a plairctegus for the

target language.

language 1

.. Decoding

hr Translation 1ﬁ language 2
'L language 1 -= language 2 :

Language
rmodel

reardering
rrodel

Training Language
rmodeling

ext corpus
n language

Figure 3.1 SMT system architecture
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The first step in building the phrase translation table is to vabgwh the initially sentence
aligned parallel corpus. Generally, this word alignment process is performed usingpasert
translation modelsWord-alignment will be detailed in Sectioh2 Second, using the word
aligned parallel corpus, phrase pairs that are consistent with this alignment are extracted and
used to estimate the probabilities within the phrase triamsleable. This process is detailed in
Section3.3

As already discussed, the reordering model is not estimated from data. Even though reordering
probabilities could also be learn from the parallel corpus, this is not typaatie for phrase

based models. Instead, reordering is handled by a predefined model. speaigc issues
regardingthe distancéased reordering model will be presented in Se@&idn

The construction of a geral ngram laguage model haseen already discussed in the context
of automatic speech recognition in Sect®2 All these things are still valid in the case of
machine translation: typically, trigram language models are used to assuitaeticy of the
translated texts.

3.2 WORD-LEVEL ALIGNMENT FOR SENTENCEALIGNED CORPORA

3.2.1 The task of word alignment

Word alignment is the operation which transforms a semtaligeed parallel corpus into a
word-aligned parallel corpus. It is the first opeoatithat has to be employed in order to build a
phrase translation table. Let us suppose we have the following pair of sentences in English,
respectively Romanian:

English sentencd:ast Saturday | slept on the couch.
Romanian sentenc&©mb £t a t ormitppeldadapea.m d

Given this pair of phrases, the task of word alignment can be seen as finding a set of alignment
points between the English words and the Romanian weéidare 3.2 presents an alignment
provided by a human tralasor. The English wordgdisplayed on thdines of the matriy are

aligned to the Romanian wordksted in thecolumns) as indicated by the filleklls in the

matrix

SO©Ombt
trect
am
dormit

pe
canapea

last
Saturday

I
slept

on
the

couch
Figure 3.2 An example of word alignment

We can observe that there are words whicgnatio multiple other words (for example, the
English wordsleptaligns to the Romanian wordsn dormij, words which align to a single
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word and some other words which are not aligned at all (for example the English vgord
implied in the Romanian sentez)c

Although in most of the cases the word alignment can be easily accomplished, there are cases in
which even a human translator can be confused. For example, in our sentence pair thel pronoun
is implied in Romanian because the vedm(dormij is propely inflected (first person).
Consequently, we could argue that the wooduld be aligned to the wommn (which contains

the information about inflection).

There are other, more problematic cases in which the word alignment is not obvious at all: the
idiomatic expressions. For example consider the cadéigare 3.3. The English idiomatic
expressionkicked the buckeand the Romanian expressiandat ortul popiihave the same
meaningdied The twoexpressiongan only be alignedt the phraséevel, because outside this
context the English verkickedis not a good translation for the Romanadat Il tds the
case with the English nousucket which is obviously not a good translation for the Romanian
ortul popii. In the paritular case of idiomatic expressions we can only speak giimasal
alignment an alignment that cannon be decomposed any further because the meaning is not
preserved.

BLtr ¢
dat

ortul
popii

The
old
man
kicked
the

bucket
Figure 3.3 Problematic word alignment: idiomatic expressions cannot be woraligned

Word alignment is a &k that can be accomplished by thienpler andex-stateof-the-art
translation models: the wottthsed modeldeveloped by IBM around the 198

3.2.2 IBM word-based translation models

The first statistical translation systems were based on lexical transldt®riranslation of
isolated words, independent of their context. This approach is very similar to a common
bilingual dictionary with probabilities for every translation option.

The translation model estimates a lexical translation probability distribufibe. model is
created using counts for every werdnslation pair obtained from a weatigned parallel
corpus, by means of maximum likelihood estimatibt.E).

Let us consider an example where the source language is English and the target language is
Romanian. In order to construct the probabilistic translation table for a given word (for example
car) we need to count how many times this word is translated by different Romanian words. If
we suppose that the woodr appears 10000 times in the corpus and franslated 7000 times

by ma k j 17Q0 times byautomobi| 1100 times byautoturismand 200 times byagon then

the lexical translation probability distribution for this word would be the one preseniedlia

3.1
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Table 3.1 Translation table for the English word car

Translation of car | Count | Probability
maki nt 7000 0.70
automobil 1700 0.17
autoturism 1100 0.11
vagon 200 0.02

Translation tables for all the English words foundthe training corpus can be created in a
similar manner. Given these translation tables, an English sentence can be translated to
Romanian in a wordby-word manner, using every possible translation for every word. This
model assumes that the wdelel translations are statistically independent and thus the
translation probability of the whole sentence can be estimated only given the translation
probabilities of its composing words. In order to find the best trans)aibmossible word
alignments betwen the English words in the input sentence and the Romanian words in the
hypotheses sentences are explored. Consequently, translating an English sentence to Romanian
would implicitly generatea word alignment.

The alignment model used in IBM model 1 is tvow more complex, because it also allows
for other alignments than simple wet@word alignments. This is something natural because
we already saw that a word in the sodlareguage can be translated to more than one word in
the targetanguage and viegersa. Unfortunately, IBM model 1 only allows this ememultiple
alignment in one direction: one sowlemguage word translated into multiple targeiguage
words. It does not allow a targdéanguage word to stand as a translation for multiple seurce
language words.

IBM alignment model 1 also permits dropping words in the solammguage sentence and
adding words in the targdanguage sentence (these will be aligned to an imaginary NULL
tokeninserted in the source sentence).

The construction of thig/pe of translation models requires wealigned corpora. Usually this is
not a widely available resource: only senteatigned corpora are generally available. The
training problem can be solved by the expectation maximization (EM) algorithm which veorks a
follows:

we first initialize the translation model with uniform probability distributions,

second, we apply the model to the source language data (expectation step),

third, we train the model using the reference target language data (maximization step),
finally, we repeat steps 2 and 3 until convergence.

Generally, the EM algorithm is guaranteed to converge to a local minimum, but in the case of
IBM model 1 it was mathematically demonstrated that the convergence always reaches the
global minimum.

IBM modd 2 uses IBM model 1 as an initialization step and further introduces an explicit word
alignment model. This alignment model is also regarded as a probability distribution which is
estimated using counts in the training daita the same way (expectationarimization
algorithm) as for the lexical translation probabilitigtribution

IBM model 3 explicitly introduces the notion of fertility. This is another probability distribution
that statistically models how many tardg@hguage words are usually prodddey a source
language word. Fertility explicitly deals with dropping soudlaguage words, but cannot cope
with inserting targetanguage words. This last issue is also dealt with in IBM model 3 by
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creating a special context (defined by another probwalfiinction) for inserting the NULL token
in the sourcdanguage sentence.

In IBM model 4, the absolute alignment model introduced by IBM model 2 is replaced with a
relative alignment model. In this model, the placement of the translation of a 4mugcege

word is typically based on the placement of the translation of the proceeding-Engeage
word. This is motivated by the fact that large phrases tend to move together within long
sentences. Words that are adjacent in the source sentence tendetd be each other in the
target sentence also. For instance, whether thes@6rcelanguage word is translated into the
16" targetlanguage word depends to a large degree on what happened t8 therd5

The higher IBM models are more complex andtheelower models as initialization. Regardless

of the used model, what it is clear is that these translation models can be trained solely on
sentencaligned parallel corpora. A kyroduct of the training process is the wdedel
alignment of the trainig corpus.

3.2.3 Word alignment based on the IBM models

As discussed in the previous section, gpbyduct of training the IBM translation models is that

it establishes a word alignment for each sentence pair within the initially sesatiegrosd
corpus. Howeverthere is one fundamental problem with the word alignment performed by the
IBM translation models: the orte-multiple alignment. Unfortunately, IBM models only allow
this oneto-multiple alignment in one direction: one soutaaguage word aligned to mipte
targetlanguage words. It is impossible to end up with an alignment of one-tangeiage word

to multiple sourcdanguage words.

However, in practice both ofte-multiple alignments are possible. In the example shown in
Figure 3.2 the English wordon the are aligned to a single Romanian wop while the
Romanian wordam dormitare aligned to a single English wosdept

To overcome this problem a simple trick is usually employed: running the IBM training in both
directions. The two resulting word alignments can then be merged by taking the intersection or
the union of alignment points of each alignment. This process is cgiedhetrization of word
alignments Generally, the intersection will contain reliably good aigmt points (a high
precision of the alignment points), but not all of them. The union will contain most of the
desired alignment points (a high recall of the alignment points), but also additional faulty points.
An example, using the previously used p#EirEnglishRomanian sentences, is givenFigure

3.4. In this figurethe intersection of alignment points is in grey and their union is in black

Several methods have been developed to explore the space between the interkeloston o
alignments and their union. The most commonly used method [Och, 2003] explores the space
between intersection and union with expansion heuristics that start with the intersection and add
additional alignment points. The decisiaboutwhich points toadd may depend on various
criteria which | will not describe any further.

The conclusion of this subsection is that the IBM wbaded translation models can be
successfully used to wosalign an initially sentencaligned parallel corpus.
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Qo - s L o - o
g%&%mg SSE'gwg
N &5 ®@ T o o W -~ ®@ T o o
last last
Saturday Saturday
| I
slept slept
on on
the the
couch . couch
English to Roranian Romanian to English
o ¢ 1
o - 5888
last
Saturday
I
slept
on
the
couch

Intersection / Union
Figure 3.4 Symmetrization of IBM model alignments

3.3 THE PHRASE-BASED TRANSLATION MODEL

3.3.1 The translation table

The phrase translation table is the core of the SMT system. Its translation performance is to a
large degree dependent on the quality of the translation table. Several methegsaposed to
extract phrase pairs from a weatigned text corpus. The technique which is currently
considered as statd-the-art was presented in [Zens, 2002]. This method proposes to build the
phrase table using only the phrases which are conststeéhé word alignment: the words in a

legal phrase pair are only aligned to each other, and not to outside words.

Let us consider again the exampleFigure 3.2. Given this word alignment we would like to
extract only the phraspairs that are consistent with it, for example matching the Romanian
phrasepe canapeawith the English phrasen the couchlIf we have to translate an English
sentence that contains the phrasethe couclthen we can use the evidence of this phrasal
alignment to translate the phrasepagscanapeaUseful phrases for translation may be shorter or
longer than this example. Shorter phrases occur more frequently, so they will more often be
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applicable to previously unseen sentences. Longer phrases capturlecaboontext and help
translate larger chunks of text at once, occasionally even entire sentences. Hence, when
extracting phrase pairs, both short and long phrases should be collected, since all of them are
useful.

So, the first step in creating the tsition table is to extract phrase pairs based on their
consistency with the word alignment. To be more specific, a phrase pair that is consistent with
the word alignment is a phrase pair whose words (both stamgeage words and target
language words)lign only to each other and not to words outside the phrase pair. Consequently,
the extraction method loops over all possible phrase pairs and verifies the above constraint.
Figure3.5 reminds the word alignment in our previougsple and displays the complete list of
consistent phrase pairs that can be extracted from this sentence pair.

The first thing to be observed is that it is possible that for some English phrases, we are not able
to extract matching Romanian phrases. Thispens, for instance, when multiple English words

are aligned to one Romanian womh theare both aligned to the Romaniags, so that no
individual match for eitheon or thecan be extracted.

This also happens when the English words align with Romaniamls that enclose other
Romanian words that align back to English words that are not in the original phrase. See the
example ofSaturday | sleptwhich alignstcS©mb £t a é , veords tdabenatosetr ec ut Lt
which aligns back tdast Here, it is not pssible to matcibaturday | slepto any Romanian
phrase, since the only maing Romanian phrase has a gap.

o o ®
E o = =3
© - g 5 o §
© . .
N« ®© T o © consistent phrase pairs:
last lastit r ecut t
Saturday last Saturday S©mbtta trecutt
| last Saturdayi S©mbtt a trecutt
slept last Saturday I sleptS©mbtt a trecutt am do
on last Saturday | sleptonthieS©mbtt a trecutt am
the last Saturday | sleptonthecoucB©mbtt a tr ecut pea
couch Saturday S©mb Lt a

Saturdayil S©Omb Lt a

| slepti am dormit

| slept on thé am dormit pe

| slept on the couch am dormit pe canapea
slepti am dormit

slept on thé am dormit pe

slept on the couch am dormit pe canapea
on thel pe

on the couch pe canapea

couchi canapea
Figure 3.5 Extracted phrase pairs given the word alignment
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Examples can be eésifound for Romanian phrases that cannot be matched to any English
phrases, due to similar reasons as mentioned abovee ¢ u t £ , amndorchip r mi t

A second observation regards unaligned words. Unaligned English words may lead to multiple
matches for Romanian phrases: for instamee, dormitmatches with two English phrasds:
sleptandslept Vice-versa if there were grunaligned Romanian words they would have led to
multiple matches for English phrases.

The estimation technique for the conditional probability distributions of the phrase translation
table is different than the technique which was used in the case dd tvanslation models. The
estimated probability that the sowleeiguage phraskis the translation of the targktnguage
phraseeis:

counte, )

fle=countet)
7rle ZCoun(e, f;) (3.6)

fi

In other words, we estimate this probability by dividing the number of times theeptaage, f)
is collected to the number of times the phragecollected with any pait.

3.3.2 Some basic translation model extensions

Although the translation model based on the phrase translation table appears to be very strong,
there are some other aspe which have to be taken into account in order to avoid some
translation errors.

First there has to be some protection mechanism against overestimated probabilities for
infrequent phrases, especially if they are collected from noisy data. If, for exanglease pair

(e, f)occurs only once in the training corpus then its conditional probability would(bé¢ .| e) =1
This value is clearly an overestimate of how reliable the phrase pair is. To avoid this problem,
the conditional probabilities for rare pbea pairs are decomposed into a product of the
conditional probabilities for their composing word pairs. It is the same idea used in the word
based translation models: a phrase pair is decomposed into its constituent word pairs and its
probability is compwd based on the probabilities of the word pairs. This is basically a
smoothing technique, which is also similar to the ones used in the casgrafnnanguage
models: when the statistics for a word sequence are not reliable wefbaokshorter word
seqiences for which we have richer statistics and hence more reliable probability estimates. In
the context of machine translation this technique is cédbadal weighting

Another interesting aspect which has not been considered in the basic translat@magards

the number of words in the targehguage sentence, or the output sentence length. One of the
components of the SMT system, namely the language model, would always prefer shorter output
sentences simply because fewer trigrams have to be sdareyliard against output that is too
short or too longa word penalty which adds a factow to each produced word, is usually
introduced. A word penalty smaller than 1 favors shorter output sentences andrggeifw is

higher than 1, thelonger otput sentences are preferred.

One last thing that might need some tuning is the length of the segmentedlapguage
phrases. Before actually decoding an input sentence it first has to be split into several phrases.
This segmentation into more phrasesot explicitly modeled and initially all segmentations are
equally likely. Of course, in the end the best input sentence segmentation will be indirectly
determined based on the scores provided by the translation table, the reordering model and the
languaye model for a given translation sentence. Nevertheless, the segmentation process can be
biased towards shorter or longer phrases by introducplyyase penaltyuning factorp. This

tuning factor is called phrase penalty because the number of segmierateelsps directly linked

to their length: more phrases implies shorter phrases, while fewer phrases implies longer
phrases.
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3.4 THE PHRASEREORDERINGMODEL: SPECIFICISSUES

Reordering isone ofthe most difficult proble® in machine translation. What makeseiten
harder is the fact that for different language pairs reordering manifests differently. There are
language pairs for which restricting reordering to short local movements is sufficient for the
translation of most sentences, while there are other ¢amgpairs for which reordering cannot

be restrictedat all For example, the translation of the language pairs Chigegksh, French
English and ArabikEnglish is characterized by short local movements, while in the case of
GermanrEnglish and Japanegaglish the movements are more ample [Koehn, 2010].

The reordering model is constructed in such a manner that it penalizes movemsetgience

phrase translation has the smallest cost, whileobotder phrase translation receives a smaller

or a larger pnalty depeding on the movement amplitud€here is one model which counter
balances this behavior: the language model. If the reordering (the movements within the output
sentence) produces better targetguage sentences than the language model haslehef
assigning a better score to the reordered sequence and hopefully to proclaim it as the winner. For
example, the improvement in language model scor&f@mb it aovertt r e S®Mb L t a
(when translating the Engligast Saturday should be much higher than the penalty involved in

the movement.

For language pairs in which a good translation implies only short, local movements, a typical
trigram languag model works very well. However, for language pairs which have a different
syntactic structure (Romanig&®erman, for example) the typicaivdrd window used by the
language model is just too small for making adequate judgments about overall grammaticalnes
of the sentence. In these cases other reordering mechanisms should be used.

Given the weaknesses of the reordering model, it may not come as a surprise that limiting
reordering to monotone translation is not very harmful. Allowing no reordering atsatithar
benefits: the search problem for finding the optimal translation according to the model is
reduced in complexity from exponential to polynomial, making search algorithms much faster
[Koehn, 2010].

Allowing limited reordering, however, vyields bettéranslation results than allowing no
reordering at all. If we permit moves within a window of a few words, we allow the local
reordering required when translating Ardlitniglish (subjecterb, adjectivenoun) or French

English (adjectivenoun) [Koehn, 20Q]. Since this is also something that the language model
can handle, it often represents the best we can do with reordering. Larger reordering windows or
completely unrestricted reordering often leads to worse translations.

3.5 DECODING AFOREIGN SENTENCE

Given the machine translation model presented in the previous sections, the task of decoding is
the process of finding the best scoring translation according to this model. This is a hard
problem, since there is an exponential number of choices, given aispf@afgn sentence. In

fact, it has been shown that the decoding problem for the presented machine translation models
is NP-complete [Knight, 1999]. Consequently, examining all translation options for an input
sentence and scoring them with the final gofaichoosing the best translation is out of the
guestion: this is computationally too expensive even for short sentences.

As exhaustive search is not an option, the decoding task has been tackled with various heuristic
search technigues. These methods alognarantee to find the best translation option, but try to
find one as close as possible to the best. Provided that the decoding algorithmpsogepive
distinguish two types of errors that can lead to bad translations: a) searchi daiuses n
finding the most probable translation according to the model and b) modelieemwoss caused
by a lousy phrase table, reordering model, etc.
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The most popular decoding method, which is also sthtee-art in machine translation, is the
beam searchlgorithm, similar to the one introduced in [Jelinek, 1998] for speech recognition.
This algorithm generates translation hypotheses from left to right, in sequence, marking off all
the words in the source sentence. When all the words in the dangemgesentence are
exhausted the various hypotheses are analyzed and the best translation, according to the
translation model, is picked out.

3.5.1 The translation process

A human translator would generally translate a foreign sentence in the same manner as
mentionedfor the beam search algorithm. He would begin by translating the first word in the
output sentence (this is not necessarily the first word in the input sentence) and would map this
output word to a word in the input sentence. Afterwards, he would tmigddHe next best word

in the translation and map it to a word in the input sentéteavould continue with translating

small chunks of datantil there are no more words to be translated in the input sentence. The
notion of reordering is accommodatedoirthis translation process by the possibility of picking
input words oubf-sequence, while building the translatiorsequence.

Recalling the translation model described in the previous secti@nsan make two important
remarks: a) given an input sente and its translation we can compute the probability of the
translation using the phrase translation tadblehe reordering model and the language model

puv and b) the translation probability can be computed incrementally, as the translation is
created, by adding in a partial cost every time a phrase is added to the translation.

To conclude: if the translan is constructed #sequence, from left to right, then its probability
can be computed incrementally every time a new phrase is added to the output sentence.

3.5.2 The Beam Search algorithm

The first step taken by the search algoritiarhen it is given the tasif translating a sequence of
words in the sourecanguageis to create a complete list of translation options. This list contains
all possible translations for the given sentence. Creating this list allows a quicker lookup than
consulting the whole phradranslation table during decoding.

The algorithm continues by building partial translations using the various phrases within the
translation options list. These partial translations are called hypotheses and store information
about the translated wordhe input words to which they map to, the partial score, etc. The
algorithm starts with an empty hypothesis and expands it (creating a new hypothesis) by picking
a phrase in the translation options list. Let us follow the examptggure 3.6 which shows the
construction of the hypotheses search graph for the English sehteage a green bookWe

see that in this example the empty hypothesis is expanded into multiple one word hypotheses
(eu mie and am). These hypotheses arerther expanded covering more words in the input
phrase (the covered words are marked withar-or example the hypothesisi is expanded

into eu areandeu am This process continues until all the words in the foreign sentence are
translated. In the exapte presented iRigure3.6 we have three such cases:am o verde carte

eu am o carte verdendam o carte verdeThese hypotheses cannot be expanded any further and
represent endpoints in this search graph.

The final step inhe algorithm is responsible for scoring all the endpoints in the search graph
and sort them based on their score (or probability). In the end the translation option with the
highest probability is proclaimed the winner.

There is one big issue regardingsttsearch algorithmthe computational complexity. The
hypotheses expansion process would end up by creating and scoring all possible translations and
this makes the search heuristic computational prohibitive for any large serbenaese the

search spacgrows exponentially with the sentence length.
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are § 0 | verde carte
XX--- XXX-- XXXX- XXXXX

eu am carte verde carte verde

X---- N XX--- XX-XX XXXXX

mie

..... v X
am 0 « | carte verdg
XX--- Y XXX-- M| XXXXX

Figure 3.6 The decoding processexpanding thetranslation hypotheses

This computational problem is addressed in two ways: by negiube number of hypotheses
using hypothesis recombination and by pruning: deciding whichplmlability hypotheses
should be dropped early on, at the risk of failing to find the best translation.

The beam search algorithm organizes the hypothesesanipatcable clusters called hypothesis
stacks. The hypotheses are clustered based on the numbputofords translated. From time

to time these stacks are pruned #melworst hypotheses are discarded. Of course, a hypothesis
which was pruned out at som@mment could have turned out to be the best translation, but this
risk has to be taken. The most popular pruning method employs a threshold by which a
hypothesis is allowed to be worse than the best one in the stack. All other hypotheses are pruned
out. Ths threshold is also denoted beam width, thus the name of the algorithm. The beam search
algorithm assures that the computational complexity becomes manageable and an input sentence
of any length can be decoded in a decent amount of time. In fact, theviidémor the
threshold can be tuned for better performance or speed.

One last problem which must be approached when discussing comparable translation hypotheses
is that of future cost estimation. A hypothesis that coversp8t words is not necessarily
comparable witha secondhypothesis that covemsther 3 input words because in most of the

cases there are some parts of the foreign sentence which are harder to translate and some othet
parts which are easier to translate. Consequently, when pruninghgpotiesis stack the score

of the hypotheses has to include the partial score for the already translated words and an
estimate of the future score (for translating the other parts of the sentence).

Event though the beam search algorithm is also usedegchprecognition and paof-speech

tagging, all these issues that have been discussed for the machine translation version make the
decoding process a lot more harder. The cause for this increased difficulty is of course machine
transl at i o nréosderipgthetfactahatithe inputtcgn be processedfeartder.

3.6 SMT EVALUATION

When it comes to evaluating machine translation systems we find there is a huge debate
regarding the best evaluation method. Human subjective evaluation is clearly theslengstt
because, in the end, humans will benefit from the resulted translations. However, a system
which evolves several times a day cannot be assessed fast enough and cheap eaough in
subjectiveway. Consequently, it is very important to design aut@rataluation procedures
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and performance metrics that can be computethefly by a computer program. The debate
regarding SMT evaluation is focused upon the correlation between automatic evaluation (and
performance metrics) and human evaluation.

All the evaluation metrics which are currently used to automatically assess the performance of
SMT systems compare one or more referaéraaslations with the hypothesiranslation.

Onebasic assessment of a hypotkdsanslation can be made by meanpretison andrecall.
Precision compares the number of correctly translated words with the total number of words in
the hypothesis translation, while recall compares the number of correctly translated words with
the total number of words in the reference tramsiatThe two evaluation metrics aegually
importantfor SMT systems, because a 100% precision translation can have a poor recall and
vice-versa. The standard way to combine the two evaluation metrics is by computifg the
measuredefined as the harmonawerageof the two. However, there is one more problem with
these evaluation metrics: they do not take into account the word order. Consequently we could
end up with an incomprehensible translation with 100% precision and 100% recall (the meaning
can be ompletely lost if the right words are wrongly reordered).

Another evaluation metric that was used in the early times to assess SMT systemsoiglthe

error rate. This evaluation metric was borrowed from speech recognition, but turned out to be

too harsh ér machine translation. For example, the hypothesis transla@i@ni trei btie
constr uhas the sameanseaning as the referefce cast a f ost constr
bt i, &udit will receive a very low word error rate due to inconsistent wader. This

situation can be solved in some degree by the usage pbsiteorrindependent word error rate

The standard automatic evaluation metric for statistical machine translation systems is the
BLEU score[Papineni, 2002]BLEU has an elegant soioih to the role of word order: it works
similarly to positionindependent word error rate, but considers matches of largexnms with

the reference translation. Base on tkgram matches it computes thgyram precision (the ratio

of correct agrams inrelation to the total number of possiblggrams) for rgram orders 1, 2, 3

and 4. BLEU is defined as:

hypothesiengtrj liI correcti —grams

BLEU—-4=min| ] - -
referencéength possibleeferencé— grams

(3.7)
i=1
The problem of precisiechased metrics (no penalty for dropping words) is addressed by the first
factor in this equidon. This factor penalizefiypotheses that at®o short. BLEU is usubl
computed on a larger text, becausesingle sentence may notveaany 3gram or 4gram
matchesand with zero matches for one of thegnams the BLEU score drops to zero.

The BLEU scorehas many critique points and intensive efforts are currently made to create
variations and extensions that would eventually turn out to be more correlated with subjective
evaluation.Nevertheless stateof-theart SMT systems are still evaluated and comgaon
large-scde using the BEU score.

3.7 SMTTooLs

The most popular translation toolkit used today is the Moses Toolkit [Koehn, 2007]. Mases i
statistical machine translation system tiaébles the developmenttadnslation models for any
language pai Besides the phradeased translation models, which were described and used in
this thesis, Moses can also be used to createbresd modelsr factored translation models
(modelswhich enable the integratiaf linguistic information at the word level

The Moses Toolkit makes use ®8fZA++ [Och, 2003] for creating the word alignments. Giza++
is a stastical madine translation toolkit that can lnsed to train IBM Models-5 and an HMM
word alignment model
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CHAPTER 4

THE ACQUISITION AND ANALYSIS OF
SPEECH PHONETIC AND LANGUAGE
RESOURCES

One of the main contributions of this thesis regards the acquisition and processing of the main
resources needed in creating a speakdEpendent, largeocabulary continuous speech
recognition systeniLV-CSR) Althoughit is one of the European Union languages, Romanian

is still considereda lowresourced languagiEom the point of view of speech and natural
language processinmgsourcesFor examplethe Linguistic Data Consortium (LDQ@)istributes
speechresources forlanguagessuch asCzech, Brazilian Portuguese, Vietnamese, Tamil,
Egyptian Arabic, etc., butloes notprovide any resource for the Romanian languagdhe
situation issimilar in the case oELRA (European Language Resources Association), which
also distribués language resources and speech resolECESA provides some basic linguistic
resources for Romanian, but does not have any speech resources for this laviguegeer,
recentwork on Romanian speech recognitiadynteanu 2006 PDumitru, 2008 Petrea 2010;

Kabir, 2013 complain about the absence of a Romanian standard speech database and report the
usage obelfcreated resources. Of courti@s isnot the best solution, becayséthout standard
evaluation resourceghe effots of different Romanian pgechresearch groups cannot be
directly comparedThe only researckopen Romaniafi s p e €atabage isiSounds of
Romani an Language Cor puso [ Tcenamanlg Basiaurecordng 9] .
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such as vowels, consonants and other Romaniacifgpsounds and a few emotionally charged
phrasesand, consequently, cannot be used for speech recognitioconclusion, any effort
towards the development of an automatic speech recognition system must start with the
acquisition of a speech databashis is one of the main contributions of this thesis.

Regarding Romanian text corporahich are needed for statistical language modeglthg
situation isslightly better LDC does not provide any standard text databases for Roméauoian
ELRA distributesa few small Romanian text corpora. Regardless, [Macoveiciuc, 2010] states
that prior to their work in 2010, there were no large, accessible, gdsegalage corpora for
Romanian. This is probably whecent work on Romanian NLP report the usage of @iffer
seltcreated corporaobtained out of literature bookd/Iad, 2007; Ungurean, 200&iu ¢, £
201q, legal document§D o mo k29@9] online newspapers [Bick, 201@d the web as
corpus [Macoveiciuc, 2010]n [Cristea, 2006], the authors make an extensive review of all the
language resources and tooteatedfor Romanian as of 200@\s mostof these resources are
not generally available outside their research growgswere also required to colleatlarge
Romaniantext corpus in order to create a rohugtnerallanguage model for Romanianhe
acquisition and processing of this corpuan®ther resoureereation contribution of this thesis.

As a conclusion, for the sake of future research on Romanian, it will proballyery good
idea to create standard speech and text resources and make them freely or commercially
available to otherasearch groupas well

4.1 THE PHONETIC DICTIONARY AND THE GRAPHEMESTO-PHONEMESTOOL

4.1.1 Romanian ponetics

The total number of phones in the Romanian language is somehow vague due to several reasons
among which the most important is the adoption of foreignda&:on [Munteanu, 2006] the
author uses 34 phones: 8 vowels, 4 semivowels and 22 consomaf@rdean, 2009}the

authors consider the expémowledgeprovided by[lordan, 2005] and use a set of 36 phones.

The same number of phones, but with a slightffedent approach is employed jnD o mo k o K ,
2011].

In othe languages the number of phonemes is quite different and also implementation
dependent. For example, [Huang, 2004¢s41 phones folEnglishASR, while Mareuil, 1999

uses 44. In [Mareuill999 an automatic multlingual phoneme classification is described and

the number of phonemes for 6 European languages is asserted to be: 34 for French, 44 for
English, 46 for German, 24 for Spanish, 49 for Italian and 38 for Portuguese.

In our studies we havemployed the set of 34 phones used in [Munteanu, 2006] supplemented
with two more vowels which are mostly used in pronounéimgign words.The set of phones is
presented imable4.1. Due to technical reasons we have used @wfft phonme coding than

the standard IPA coding. The table lists the standard IPA symbols along with-bouse
symbols and also gives some words examples.
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Table4.1 Romanian phomae set

Phoname Words examples
Type | IPA symbol | Used symbol Written form Phonetic form
a a sat(village) sat
D al gur t ( mj gural
e e mare (sea/large) mare
i i lift (elevator) lift
% b i1 tari (strong) taril
§ U i2 intre (between) i2ntre
o] o] loc (place) loc
u u Kut (st slut
y y ecru (ecru) ecry
[ 02 bleu (light blue) blo2
% e el deal (hill) delal
s j i3 fiart (wi fi3aral
E Q ol oase (bones) olase
3 w w sau (or) saw
o k2 chem (call) k2 em
b b bar (bar) bar
P P par (pole) par
k k acum (now) akum
3 k1 cenuk)t klenuslal
g g galben (yellow) galben
0 gl giraft (| glirafal
R g2 unghi (angle) ung2
d d dar (gift) dar
% t t tot (all) tot
g f f faSa (¢t fatla
g % % vapor (ship) vapor
°© h h harta (the map) harta
i ajutor (help) ajutor
NJ sl cok (ba kosl
I I lac (lake) lac
m m mtLr (ap malr
n n nas (nose) nas
s S sare (salt) sare
z z zar (dice) zar
r r risc (risk) risk
0 t1 Stran (g tlalran
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Table 4.1 showsthe set of Romanian we used in our experimebts it does not give any
information regarding the frequency of occurrence for the phegsealthough in designing a
speech recognition system this is a key factor. Speech datalessbto be acquired and, during

the acquisition process, we would like to take into account the relative frequency of occurrence
for these phormees. The reason is obvious: if the speech datamgeEhonetically balanced
(according to the usual phanes ocurrence distribution) then the individual acoustic models
will be trained adequately to the phomes they will be required to recognize. Our goal is, of
course, to robustly train the acoustic models for the phesevhich occur very often. If, for
example the speech database does not provide sufficient training examples for anphone
which occurs very often, then the ASR performance will surely decrease more comparing to the
case when the speech database does not provide sufficient training examplgsdomze
whichrarelyoccurs.

The occurrence distribution of the phomes has been computed using three large text corpora
we have collecte¢see Sectiod.3.2): europarl, 9am and hotnews. All the words in these corpora
have ben phonetized using an existing phonetic dictionary and a graphembenemes
conversion tool (see Sectighl.2and Sectio.1.3. In the eng the phonenes frequency of
occurrencehas been comped Table 4.2 and Table 4.3 show the most/least frequently used
phonemes in the Romanian language

Table 4.2 The most frequently used Romanian phonaes

Phoneme Occurencein corpus [%]
europarl 9am hotnews | all corpora
e 11.836 | 10.9%6 | 10.8%% 10.92%6
a 9.3% 9.5%% 9.51% 9.52%
i 7.8 7.86% 7.73% 7.7%
r 7.7 7.3%% 7.1%% 7.25%
t 6.55% 6.61% 6.3%% 6.46%
s 5.6 6.2%% 6.3%% 6.26%
n 6.43% 6.08% 6.31% 6.2%%
u 5.41% 5.4%% 5.4%% 5.4%%
I 4.48% 4.69% 4.57% 4.61%
o] 4.40% 4.31% 4.43% 4.38%

The three text corpora employed for these statistics contain 29 millionpeseuroparl), 323

million phonemes (9am) and respectively 513 million phames (hotnews), anthus we assert

that the overall statistics (all corpora) are very close to the real piesnesage frequency for

the Romanian language. In fact the data comes to support our assertion: the most frequently used
phonemes are listed inTable4.2 in their frequency descending order as given by the overall
statistics on all corpora, but we can note that the same order is maintained for the individual

corpora also (one single exception: iThe eur ocg
phonemnesoccurrencp er cent ages within the three corpora
and Aso in europarl. The fact that occurrence

to the fact that this first corpus is slightly smallher fact that the phonges occurrence
distribution is roghly the same for the other ti@rger corpora is another argument supporting
the assertion that these statistic estimations are very close to the real ones.
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Table 4.3 The least frequently used Romanian phormaes

Phoname % in corpus
europarl 9am hotnews | all corpora
02 0.0003% 0.000%%0 0.0006%0 0.000%%0
\Y 0.00120 0.001%%0 0.0013% 0.0014%
g2 0.0093%0 0.02620 0.0292%0 0.0273%
k2 0.1352%6 0.20180 0.2183% 0.2094%
i 0.18380 0.20126 0.2254% 0.21500
h 0.063%%0 0.18600 0.2452% 0.217%%
ol 0.3293%% 0.22000 0.2278%6 0.2283%
gl 0.264P0 0.25620 0.2738%0 0.266%0
w 0.30200 0.5984%0 0.6162%0 0.599%%0
g 0.574%6 0.60426 0.6274%6 0.6170%0

The least frequent phomes distribution $ not that similar over the three corpora. This is
probably due to the fact that for some of these pmesethe number of occurrences is not
sufficient to issue proper statistics. Large differences between thermpéopercentages within

the three corporaan be noticed for fig20, Aho and Awo.

Figure4.1 displays the entire phomes distribution in the Romanian language. The figure uses
the data within all corpor&lease note the huge difference in occurrence frequency between the
mo s t used vowels (fAeo, Afao andmefiwhch havwrand a
occurrence frequency of less than.1%

12%

10%

8% -

6% -

4% -

Phones occurrence percentage

2%

0% -
aalb deelf gglg2h i i1i2i3 ] kklk2 |l mn oolo2p r sslttluvwy z

Figure 4.1 The phonemes occurrence distribution in Romanian

Figure4.2 emphasizes better the differences in occurrence frequency for the varioesnghon

in Romanian. Note that the percentage of occurrence for the most frequenmpholiiiee 0 ) i
similar to the summed percentages for the least frequent 18mpemnehile the most frequent 6
phonenes account for almost 50% of all phanes.
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Figure 4.2 The phonemes sorted occurrence distribution in Romanian

The two figureslearly show a highlyinbalanced occurrencistribution for the phormaes used

in the Romanian language. This is an important piece of information needed in order to
successfully develop Bw-costlarge-vocabularyautomatic speech recognition system. If the
cost (expressed in time and money) is matissue, then one would create a huge speech
database with enough occurrences for all the pmesen the language, regardless of their
occurrence frequency. On the othHsand, if the cost is importardnd only a small speh
database can be acquirederthithe Romanian phonees occurrence distribution needs to be
taken into accountlf a largevocabulary speech recognition system is the target, then the
training database should be designed to exhibit a similar piesneccurrence distribution. The
acoustt models traiad on such a database will statistically recognize better Romanian phrases
than other models traaa on, for example, a speech database with a flat pheméistribution.

In the case of a largeocabulary ASR is more desirable to better tridia acoustic models
which are needed more often during recognition (the models for the frequentEspraand
invest less efforts in training the less frequent phones acoustic models.

4.1.2 Thephoneticdictionary

A phonetic dictionary is mandatory for a largecabulary speech recognition syst&@ommand

and control systems or isolated words recognition systambe implementedvith acoustic

models that usevords as basic speech unitayt for largevocabulary speech recognition

systems modeling suvords spech units is mandatory. Most commonly used-a@ods units

are contexindependent phones, contaldpendent phones (usually triphones) or senones (parts

of phones) . I n either case the decomposition
phonemes isnandatory.This is exactly the role of a phonetic or pronunciation dictionary: to

map the wordodés wr (ortmulgple) pfomunciation(sha sequesce af phorgd). e

An excerpt of a phonetic dictionary is presentedable4.4.

An extensive phonetic dictionary of about 600 thousands word pronunciations was available
before this work was started. The dictionary contains many, but not all the words in Romanian.
A more important deficit is that it does not contain angper names. Due to these facts the
phonetic dictionary had to be updated several times during the process of speech databases
acquisition (several hundreds words within the recorded phrases were not available in the
pronunciation dictionary). This first rpblem was solved by manually creating phonetic
transcriptions for all these missing word forms.
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Table 4.4 Phonetic dictionary excerpt

é
auxiliariauksiliaril
auz auz

auzea auzela
auzeamauzédam
auzeaugelatlil
auzeauauzelaw
auzi auzi
auzi(2) auzil
auzim auzim
auzind auzind

é

When the largevocabulary desiderate was approached more serjoaslgritical problem
occurred: several thousands words within the text carpsed for language modeling had no
pronunciation in the phonetic dictionary. In order to take full advantage of the language model,
an ASR system has to benefit from a full phonetic dictionary (pronunciations for all the
unigrams in the language model).th@rwise, the words which do not have a phonetic
transcription will not have any chance of appearing at output, because they are not part of the
speech decoding search graph. Most of these missing words were, of course, proper names
(country names, city maes,peoplenames, etc.).

This second issue could not be addressed as the first one, by manually creating phonetic
transcriptions for all these missing word forms. The amount of work would have been enormous
and would also require phonetand linguistic knowledge. Moreover, this problem expected

to appear for every new speech recognition task (which generally comes withv a ne
vocabulary). Thus, the need fargraphemgto-phonems tool which could automatically create
phonetic transcriptions for a givencabularyis obvious

4.1.3 Thegraphemego-phonemedool

Our need for a graphem&sphonemes tool is not singularhe task ofautomaticallycreating
phonetic transcriptions fahe words ira vocabulary isery important in speech recognition, but
als inspeech synthesis and it Hazeen approached by several researchers.

4.1.3.1 Related work

Several approaches to the problem of automatic grapheiqpigoneme conversion were
proposed in the literature. Among these, the most popular arbasésl approaels, machine
learningbased systemandstatisticalsystems

The wule-based approach considers designing and applying a set of linguistic grajtbemes
phonemes conversion ruleslthough these systems are most of the time very efficient, their
construction requiresrstng knowledge of linguisticdloreover,for some languages the number

of rules and exceptions can be huge: 1500 rules for English [Bisani, 2008], over 600 rules for
French [Bisani, 2008], etc. On the other hand, lfalguagessuch as Spanish [Bonaverd,

1998], Italian, RomanianToma 2009], forwhich the pronunciation systemadsite regular the
number of rules is lower and thus the system is simpler.

The systems that use machine learning are based on the idea that having a smaller set of
examples ophonetictranscriptions, we can build a system that will incorporate knowledge from
theseexamples (called training set) afmhsed on the generalization of the rulgdl be able to

predict the transcription of wordshich arenot found in the training $g¢Bisani, 2008]. In

practice these systems are trained using hand built transcription dictionariesngpthe most
common words fothat language. The most widely used systems are based on decision trees or
neural networks.
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A more novel approach of ceerting graphemes to phonemes uses Statistical Machine
Translation (SM) principles [Laurent, 200%aranasou, 2010]. The graphemes are regarded as
words in the source language and the phonemes as words in the target language. A machine
translation systens trained based on an initial phonetic dictionary and afterwards this system
can be used to convert any other word to its phonetic form.

The most trivialgraphemego-phonemes conversiapproach, which seems to work quite well

for some languages, consish simply modeling graphemes instead of phonemes [Billa, 2002],

[ Bi sani, 2003] . The nAphonetic translationo
graphemesare used instead of real phonem&bkese systems have decent results only for
languages wh low grapheméao-phoneme ambiguities.

Over the past decades\eral research groups have created graphéwrgisonemes tools for the

Romanian language. Téetools are regarded asdispensable modules within tetd-speech
systemgBurileanu, 1999; Jitc , 200 3; OuUnguseann201]1dt otk generation of

phonetic dictionaes[ T o ma , 2009 ; .Dlemaik nekhodold®yi@slulilized are still

the ones wused for other | anguages: machine |
based [Dma, 2009Ungurean, 201land hybrid (machine learningando ver si on r ul e s ]
2003; Ordean, 2009]. All these papers report evaluation results in terms of word error rate
(WER) or phone error rate (PhER). Generally, there is a single phone ermonadBurileanu,

1999] and thus the PhER is smaller than the WER (as the total number of phones is larger than

the total number of wordsEven if the results reported in the above papers are not directly
comparable due to the different experimental pet(different set of phonemes, different
evaluation words, different number of evaluation words, eandl the lack of complete
evaluation metrics (PhER and WERJ)e have summarized themTable4.5.

Table 4.5 Graphemesto-phonemes tools for the Romanian language

System Evaluation words | PhER | WER
[Burileanu, 1999] 1000 n/a 2.9%
[ Jitct, 400 n/a ~ 5%
[Ordean, 2009] 1000 n/a 5.2%
4779 0.72% | 4.79%

[Toma, 2009]

15599 n/a 9.46%

[ Domok ok 100 7.17% n/a
[Ungurean, 2011] 11819 n/a 3.01%

4.1.3.2 Graphemesto-phonemes method description

In our work, & SMT-based approach, similar to the ones presenteflLanrent, 2009;
Karanasou, 2010] has been adopted fothe task of automaticallycreating phonetic
transcriptions This type of approach has not been used before for the Romanian langnage.

SMT system generally translates text in a source language into text in a target language. Two
components are required for training: a) a pdralepus consisting of sentences in the source
language and their corresponding sentences in the target language, and b) a language model for
the target language.

For our specific taskgfaphemego-phonemek we consider graphemes (
the source |l anguage and sequences of grapheme
As for the target | anguage, its Awordso are
sequences of phonemeBable 4.6 lists a few exampleso f paral |l el fitkee nt en c

training corpus
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Table 4.6 Examples within the phonetic dictionary (parallel corpus)

Example | Source language (graphemes] Target language (phonemes)
1 deznad £ m © deznodlmi2ntul
2 achitand acitiand
3 t a p i S tapitlerie

The implementation of the SMT sgsh is based on the Mosd@sanslationToolkit [Koehn,
2007. Moses is a widely known toolkit which is stty used for SMT tasks, but can also solve
generic transduction problems as the one presented abbeetraining of agraphemeso-
phonemedranslation model is similar to the one of a general translation masielescribed in
Section3.3

4.1.3.3 Experimental setup and results

The already available phonetic dictionaggscribed in Sectiod.1.2 is exactly the parallel
corpus needed for SMT training. It was randomly split into three payrts:training part (580k
words), b) an optimization (tuning) part (10k words) and c) an evaluation part (10k words). The
same phonetic dictionary, specifically theonetic representations, senasltraining corpus for
creating thdanguage model for tharget language.

Thetranslatormodel 6s optimization should have been
(PhER), but this type of optimization module was not available. Therefore, for this process, we
chose to uséoth the two availabletuning methals: a) maximization of the BLEU score
[Papineni, 200R(the default in Moses) and b) minimization of the position independent phone
error rate (PIRER) [Bertoldi, 2009. The evaluation of the translation results has been made
using the sclite tool in theIST Scoring Toolkit Table4.7 lists these results, in terms of BLEU
score, phone error rateHPR) and word error rate (WER). Please note that BLEU score is the
default evaluation metric fanachine translatiosystems, but is ncuitable for our specific task
(graphemeso-phonenes).

Table 4.7 SMT-based graphemego-phonemes conversion results

Exp | Optimisation | BLEU | PhER | WER
1 none 98.89 | 0.53% | 4.79%
BLEU 99.49 | 0.33% | 3.24%
PIPhER 99.39 | 0.31% | 2.76%

4.1.3.4 Conclusion

The graphemeto-phonemes tool created using the SkHsed approach shows better results
(Table4.7) than all the other systems previously developed for Romahabig4.5). The large,
10k words evaluationdatabase assuras thattheresults are conclusive.

The grapheme®-phonemes tool solves the problemupidating the phonetic dictionary for a
new ASR task. The new speech recognition task generally comes withfecdpaguage model
and a specific vocabulary. The words in the specific vocabulary need to be phonetically
transcribed before the actual recognition process can be started. This process is performed in two
steps:
a) all the words within thespecificvocabulay which arefound in the 600k words phonetic
dictionaryare transcribedsing the 600k words phonetic dictionary,
b) all the other wordare transcribedsing thegraphemego-phonemes tool

Using the above methodology, thenversionerror rate will probablype much lowethan the
one reported iTable4.7 because most of the words in tgecificvocabulary will be found in
59



Towards a speakéndependent, largeocabulary continuous speetognition system for Romanian

the 600k words phonetic dictionamyhile the grapheme®-phonemes tool wilbnly beused for
proper nameand uncommon words.

4.2 SPEECHDATABASES AND ACQUISITION TOOLS

Section2.4 has explained the acoustic modeling process and has argued that large amounts of
data are required to train the various parameters of an ¥dWNW speech recognitioaystem.

The BaumWelch training paradigm needs speech audio clips along with their textual
transcriptions in order to estimate the models parameters. Consequently, speech databases are
critical resources and their characteristics (hanof hours of speech, number of speakerse

level in audio clips, type of speech, gtare very important to the development of a speech
recognition system.

CMU Sphinx acoustic training tutorial gives some empirical database numbers for creating goo
speech recognition system$aple 4.8). The command and control task is a typical small
vocabulary pseudoontinuous speech recognition task, while the dictation task is a typical
largevocabulary continuous speech recogniticaski Note that the speakiedependency
desiderate seems very difficult to achieve as resources from approximately 200 speakers are
required. This number could seem exaggerated, butspeaker speech variability is indeed an
important factor and can bevercome only by thoroughly modeling the various possible
pronunciations of every phone. This can, in turn, be achieved by recording speech from many
different speakers.

Table 4.8 CMU Sphinx suggested databassizes

ASR Task

Speaker dependent
system

Speaker independent
system

command and contro

1 hour of recordings,

5 hours of recordings,

(SV-CSR) 1 speaker 200 speakers
dictation 10 hours of recordings| 50 hours of recordings
(LV-CSR) 1 speaker 200 speakers

4.2.1 Speecldatabaseseview

As previously remarkedRomanian has very few speech resources, all created by research
groups and neither freely, nor commercially availablée authors offMunteanu, 2006;
Dumitru, 2008; Petrea, 2010; Kabir, 2011] explicithsexs that there are no speech resources
available forRomanian and thaheywere requiredo create speech databases before starting

any research in speech recognition. The speech resources created and used by the various
Romanian speech recognition resdagroups are listed ihable4.9.

Neither of the speech databases described in the previous table is available to other research
groups. The size of the databases (in hours of speech) is not mentioned for these speech
databasedyut, if we estimate an average of 10 seconds per phrase, the largest databases are still
smaller than 11 hours of speech. Consequently, given the CMU Sphinx suggestions, none of
these databases, even if they were available, would not be large enoughspealkaer
independent largeocabulary speech recognition task. In conclusion, larger speech databases
have to be acquired; this process is the next
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Table 4.9 Romanian speech databases summar

Database | Usage/Acquisition . # # unique #
name reported by Domain # phrases words words speakers
OCDRL {gjmerﬁ 588;‘]]’ telephone dial 850 na | 3000 | 8MI/2F
[ Gavit, information, sports,
CDRL [Dumitru, 2008] geography, history 3500 na 4000 M7 4F
- [Munteanu, 2008] n/a 4000 n/a n/a 11
METEO [Militaru, 2009] forecast news 760 13500 535 15M / 15F
RO-GRID [E:fii?érih 2%111'] sixwords commandy 8400 | 50400 | 36 | 12M/OF

4.2.2 Speecldatabasesacquisition

A complete speech databasmsists of the following components:

e a set of speech signal samples;

e a set of transcription files marking the text which is spoken in each speaplesthese
files may include information regarding the temporal boundaredaden the speech
units;

e additonal information regarding speech typeo(@éed words, continuous, spontaneous),
speaker identity, etc;

A database can lmollectedvia several different methods [Petrea, 2008]:
e direct recording; this yields a series of particular issues: choosingdbeding place and
recording workstation, choosing the microphone, etc.;
e labeling audio books or other spoken materials; the particular issues in this situation are:
leveling the differences in samplingte for the different spoken materials, splittingeth
audio and labeled content into smaller parts, detecting and correcting labeling errors.

We have started to build speech databases using the second method listed above. The first output
was a continuous speech database (CS_BOOKS) obtained by labeliagdibecontent of

several audio books. Initially, the long audio clips were split into smaller files (approximately 60
seconds). Secondly, transcription files, containing the group of words uttered in the audio files,
were created. This resulted in a datsbaf approximately 11 hours of speech. It comprises read,
continuous speech uttered by 7 different speakers (4 males and 3 females). The domain is
Romanian literature.

The second database (PHONES) was developed strictly foinitfaization of the acoutic

models. It was created by tinset ampi ng and | abeling the phc
Roman i a n Language Corpuso [ Te ehoaeraidioc alips weted 0 9 ]
created and labeled. This database contains isolated utterances (20 to 5@0Rofmdmian
phonesspoken by 10 speakers (7 males and 3 females).

During the acquisition of these two databases, several acquisigtitod issues have gained our
attention. Firstly, the audio files and the corresponding transcription have to be spinadter

files (5 seconds to 25 seconds, as CMU Sphinx suggests). This is typically-eotiswaning
process. Secondly and more importantly, the labeling process is very sensitive to human errors.
Typos often occur, creating unknown words or substitutiiffgrént known words or, even
worse, substituting diacritical characters with +whacritical characters. Moreover, the labeling
process is even more tiro@nsuming in case there is no prior draft transcription of the audio
file.
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These issues triggered us try a different database acquisition approach: to directly record

some prior selected texts. For this purpose we have designed and implemented a speech
recording Java application (see Sect@.4. The application keepsack of the audio and
transcription file names and displays a simple graphical user interface showing the sentence to
be recoded, thus making the recording process easier and faster. We have estimated that the
recording time was 5 times smaller comparinghetime it would have taken to record the same

dat abases with the operating systembs defaul't

We have used this second approach to record a large isolated words database (WORDS) and
several continuous speech databases (CS_01, CS 02 and CS0i03he Fsolated words
database we have recorded a list of 10000 different words covering all the syllables in
Romanian. 9 speakers (3 males and 6 females) have recorded the whole list of words, 2 speakers
(2 males) have recorded only a subset of 7000 wands 6 more speakers (2 males and 4
females) have recorded an even smaller subset of 1000 words. Summarizing, the WORDS
database consists of 110000 sirglerd audio clips recorded by a group of 17 speakers (7 males
and 10 females). The total size of tteabase, expressed in hours of speech, is 42 hours.

Some of the authors of the WORDS database have also recorded continuous speech audio clips.
The first and the largest continuous speech database is CS_01. The first step we have performed
consisted in setting a set of 1000 phrases from online newspapers, journal interviews, etc. The
domain is quite broad. The set of 1000 phrases contain a total amount of 16300 words among
which 5175 are different. These phrases were afterwards recorded, one per pud&ngithe

speech recorder application, by 11 speakers (4 males and 7 females). The resulted database
(CS_01) consists of 11000 singdarase audio clips with an average size of 6.4 seconds,
summing up to a total size of 20 hours of continuous speech.

The CS_02 continuous speech database has been recoréedlf@tinga digital library speech
recognition system. A set of possible dialogues between a human user and a computer system
were created and 244 phrases (the human user part) were selectedréordoording. The set

of 244 phrases contain a total amount of 1903 words among which 611 are different. These
phrases were recorded, one per audio clip, using the speech recorder application, by 3 speakers
(2 males and 1 female). The resulted databaSe @2) consists of 732 singpdrase audio clips

with an average size of 3.5 seconds, summing up to about of 45 minutes of continuous speech.

The CS_03 continuous speech database has been recordedhlisatinga tourism speech
recognition system. The reated text was manually translated from a tourism Frexorpus.

This database is used $ection6.2 only for testing purposes: to evaluate an ASR system which
makes use of a language model buiting a machingranslated textorpus. For this purpose

300 phrases wemanuallytranslated to Romanian and recorded, one phrase per audio clip, by 3
speakers (2 males and 1 female). A set of 300 phrases contain a total amount of 1872 words
among which 358 are different. The resultatabase (CS_03) consists of 900 siiiease

audio clips with an average size of 3.1 seconds, summing to about 1 hour of continuous speech.

The last continuous speech database which was acquired is called CS_04. It was created only or
speakefindependecy evaluation purposes. The evaluation part of the CS_01 database (100
phrases with ids between 500 and 599) were selected and rebgi@letherspeakerg4 males

and4 females) We have selected this methodology in order to make a fair comparison betwee
the errors made by the ASR system when it was required to recegeigeh uttered kynown
speakers (the ones which recorded all the 1000 phrases in the CS_01 databasspeecsus
uttered byunknown speakers (the ones which only recorded the 100atial phrases in the
CS_04 databaseThe set of 10(phrases contain a total amowft1803words among which

867 are different.The resulted database (CS) @bnsists 0800 singlephrase audio clips with

an average sizef 8.5 seconds, summing up totatal sizeof about 2hours of continuous
speech.
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Table 4.10 Created speech databases

Text Speech
Database . Unique Type of Hours of
name Domain Phrases | Words words speech speech Speakers
BOOKS literature n/a 89266 14240 continuous 11 4M [ 3F
PHONES n/a n/a n/a n/a isolated phones n/a 7™ [ 3F
WORDS n/a 110000 | 110000 | 10000 | isolated words 42 7M [ 10F
Cs 01 news, interviews | 11000 | 179300 | 5175 continuous 20 AM | TF
CS 02 library dialogue 732 5709 611 continuous 0.75 2M [ 1F
CS_03 | tourism (booking) 900 5616 358 continuous 1 2M [ 1F
CS 04 news, interviews 800 14424 867 continuous 2 a4M | 4F

All audio clips in the databases share the same sampling frequency (16 kHz) and the same
sample size (16 bits). The most partant information regarding the speech resources are
summarized iMable4.10.

In [Burileanu, 2008] a detailed description and analysis of these speech databases is made. The
article gives a glimpse of the databadevelopmenttatus as of 201.0The PHONES database

was used for some preliminary ASR tests in [Burileanu, 2010a]. The PHONES and WORDS
databases were used in the work reported in [Petrea, 2010; Buzo, 2011a; Buzo, 2011b; Cucu,
2011a]. The WORDS, CS_01, CS_02 and CS_@éhses were used in [Cucu, 201abd

[Cucu, 2011c]

The author of the thesis wase ofthe mainspeakers andoordinatorsfor the acquisition of
these speech resources and guided several groups of students with the purpose of achieving this
goal.

4.2.3 Speehb databasephoneticanalysis

As argued in Sectiod.1.1the phonetidalanceof the speech databas@scording to the real
phonemes occurrence distribution in Romanian)extremely important when their size is
relatively sméd. This sectim aims to present the phonetic statistic analjsisthe various
speech databases described in the previous section.

The PHONES database was developed strictly for the initialization of the acoustic models. We
did not take into account thRomanian phonemes occurrence distribution when we have
developed this database and we focused only on getting a minimum number of occurrences for
every phone.Table 4.11 shows the number of occurrences acquired for the 36 phones i
Romanian. Note that for some phones (the least frequent, as shdwablé®.3) we have not
acquired any data.

The BOOKS continuous speech database has been acquired by labeling several audio books.
The total amount of phones the selected audio clips is quite high: 384656 phdrigsire4.3

presents the occurrence distribution for these phones in comparison with the real occurrence
distribution for Romanian (according to Sectd.]).

The two phonemes occurrence distributions presentédyure 4.3 are relatively similar. There
are a few significant differences for the mo
and the confob@aBOORSodat abase contains 61%

~

ni o, 31% less fnodo and 34% more ffso.
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Table 4.11 Phones occurrences in the PHONES database

Phone | Occurences Phone | Occurrences Phone | Occurences
a 561 i1 0 02 0
al 30 i2 26 p 7
31 i3 22 r 38
d 32 i 22 S 38
e 52 k 26 sl 31
el 26 k1 33 t 23
f 26 k2 0 t1 40
g 25 I 38 u 21
gl 38 m 35 v 32
g2 0 n 48 w 31
h 26 o] 13 y 0
i 27 ol 22 z 26

The WORDS database was argd by recording a list of 10k words which cover all the

syllables in Romanian. The amount of phones in a set of recorded audid @kaudio files) is

relatively small: 95805 phoneBigure4.4 presents the occurrence disttion for these phones
in comparison with the real occurrence distribution for Romanian (according to Skdtifn

Figure 4.4 shows that even for an isolatawrds database of approximately 100k pé® the

relative occurrence of the phones is very similar to that of the Romanian language. Significant

di

fferences

dat abase
dat abase
database contains 1@kfferent words with one occurrence each, while the relative distribution
of the words in Romanian is highly unbalan¢sele Sectiod.3.5.

can
cont ai
cont ai

be
ns
ns

noted only for a couple o
22% |l ess nae Ahd 208 hedgs (N
42% more Al O andDbetd3t | ess

Phonemes occurrence percentage

12%

10%

8%

6%

4%

2%

0%

B Occ. distribution in BOOKS datahase

Occ. distribution in Romanian

aalb deelf gglg2h i il1i2i3 j

[

kkilk2 | mn oolo2p r sslttluvwy z

Figure 4.3 The phonemes occurrence distribution in BOOKS database

64



Towardsa speakemdependent, largeocabulary continuous speecdtognition system for Romanian

12%

B Occ. distribution in WORDS datahase
10%

Occ. distribution in Romanian

8% 1+

6% -

4% | B

z%j N - ‘
0% ||||| : |I|I|I|I|'I I 1 Il 1 II|I I |I|I| I

Phonemes occurrence percentage

aalb deelf gglg2h i i1i2i3 ] kklk2 |l mn oolo2p r sslttluvwy z

Figure 4.4 The phonemes occurrence digbution in WORDS database

The CS_0OXontinuous speeatiatabase was acquired by recording a set of 1000 plesiseted

from Romanian newspaperBhe amount of phones ane set ofudio clips(1000 audio files)s

13% smaller thathe one reported fohe WORDS databas82873phonesFigure4.5 presents

the occurrence distribution for these phones in comparison with the real occurrence distribution
for Romanian (according to Sectidr.]).

Figure 4.5 shows a very similar occurrence distributions for the CS_01 database and for the
Romanian phones. This allows us to assert that the acoustic models that will be trained with this
database will be very well adapted to gend@hain Romanian speech recognition. The only
significant exception is with the phoneme .
expected for the Romanian language.

12%

® Occ. distribution in CS_01 database

10%
Occ. distribution in Romanian

8%

6% ]

4% 14— 11—
2% | ““ - _ 1 _ ililr, i
0% T II T T II II II I. II II II I. T I = T I. T T I I II II T I 1

Phonemes occurrence percentage

aalb deelf gglg2h i i1i2i3 ] kklk2 |l mn oolo2p r sslttluvwy z

Figure 4.5 The phonemes occurrene distribution in CS_01 database
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0,
14% B Occ. distribution in CS_02 database

| m Occ. distribution in CS_03 database

12%
Occ. distribution mfomaman

10%

8% -

6% - 1 1

4% - i

2% - i

Phonemes occurrence percentage

0% -
aalb deelf gglg2h i i1i2i3 ] kklk2 |l mn oolo2p r sslttluvwy z

Figure 4.6 The phonemes occurrence distribution in CS_02 and CS_03 databases

The CS_02 and CS_03 continuous speech databases are relatively small compared to the
previous amnlyzed speech databases (9592 phones, respectively 8735 phones). They were
created only for testing purposes therefore their phonemes occurrence distribution is not critical.
Still, we present these distributions and compare them with the one expectadyémeral

speech signal in Romanian kigure 4.6. The figure shows that the testing continuous speech
databases (CS_02 and CS_03) are also phonetically balanced according to the actual phonemes
occurrence distribution in Romaniaiven though thdifferences are larger than those observed

for the CS_01 database, the distribution follows the same main trend line.

The goal of creating phonetically balanced speech databases was not among our objectives when
we have started to acquitbe databaseslue to the lack of data regarding the real phonemes
occurrence distribution for Romanian (these statistics were only available after the text corpora
were acquired and the grapherteghonemes tool was implemented). Regardless, the pboneti
analysis of the speech databases shows that even when small databases such as CS_02 or CS_03
are acquired they tend to be quite well phonetically balanced. The reason for this is that all our
continuous speech databasBOOKS, CS_01, CS_02 ar@S_03) catain whole phrases. As

the analysis showed, the most unbalanced database is the isolated words database GNORDS)

this is due to the artificial manner in which the words were selected.

In conclusion, if a larg&ocabulary continuous speech recognitigatem is the target, then the
most proper training database should comprisedpsech phrases and not isolated words (such
as our WORDS database) or artificially constrained phrases (such as in {6RRCcorpus).
Also, in order to have a better contaser the phones occurrence distribution, the recommended
acquisition method is direct recording of phonetically balanced phrases.

Table 4.12 The speech acquisition tool input file excerpt

index written form phonetic form

é

0030 # cOnd pot gtsi &#ceakihid @@ sytdos ik i
0031 # vVoi reveni stpt#k mOwai v ir ietv e@lfmiiigased
0032 # mul Sumesc. | a r#e v e dnaljuraesk larevedere

é
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4.2.4 Speechacquisitionmethodology andools

The previouswo sections argue in favor of direct recording as being the best speech database
acquisition method. &asons such as efficiency and control over the spoken materials, speakers,
etc are invoked as being decisive. Consequently, the needa fpersonalized recording
methodology and recording tool motivated us to implement a Java speech recorder application.

The speech acquisition toa$ a graphical user interface (GUApplicationwhich reads in a
simple text filecomprisingthe phrases tbe recorded, provides the user the means to record the
phrases and eventually outputs .wav files. The input file is structured as shdaloled.12. It
stores one phrase per line and, for each phrase, it lists its id (a Audgher), its written form

and its phonetic formThe input file is created once for every new database.

The recording methodology is very simple. The user starts the application, selects his speaker id
(a two digits number which was previously providedthg database acquisition responsible),
selects the database id (a two digits number, also provided by the database acquisition
responsible) and the first phrase in the list of phrases is displayed in the GUI. He can now read
the phrase and its phonetiaiio making sure he understands how to pronounce all the words
(the phonetic form is displayed using the IPA symbols). Nt&he user is able to press the
ARecordod button, he speaks the current phr a
finish therecording. The recorded phrase is automatically saved. The user has the possibility to
listen to the previously recorded phrase and, if necessargcoed it. Once the current phrase is
saved (the AStopod button wadisplays thesnexephrasehe t he
graphical user interface of tispeechacquisitiontool is presented iRigure4.7.

e
Speaker Id: IEIEu Recording Id: IIIIE

Recarding type: % combinuous

Phrase Id: I122 < 1020 s |

Way file name: 06.02Y06_02 0122 phra.waw

Phrase ko be recorded:

cred ca putem avea un institut de cercetari in
domeniul istoriei cu diferite departamente
specializate.

kr'ed k's put'em ave'a 'un institut d'e
tHertfet'ar’ 'tn dom'enjul ist'oriej k'u difer'ite
departam'ente spetfializ'ate

Record | Play Last |

Figure 4.7 The Speech acquisition tooil graphical user interface

67



Towards a speakéndependent, largeocabulary continuous speetognition system for Romanian

The users were asked to speak as natural as possible and to repeat the recording if the phrase
was wrongly reador if they stutter The application provides an easy way listen to the

previously recorded phrases anereeord them, if necessary. Moreovke application provides
aneasyway o browse through all/l the phrases by wr
field. The same feature enables a user to break up the recording session into as many sub
sessions as needed. The only thing he needsiiember is the last phrase that he recosteltke

can continue with the next

The audio files are saved in the standard .wav format with a very intuitive and inforfuakion

name: xxyy zzzzwavT he fAxx0 part represent stadhfeths peake
database id, while Azzzzo is a four digits ni
with a sampling frequency of 16 kHz and a sample size of 16 bits (the usual figures employed in
speech recognition).

The recording sessions fanet speech databases described in the previous sections have been
mostly done in laboratory environment on the same type of workstations, but some speakers also
recorded at home on their own desktop or laptop. Theopieme used for the recordingssaa
high-quality Sennheisemicrophone

Each speaker recorded the phrases in his own rhythm and repeated each phrase as many times as
it was necessary. The average time it took a user to record the set ofiddlatiwords(one

word per audio file) in the WOBS database wakb hours. The average time needed by a user

to record the 100@hrases in the CS_01 database wapproximately 6 hoursThanks to the
applicationods e assave featureuws estimate tthat thearecdrding tod lowtered

the spech database acquisition time by 3 to 5 times.

4.3 TEXT CORPORA ANDNLP TooLs

The purpose of any automatic speech recognition (ASR) system is to transcribe a speech signal
into a corresponding sequence of words. As described by the general architectureSR an A
system inSection 2.1, one of the indispensable components of such a system is a language
model. SectiorR.2 describes several types of possible language models and asserts, based on
[Koehn, 2010, that ngram language models represent the stétbe-art in language modeling.
N-gram language models are created using a single resource: text corpora. They are statistical,
datadriven models and thus more training data always leads to highermanice. A decent
generalpurpose rgram language model needs training corpora of hundreds of millions words.

In conclusion, even if not initially obvious, the performance of a geipenglose automatic
speech recognition system depends, indirectly, on ti@uat of general text available for the
particular language.

4.3.1 Textcorporareview

For Romanian, the target language of this thesis, the available text resources are apdradic
most of the time not publicly availabl [Cristea, 2006], the authors makeextensive review

of all the language resources and tools created for Romanian as off2@@6review reports
not only on plain text corpora, but also on annotated language resddoeesver for building
n-gram language models, plain text corporaaareughand regarding this type aksources, the
review reportghat the largestorpusis RoCo- a news corpusreated by ARCIA (Research
Institute for Artificial Intelligence, Romanian Academybhis corpugRoCo)is describedy its
authors n [ Tuf i k, 2dddccpnsist of dbeut 35 million lekical tokens.

In 2010,[Macoveiciuc, 2010] reports on the acquisitiorRifWaC(Romanian WetasCorpus)

a 50million-word Romanian corpusnd its availability within Sketch Engn[Sketd]. The
authorsstatethat prior to their work in 2010, there were no larngeblicly-accessible, general
language corpora for Romanianhis is generally true as most of the developed corpora are
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subsequently used only within the research group whicloaute d t h e m. Il tés t h
million-words grammaticallyannotatedhews corpus whose usage is reported in [Bick, 2010],

for an 12million-words corpus which is used for diacritics restoration in [Ungurean, 2008] and

for a 9million-words literary corps which issubject to a lettestructure statistical analysis in

[ Ciuctkt, 2010].

Table 4.13 summarizes thelata regarding the Romanian corpora used by different research
groups.The second col umn @ Us a gsts/arfictes whicls mentiomthe r e p
usage of these corpora, not necessarily the corpora auttherfirst conclusion which emerges

from this table is thathere are notnough available text corpora to develsatisfactory
generallanguage modefor Romanian Second, the standardization and publication of such
corpora, even if not for free, would be very beneficial for the research community.

Table 4.13 Romanian text corpora summary

Corpus Usage/Acquisition Domain Words Availability
name reported by
RoCo [ Tufi k, news, literature aw 35M no
- [Ungurean, 2008] | journal, literaturepther | 11M no
- [Bick, 2010] business news 21M no
- [ Ciuct, literature 9.1M no
RowaC | [Macoveiciuc, 2010]| news, literatue, other 50M yes (for a price)

4.3.2 Textcorporaacquisition

Given thelack ofavailability of Romanian text corpora, as presented in the previous settahn,
the need of large corpora to create a language model suitable {6iISR/one of the goals of
this thesiswas to acquire this type of language resources.

The process of corpora acquisitisrat this moment dominated by the Wadresource or Web
asCorpus (WaC) approach. For the most common languages there are numerous web pages
with large amounts of s. These can be accessed, processed and used mainly by using the
various search engineavailable.Several methods [Baroni, 2006; Sharoff, 2006] which work

well for highresourced languages were proposed in the last decade. Forresumigced
languageswhich are lespresenton the web, special approaches [Draxler, 2007; Scanell, 2007]
must be considered and, even so, the size of the acquired corpora is generally much smaller.

Even if for the Romanian language there are not many akeadyed text agora, Romanian is

very well represented on the web. For a rough estimate consider that a simple Google search for
one of the most frequent Romanian words (Ki)
obvious that the acquisition of a Romaniarpus should be considering the WaCorpus
approachas thefir st option. In fact, the largest availal®®manian corpus [Macoveiciuc, 2010]

has been also acquired using this approach.

The process of acquisition started with a freely availplleallel corpus: the europarl corpus.

This corpus is available onlingEuroparl] and compriseghe discussions in the European
Parl i ament , as recorded i n altwastrdatedn&niyrfoo p e a n
the development of Statistical Machine Traigin (SMT) systems and this is the reason why

the corpora for the different languages are aligned. For our task, we do not need the foreign
corpora and will use only the Romanian version of eurofdm English or French europarl
corpora are larger asdbe countries were part of the EU from its birth, while the Romanian
corpus consists of 225 thousand phrases summing up to a total of 5.3 million words with correct
diacritics.More details about theuroparl corpus are given by its authors in [Koehn, PO05

! Google http://www.google.cor) Yahoo http://www.yahoo.cm), Bing (ttp://www.bing.con)
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Secondly, several online newspapers were investigated and analyzed especially from the point of
view of the ease of access. By ease of access, we mean the possibility of automatically
downloading articles in a simple, batotode approach.For example, & online newspaper

which publishes its articlegsing their full names in the URL (Uniform Resource Locator) is
more difficult to crawl, then a newspaper which uses only numerical article ids in their URLS.
We have exploited this advantage for two Romamalne newspaperf®am] and [Hotnews]

The applicationcreated to download the articles ran automatically through all possible article
URLs (with all possible articles ids) and, consequently, we managed to create two huge corpora
comprising of all the nesrwhich were published by these newspapers betiNegamber2004

and March 20119am andbetween November 2007 and March 2011 (hotneWsg. corpora
collected using this method alarger than anythertext corpora available for Romaniahhe

9am corpugonsists of 3.5 million phrases, summing up to a total of 63 million words and the
hotnews corpus consists of 6 million phrases, summing up to a total of 100 million Wheds.
credits for this idea go to Miruna Camara [Camara, 2007], who creatastl snaller 9am

corpus with all the articleavailableon the websitén 2007.

One of the most important problentisat is mandatory to bsolved for the news corpora, is the
absence of diacritics. This is a general issue with almost all the online newspayes artd

also with other WaC resources such as blog pages, personal pages, etc. The diacritics restoration
will be regarded as a preprocessing operation and will be detailed in S&&idn

Besides the corparthat wereacquired as mentioned above, for the various studies and
experiments performed for this thesigee were also given access to a corpus which was created

by our research group and was successfulilized in [Ungurean, 2008] for diacritics
restaation This corpus was split, just as in [Ungurean, 2008], into a training corpus and an
evaluation corpus and these parts are denoted, for future reference, miscl (miscellaneous 1) and
misc2 (miscellaneous 2). These two corpora consist ital ofabou 11 million words with

correct diacritics.

Table4.14 summarizeshe data regardinthe corpora that werellectedandfurther used irthe
experiments. The numbers are computed on the clean corpora (after the processingi®peratio
described in the following section).

Table 4.14 Created/Acquired Romanian text corpora

Corpus name Domain Phrases | Words | Unique words
europarl EU discussions 225k 5.3M 57k
9am news 3.5M 63M 397k
hotnews news 6.0M 100M 50%
miscl journal, literature, othel 300k 9.8M 179k
misc2 journal, literature, othel 100k 1.2M 48k

4.3.3 Text @rporaprocessing

N-gram language models are used in wide range of fields and, within these fields, by potentially
different applicabns. For example, in statistical machine translation the language model has the
role of estimating th@ext tokerprobability, similarly to automatic speech recognition, where it
has the role of estimating thrext wordprobability. In [Ungurean, 2008],ug to the lack of
sufficient training data, a system based on warflixes ngrams is created and exploited to
estimate thanext suffixprobability. In conclusion, it is very important to decide which are the

actual tokens (the grams) we need to modelandb ased on t htexscgorpotao A c |

accordingly.
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According to [Huang, 2001; Jurafsky 2009; Renalds, 2010] an automatic speech recognition
system is required to output plain text. 11t0
punctwation marksor other special charactersognd/squarebrackets, percent, etc) Also,

numbers will be output in their full, wréh form, accordingly to whawas uttered within the

input speech signal. Keeping this in mind, the decision regarding whidhetekens whose
occurrence probability we want to estimate is straightforward: the tokens are limited to the

|l anguageds words, as t hey argeamlapguagegmodepvathk e n .

these tokens onlyve need to adequately processttianing corpora.

Before going into cleaning a corpus we first need to obtain the actual data in plaifihisxt.
operation is closely linked to the corpora acquisition process and, consequently, is included in
the corpora download tool. This tool is a da@ommand line applicatiofJava] which also

makes use of the lynx Unix utilitfynx]. Its main role is to convert the downloaded html files

to plain text files. Normally, the WaC approach of data acquisition produces a set of html files
which have to bgarsed in order to retrieve and save only the data of concern. For example,
imaginethe html file ofan online article. Besides the actual news text, which we are interested

i n, the file wild.l contain al/ sor tmany ekt ht m
advertisementsetc. All these parts have to be removed, because we are interested only in the
actual news text.

Another NLP toolcreated for tB purpose of conditioning text corpora is ttext cleaning
application This application is also written in the Java programming language and,
consequently, can run on any operating system which has a Java Virtual Maching (JVM
installed The cleaning application takes a corpus as an input and consequently applies several
userspecified processing opeiats with the final goal of obtaining plain text, without any
digits, punctuation marks or special characters

The first cleaningoperation has the role aéplacing all diacritics characters withumique
character per diacriticln different corpora anaven in different parts of the same corpus,
differentUnicode charactersae used t o express tadiolslaxmaenneae a
RSO0 cedil | a vs. indorBistency®approached dyt thee firgkeaningoparasion.

In many news articles and especially in the European Parliament corpus numerous abbreviations
are used. For exampld, n,d n andd-n tall stand ford o a nm{migsesin English, dl anddlI.

stand fordomnul(mister, in English, art. stands forarticolul (article, in English, etc. Even if

for other NLP taks, such as machine translatitor example, these avds are categorized as
Aoar mal ,wheyrar sad useful at all for an ASR language model. The reason is that when
these words are spoken, the speaker uttensrthbbreviatedorm. In conclusion, we cannot use

a language model that predicts abbreviations and expect to accueatginize unabbreviated
word forms. Moreover, more abbreviation forms for the same wotlde training datdeads to
inconsistentprobability estimation for that particular word. The second cleaning operation
replaces abbreviated word forms with full midforms based on a list of abbreviatioAs.this

point only a list of about 30 entries has been created and usele lmlganing operatiomill get

more effective as thabbreviationdist will be enlarged.

Numbers written with digits instead of letserepresent a similar problem, just as abbreviations.
Think, for example, of the spoken representation of the nui®®@4 The speech signal has
nothing in common with the actual digits9, 8 and4, but is, in fact, the spoken representation

of thewordsequenc® mi e n o ut ipatrd(@e thopdand nieechundred eighty four

in English). The ASR language model has the role of predicting the different words which
compose this number and not the digwstten form. Moreover, the range of numbeass
potentially infinite, but the range of words used to compose the numbers is limited. These words
occurrence probability can be estimated with sufficient data, while for the-adigiten form we

would never have enough daiesides simple numbers dgtone previously exemplified, the
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corpora are filled with all sorts of other numbers with different meanings and formats:
01.02.2004dates)al 30-lea (ordinal numeralthe 3d", in English),2.59%(fractional numbers),

3 000 000, 3.000.000, 3,000,00@arge numbers with various formats), 10:20, 10h20, 10.20
(time stamps with different formats), etc. Only the most frequent number formats have been
converted to text, due to the high number of various fornmdisseissues were approached by

the third corps processingperation.

The fourth processing operation deals with punctuation marks and other special characters. In
ASR we do not output punctuation marks, so we do not need to estimate their occurrence
probability. Consequently, all punctuation marksénéo be removed or properly replaced by a

word sequence. For examp#,commas are removed) dots question marks and exclamation
marksare replaced with a new line character (this weg 6 | | have one sentenc
output file), c) bracketsra deleted and the text within them is placed on a new line, d) hyphens,
except forthe ones within words (such &gr-o, d kmi, etc.) are removed, e) percent chagest

are replaced with the phrasea  @erdertin English), etc.

The fifth cleaning operation removes all lines (one line represents, in fact, one sentence) with
less than tree word3hese very short senteexare most of the time harmful, because they are
abbreviations or numbers that the previous operations were unable to handle.

In particular, for the europarl corpus, we had to employ a special $&dhicg operation. The

corpus is for some unknown reas, not entirely in Romanian. Probably due to an acquisition
error, some computegenerated sentences, which mark the time when the meetings began, were
suspended, resumed, etc., are randomly written in another language (Spanish, German, English,
Greek, et.). Therefore we needed a method to remove these sentences. The sixth processing
operation uses the list of words in the extensive phonetic dictigdaesgribed in Sectios.1.2)

to remove all the sentences iah have an out of vocabulavyords (OOV)percentage of more

than 30%. The percentage was empirically chosen to balancentiozed Romanian sentences

and the notemoved foreign sentences.

In the end all letters were lowercased and the empty lines waoved.

4.3.4 A nore demandingextprocessingoperation:diacritics restoration

Romanian is a language that reakintensive use of diacritics. Even though it uses only 5
diacritical characters (L, O, o K,to48%aqf t heir
the words in a general text are written with diacritiEsext that lacks diacritics would generally

have these characters substituted by theirdiaaritical forms: a, a, i, s, Even though for a

human reader the meaning of a text without riti@s is mos$ of the times obvious (given the
paragraph context), the diacritics restoration task is not trivial for a computer.

The words in Romanian can be grouped into two categories, based on the ambiguity caused by
lack of diacritics:

a) nonambiguous wrds (words that are either written without any diacritics or written
with a fixed diacritics patterngalb (white, in English), astfel(like thig, p £ d (fores),
Kt i i(scigntiffg, c

b) ambiguous words (words that can be written with several diacpttterns)casa/c a s L
(the housé a housg, pana/ p a f . © rfthe feather a feather/ until).

The wordlevel context ambiguity is usually not bothering for a human reader [fhiraselevel

context is knownThere are only a few cases in whichvegithe phraselevel context a human

would not be able to infer the correneaningof the phraseSuch an exampleidm v i zut o f
f r u mdl aanvta beautiful gi), versusAm v L z ut o @ sa® & behutiful fagea s L
wherethe textlevel contexts requiredin order to handle the ambiguity Sinf a Af ta @itl /

face [Ungurean2008].
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Most of the Romanian news corpora which are acquired using the WaGCa§@sypus)
approach come without diacritics. For a news article, the diacriticsoaneery important since
any reader has access to the full dexel context and ambiguities appear seld@m the
contrary, the output of aSR systemcould be very short andlliptical and the lack of
diacritics could make it ambiguous or even incompnsible Therefore, an automatic diacritics
restoration system is definitely needed. It can be used to restore the diacrities outpubf a
diacriticslacking ASR system or to restore the diacritics on all the corpefare language
modeling and thut create an ASR system which directly outputs texts with diacritics.

4.3.4.1 Related Work

Several, fundamentally different, diacritics restoration metha@se developed forthe
Romanianlanguage Some of themare knowledgédased, while otheruse purestatistial
approaches. Some methods are only interested irchibeacterlevel context, while others
perform better if the full wordevel context is given. The amount of training resources is also an
important factor, as this generally approximates the cost\@la@@ng a diacritics restoration
system, given the method.

A pure-statistical approachs described in [Mihalcea, 2002]. This method useharactern-

gram modehlnd experiments with @memorybased learning syste(iMBL) and adecision tree
classifier (C4.5). A very important plus forhte methods its language independencyni® a
medium size text corpus required to train the charactergram modeland no wordlevel

assumptions are made. The methedappliedfor four different languages: Czech, Rbi
Hungarian and Romaniaand reports similar resul{precisionbetween97.04%and 99.02%).

For Romanian, the reportg@decision is 98.3%.

A more elaborateknowledgebaseddiacritics restorationmethod using part-of-speech (POS)
taggingto disambiguad the different diacritical words hypothesisintroduced in [ f 1 K , 199
and refined Intheddvalopmenphase, s 8yBt@&ryequires more NLP resources

than the one presented in [Mihalcea, 2002], but also achédwetserperformance: a word error

rate (WER) of 2.25% and a character error ré@hER) of 0.60%.The methodvas integrated

into a standalone diacritics restoration system ()jaghich is available online as a M3ffice
addon|[Diac].

In [Ungurean, 2008] the diacritics restoration system is regardedexpiantial filtering process

basel onunigrams and bigrams of diacritical word@sdtrigrams of diacritical wordsuffixes

This method needs only a medium size text corpus to train the variousdgngrodels and to

create a map connecting the rahiacritical word forms to all their diaitical word forms. The

authors insist on the fact that this method is adapted to Romanian thanks to the usage of word
suffixes trigrams. The results reported for this methodsemnédar to the oneseportedoy [ Tu f i kK
2008} a word error rate of 2.13% amdhoverall Fmeasure ©99.34%.The same research group

has recently published updated diacritics restoration results. On a 2 millios partdof the

euoparl corpus, [Ungurean, 201gports a word error rate of 1.4% and a character error rate of
0.4%.These are the best diacritics restoration results reported so far for Romanian.

4.3.4.2 Diacritics restoration method description

A statistical language modeling methoghich has been successfully uséor several
disambiguation tasks (includirtgue-casing [ i St ) is propdsed in this thesis for diacritics
restorationThe training and restoration methdalgies are depicted iRigure4.8.
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(" Diacritics restoration system ™\
Trigram language model
(diacritized words)

Correspondence between
diacritized words and
their non-diacritized form

- J

Figure 4.8 Diacritics restoration systemarchitecture

'a

The only resource needed by this method is a text corpus with correct diacritics. Based on this
corpus, two highetevel structures are built: angram language model and a probabilistic map
(which links all nordiacritical word forms to altheir possible diacritical word forms). An
excerpt of a probabilistic map is shownTiable4.15.

Table 4.15 Probabilistic map excerpt

é

dacia: dacia 1.0

fabricand: fabricand 1.0

pana pana 0. 005, pant
sar mana: strmana 0. 8
tari: tari 0.047, SA4
é

Given a text corpus in which the diacritics are partly or entirely missing we estimate the
diacritical form of every word ihe corpus in a wordy-word manner. If the nediacritical
word form ndw is not found in the probabilistic map we leave it unchanged. Otherwise, we
estimate the diacritical forrdw , given the preceding sequenceNbfliacritical wordsdws by
finding thediacritical word formdw; that maximizes this formula:

dw = argmax p(dwy |W) x p(dw | ndw (4_1)

dw

The first factor in the equation is estimated by thgramlanguage modelvhile the second one
is estimated by the probabilistic map.

4.3.4.3 Experimental setup

For developmetnand evaluation, several corpora were used, jushaw&n inTable4.16. Details
about these corpora wegivenin Section4.3.2 Note that one of the training corpajaiscl)

and one of the evaluatio corpora(misc2) have also beensed in [Ungurean, 200&ind were
provided bythe authorsThe 9am30art corpus comprises the first 30 articles of the 9am corpus
for which the diacritics were manually restof@dthe reference text)

Table 4.16 Diacritics restoration development and evaluation data

Corpus name | Size [words] Usage
europarl 5.3M development
miscl 9.8M development
9am30art 13k evaluation
misc2 1.2M evaluation
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The ngram language models werenstructed using the SRM Toolkit [Stolcke, 2002] and

the probabilistic map was created using a Java command line application. The disambiguation
method which uses these two resources is also provided by tHeMSRbolkit (the disambig

tool). This toolactually translates a stream of tokens from a vocabularyn\our case: words
without diacritics)to a corresponding stream of tokens from a vocabularygnivour case: words

with diacritics) according to a probabilistic-tb-many mapping. Ambiguitie the mapping

are resolved by finding the ;\V6equence with the highest posterior probability given the V
sequence. This probability is computed frpair wiseconditional probabilitiep(V1|V-), as well

as a language model for sequences over V

Given that the Diaé system is freely available online we were able to evaluate this system on
our owndataas well The results are presented in the following section.

For evaluation (words/characters alignment and word/character areotamputation) we have
usedthe sclite tool provided in the NIST Scoring Toolkit.

4.3.4.4 Comparative results

The diacritics restoration systems were evaluated in terms of word error rate (WER), character
error rate (ChER) and-feasureThe word error rate is calculated exactly as 1orASR task

(see SectioR.5). The character error rate is computed similarly, but, instead of word insertions,
deletions and substitutions, the character measures are evakmtétese evaluation metrics
(WER and ChER) thedeal score is 0The Fmeasure is defined as the harmonic mean of
precision and recalPrecision is the ratio between the number of correctly inserted diacritics and
the number of diacriticg the hypothesi text while recall is the ratio between thennoer of
correctly inserted diacritics and the number of diacritics in the reference Rextthese
evaluation metrics (precision, recall andrieasure) the ideal score is 100%@te that precision
andrecallvalues are different when the results are ginelividually per characterTable4.18),

but when the overall results are presented (dsable4.17 and last line offable4.18) they are
equal, and consequently equal to ameasurevalue.

In order to find the best setup for the language model we have performed the following
experiments(Table 4.17): 2-gram up to 5gram language models with probabilistic maps
(experiments 1 to 4). The conclusion what the 3gram language model performs best and it is
also simpler than the-gram and Egram language models, which have similar results. In the end
a plain map which assigns equal probabilities to all existing diacritics patterns for a word, was
tested but the results were significantly worse. Our conclusion was that, given the amount of
training data, our method works best if it makes use ofgaaf language model and a
probabilistic map.

Table 4.17 Diacritics restoration parameter tuning results

Evaluation corpus: misc2 Evaluation corpus: 9am30art
Exp LM Prob Map
WER | ChER | F-measure | WER | ChER | F-measure
1 2-gram | probabilistic | 2.07% | 0.50% 98.69% 1.55% | 0.32% 99.15%
2 3-gram | probabilistic | 1.99% | 0.48% 98.73% 1.50% | 0.31% 99.18%
3 4-gram | probabilistic | 1.99% | 0.48% 98.73% 1.48% | 0.31% 99.19%
4 5-gram | probabilistic | 2.00% | 0.49% 98.71% 1.49% | 0.31% 99.18%
5 3-gram plain 2.24% | 0.54% 98.58% 1.51% | 0.33% 99.13%
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Table4.18 lists the variais performance metrics for the individual characters that are subject to
diacritics restorationThe first conclusion that can be drawn based on these results is that the
method exhibits better performance metrics for the-giaaritical charactersa( i, s, ). Also,

there are ambiguity classad {; s/ k) which are almost perfectly solved, while otheag £ / &)

pose serious problems. The/ £ ambiguity is a specific and difficult problem for Romanian,
because all the feminine nouns and adjectiveess sigular, indefinite form ends ik have

their singular, definite forms ending im. Consequently, these word forms cannot be
disambiguated easily and we would probably need higher orgdgam models or some
linguistic, knowledgebased method to apgach this ambiguity.

Theindividual characteresultsand the above conclusioase consistenwith the ones presented
in [Mihalcea, 2002] and [Ungurean, 2008].

Table 4.18 Diacritics restoration individual character evaluation

Ambiguity Char Evaluation corpus: misc2 Evaluation corpus: 9am30art
class Precision | Recall | F-measure | Precision | Recall | F-measure

a 98.28% | 97.71% 97.99% 99.32% | 98.20% 98.75%
a |/ b 94.42% | 96.13% 95.27% 93.73% | 97.54% 95.60%
a 98.79% | 97.55% 98.16% 97.00% | 99.08% 98.03%
O i 99.97% | 99.88% 99.92% 100% 99.96% 99.98%

[ 99.26% | 99.65% 99.45% 100% 100% 100%
s ] 99.75% | 99.62% 99.69% 99.21% | 99.89% 99.55%
K 98.71% | 99.14% 98.92% 99.66% | 97.67% 98.65%
t 99.52% | 99.62% 99.57% 99.78% | 99.96% 99.87%
v S 97.74% | 97.21% 97.47% 99.70% | 98.51% 99.10%
all all 98.73% | 98.73% 98.73% 99.18% | 99.18% 99.18%

Table4.19 presents comparative results between our method (Exp 1) and the methods proposed
in [ Tuf i k,, 3)and Bglreah, 2003 (ERo 4).

The evaluation of the method presented in [Ungurean, 2008he misc2 corpus already
available in their dicle (this corpus was provided by the authors). The performance metrics
obtained on the 9am30art corpus were also provided by the authors on our demand.

The evaluation of the Didcsystem was somehow more complicated, because the -freely
available MS Offie addon is not a fully unsupervised systefihe method can work in an
unsupervised scenario, as the authors assert ink[Tufi 2 0 0 8-Word¢ Wiete ragtom&tically
dealt witho), b-ort does hot, iddalS wit@ fimbst af the umamibiguous and
ambiguous words angrompts the user to select the right wamly for the POS ambiguous
words. To evaluate this system weave selected POS ambiguous words alternatives in two
different ways:

e Exp 2: we have manually selected the first alternative provided by the system,

e Exp 3: we have left the POS ambiguous words in theirdiacritical form (as if the

system did not know hato deal with these words).

For the 9am30art corpus we were needed to make 160 manual selections for Exp 2.

Due tothe fact that the DidcMS Office addon wasnot able to restore the diacritics on the
large, 1.2 million words evaluation corpusge were ot able to fill all thecells inthis table
(these cells were marked n/&pr the same reason we have also evaluated the three systems on
a smaller corpus, namely 9am30art.
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Table 4.19 Diacritics restoration comparative results

Exp Diacritriﬁztrheosdtgration Evaluation corpus: misc2 Evaluation corpus: 9am30art
WER | ChER | F-measure | WER | ChER | F-measure
1 this method 1.99% | 0.48% 98.73% 1.50% | 0.31% 99.18%
2 Diac'[ Tuf i g, n/a n/a n/a 1.61% | 0.34% 99.11%
3 Diac'[ Tuf i r* n/a n/a n/a 2.28% | 0.51% 98.67%
4 [Ungurean, 2008] 2.13% | 0.25% 99.34% 2.3 | 0.50% 98.95%

The comparative results presentedTiable 4.19 clearly show thatfor the larger evaluation
corpus the method presented in [Ungurean, 2008] is the best in terms of chdeaeter
evaluation. Yet, the method we propose outperforms it in terms of-leetl evaluation. This
mismatch between the charaetevel and wordevd evaluation metricsleads us to the
conclusion that one method manages to correctly restore some diacritics, but fails to restore
some other, which are correcthgstorer by the second method. Consequently a combined
method would probably output even legttesults.

As regarding the Didcsystem, if the ambiguous words are left sbacriticized, the results are

a lot worse comparing to both the other diacritics restoration systems. If the first alternative, as
providedby the system, is selected, thiheresults are comparable to the ones obtaimedur
diacritics restoration method.

One important conclusion that can be drawn basetiabie4.19 is that the evaluation corpus is
very important:experimentsl and 4 exhibitsignificantdifferences in the diacritics restoration
performanceon differentevaluation corpra In Exp 1 we observe better performance on the
9am30art corpus, while in Exp 4 we notice better figures for the misc2 corpus. The results
obtained on the misc2 corpware mordrustful given the larger size of this corpus (Jeble

4.16), but the significantly different results obtained on the 9am30art corpus (which is also
satisfactory large) underline the fact that different diacriticsorason systems cannot be
directly compared when the experimental setups are different.

4.3.4.5 Conclusion

Romanian texts arélled with diacritical words: about 30% to 40% of the words in a general
text are written with diacritics. Most of the corpora acquiviedthe web lack diacritics, because

a human reader can infer the sense of the text even without diaéhtesthoughhe diacritics
restorationtask is an NLP task that could seem unrelated to the subject of this thesis, the
restoration process critical for automatic speech recognition systewisich are required to
output correct Romanian textBhese ASR systems benefit frdrils and their output is directly
dependent on the language models which, in turn, must be trained with correct Romanian texts

This thesis proposes an edsybuild statistical diacritics restoration system which is constructed
using a single resource: a medisimetext corpus with correct diacritics. A brief review of all

the other Romanian diacritics restoration systems $® ahade. The proposed method is
evaluated and compared with the most recent systems and the conclusion that we reach is that
our methods one of the best diacritics restoration methods available for Romanian

Moreover, we also conclude that statisticadthods (this method and the one presented in
[Ungurean, 2008]) are at the moment better than knowdedged methods (the one presented
in [Tufis, 2008]), and could perform even better if moreiniag data would be available.
However the statistical mettieare limited when it comes to ambiguities that can only be solved
using Inguistic information (see the/ £ ambiguity class).

The diacritics restoration system was in the end used to restore the diacritics in the two large
news corpora (9am and hotngwshich were acquired via the web. These two corpora were
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critical resourcessge Sectiorb.1.2 needed to create the largecabulary continuous speech
recognition system.

4.3.5 Textcorporaanalysis

The corpora thawill be further used for language modeling are europarl, 9am and hotnews. This
section will focus on a short analysis of these corpora, discussing the most common words, the
words occurrence distribution, the words length distribution, etc. Note tha #nesgeneral
Romanian textsand the news corpora (9am and hotnews) thee largestreportedfor this
language(see Sectiort.3.1for other corpora sizes)heir size (63M words and respectively
100M words) makgthem good cadlidates for characterizing written Romanian.

Table 4.20 lists the most frequent words in theree corpora and their relative occurrence
frequency.The table shows that the most frequent 4 wodis K,iin, a) are the same for the

three corpora. The smaller corpus (europarl) exhibitsBated frequency for the worah, but,

as regards the other three most frequent words, the occurrence percentage is very similar among
the three corpora. The europaorpus is probably too small to estimate real word occurrence
percentages. As listed ifable4.20, the most frequent 15 words ranking differs quite a lot for

this corpus when compared to the other two.

Table 4.20 The most frequent words in the corpora

europarl (5.3M words) 9am (63M words) hotnews(100M words)
Rnk | Word | Occ. [%] Rnk | Word | Occ. [%] Rnk | Word | Occ. [%]
1 de 4.66% 1 de 4.93% 1 de 5.01%
2 n 3.46% 2 K i 2.95% 2 K i 3.13%
3 K i 3.35% 3 n 2.55% 3 n 2.59%
4 a 2.26% 4 a 2.33% 4 a 2.27%
5 st 2.13% 5 la 1.88% 5 la 1.93%
6 la 1.42% 6 0 1.19% 6 o 1.07%
7 care 1.39% 7 din 1.06% 7 din 1.04%
8 pentru 1.38% 8 mii 1.01% 8 cu 1.00%
9 ct 1.23% 9 cu 1.00% 9 st 0.99%
10 o] 1.12% 10 care 0.97% 10 care 0.95%
11 este 1.09% 11 st 0.95% 11 ct 0.90%
12 cu 1.04% 12 ct 0.93% 12 pe 0.89%
13 din 0.96% 13 pe 0.88% 13 | pentru| 0.82%
14 nu 0.95% 14 | pentru| 0.86% 14 mai 0.78%
15 mai 0.78% 15 | dou| 081% 15 nu 0.77%

As regarding the 9am and hotnews corpora we observe that the first 15 word ranking is almost
the @ame. We noticed that the wordso ytwo) andmii (thousandyappear in the 9am corpus

more times than usual due to the fact that everglarimn this news corpus is dated with dates
between 200 and 2011. These numerical dates are translated to plain text and thus the inflated
frequency for the two word&egardless, we see that, besides these two words, the top 13 most
frequent words rank@ is practically identical for the two corpora. Moreover, the occurrence
percentages are very similar for these 13 words (the most significaredifk is noticed for the

word o which appears 10% more in the 9am corpus). Given this, we can concludbeg®at

words are the most frequently used words in Romanian and that their occurrence percentage is
very similar to the one presentedliable4.21.
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Table 4.21 The most frequent words in Romanian (all corpora’i 169M words)

Rank | Word | Occ. [%]
1 de 4.97%
2 K i 3.07%
3 n 2.60%
4 a 2.29%
5 la 1.89%
6 0] 1.12%
7 din 1.04%
8 st 1.01%
9 cu 1.00%
10 care 0.97%
11 ct 0.92%
12 pe 0.88%
13 pentru 0.85%
14 mii 0.84%
15 mai 0.79%

Table4.21 shows an interesting fact: the wordsatence percentage decreases very fast. If this
trend continues througbut the rest of the top, thennteans that a small number whique
wordswill make up a large percentage of the corplable 4.22 tries to give us a glimgson
how important are the first most frequent words in the three corpdm.table shows the
coverage ofhe most frequent 100 words, 1k words, 10k words and 64k words.

Table 4.22 Most frequent words corporacoverage

Occurrence in corpus [%]

Word groups europarl 9am hotnews all
most frequent 100 45.8% 46.7% | 43.0% | 43.6%
most frequent 1000 | 72.6% 67.7% | 64.7% 65.6%
most frequent 10k 95.5% 89.2% | 87.6% | 88.1%
most frequent 64k 100% 98.3% | 97.9% | 98.0%

Given thedata in theTable4.22 we can conclude that only a small fraction of the words in a
corpus covers a large part of that corpus. The number of unique words for the threewagoora
shown beforein Table 4.14. This unbalanced word distribution is discussed also in [Koehn,
2005] and a famous f or mu lAecording to ¢his,Zhe prddacsof thea w )
rankr of each word (sorted by occurrence percentage) amtdiittber ofoccurrence (frequency

f) is roughly a constanfTable 4.23 makesan attenpt to verify this formula and displays a
comparison taesults presentemh [Koehn, 2005].Just as in the experiments done in [Koehn,
2005], we concl udmostly heafied. Thé modutt oprankasd freqaency i s

is roughly constant for most words, but drops off for the lowest ranked words.
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Table423Zi pf 6s | aw verification

All Romanian corpora (169M words) English europarl corpus (29M words)
Rank Word Frequency r*f Rank | Frequency r*f

1 de 8375953 8375953 1 1929379 1929379

10 care 1630568| 16305680 10 424552 4245520

100 minus 170814 17081400 100 30384 3038400

1000 amer i | 16171 16171000 1000 2793 2793000

10000 biletul 1398 13980000 10000 70 700000

100000| restrictivi 24 2400000 86999 1 86999

attempt

Another interesting fact we observeTiable4.21 is the short length of the most frequentrds
Although this observation could seem trivial and not important, the statistics regarding the
frequency of short vs. long words is very important for speech recognition. One of the tuning
factors of an ASR system is the word insertion perialtyparareter which controls the word
insertion errors by assigning a lower or treg probability penalty to wordgplitting. If this
penalty is larger than required for the language, then the ASR system will @urtgeit, wrong
words instead of two or three corteshort words. On the other hand, if the penalty is smaller
than required for the language, the ASR system will assign higher probabilities -tbréso
wrong short words instead of a single, longer correct word.

The word length distribution is differefor different languages and, therefore, it needs to be
estimated for the target language. The estimation can only be done using large enough text
corpora, such as the ones analyzed in this section.

Figure4.9 displays a word lengtdistribution analysis made on the three corpora. The analyzed
word lengths are from 1 to 15. Although there are a few words longer than 15 characters, their
number is not significant.
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Figure 4.9 Words length distribution for the corpora

13 14 15

Several important conclusions can be drawn from the words length statistics. First, we observe
that the three distributions are very similar. The 9am and hotnews distributions are almost
identical, while the europarl dishution presents a higher peak foecl2aracter words and lower
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values for 3character and-dharacter words. Ithe end we concludiat evena small corpus,
such as europa(b.3M words) is enough to create a satisfactory estimate of the words length
distribution.

The second observation regards the strange shape of the words length distribution. The
extremely high number of-2haracter words is unexpected. Also unexpected is the small
number of 3character words (the-Gharacter words are fewer tharcRRamlacter words and also

fewer than 4character words). We could assume that this strahgpe is caused by specific

text corpora or data sparseness, but, as previously observed, the distribution is similar for the
three corpora and, to argument even morststen other corpora show similar words length
distributions.

The average word length calculated based on the d#&tigune4.9 is 5.42 characters per word
for europarl, 5.12 characters per word for 9am and 5.11 charactersmeiowbotnews.

As the words length distributions for the three different corpora are very similar we assume that
this is the general case for the Romanian language and show a unified &omarnds length
distribution inFigure4.10.

25%

20%

15%

10%

5% -

Words length percentage

0% -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Characters per word

Figure 4.10 Words length distribution in Romanian

4.4 SUMMARY

This dchapter has presented the various resources acquired with the purpose of building a
speakefindependent largegocabulary speech recogniio system. These resources are
indispensable and generally unavailable, thus we invested a lot of time in creating them.
Acquisition toolsandprocessing tools were also developed given the need for phonetic, speech
and text resources.

The phonetic resourseand tools were discussed at the beginning of this chapter. We benefited
from an already existing, extensive phonetic dictionary with about 600k phonetically transcribed
word forms. Consequently, a huge amount of time that would have been invested allynanu
creating a phonetic dictionary was savelbwever after the text corpora have been acquired,

we reached the conclusion that the existing phonetic dictionary was not enough. Tens of
thousands of words, for which the dictionary did not provide any giotranscription, were
encountered in the texts. This motivated the development of an automatic graptemes
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phonemes conversion tool. This tool, which was evaluated to be the best among the graphemes
to-phonemes tools available for Romanian, is onéhefrhain contributions of the author of this
thesis.

The speech resources and acquisition tool were presented in the second section of this chapter.
The section begins with a rew of the existing speech databases abdsed on theCMU

Sphinx suggestionsregarding database sizes;oncludes thamneither of the existing speech
materials are enough to create a speaildependent largeocabulary GR system.
Consequently, the tedious task of speech database acquisition was approached. A speech
acquisition togl fully designed and implemented by the author of this thesisuseto acquire

most of the databases. To the best of our knowledge the isolated words database (WORDS) and
the continuous speech databases (CS_01, CERD3 and CS_04orm the largesgroup of

speech materials available for Romanian. In the speech databases acquisition process several
people were involved as coordinators and/or speakers. The author of this thesis was one of the
main coordinators and speager

The chapter ended with trsection that presents the text corpora acquired and the processing
tools implemented with the final goal of creating a general language model for Romanian. The
section begins with a review of the sbing text corpora for Romanian and concluttes only

the combination of all the corpora could be enough to build a decent, general language model for
Romanian. Still, most of the corpora reported to be used by different research groups are not
available (neither for research, not for commercial purposes)segaently, the need of large
amounts of written data motivated us to approach the taskllicting several text corpora.

After the acquisition process, a text cleaning tool, fully designed and implemented by the author
of this thesis, was employedtoadd ss sever al i mportanthtmite-l eani n
text conversionnumbersto-text conversion, special characters handlegtg, A very important

and more demanding processing operation was diacritics restoration. This was mandatory for the
news corpora which lacked diacritics and required the construction of a diacritics restoration
tool. The tool, which is also one of the main contributions of the author, was evaluated and
compared to other existing diacritics restoration systems for Romandaturned out to bene

of thebest.

Every section in this chapter ends with a statistical analysis of the resources, yielding interesting
conclusions regarding phonemes distribution, words distribution, words length distribution, etc.
all for the Romania language.
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CHAPTER 5

ACOUSTICMODELS
CONSTRUCTION ANDOPTIMIZATION

This chapterpresents thearious experiments and acoustic models optimizations made during a
period of two years, consequentivealingthe evolutionof our ASR system. The experiments

were sarted when the speech databases acquisition process was still in progress, therefore the
reader will note that the earlier experiments refer aolgome parts of the WORDS database

and some parts of the CS_01 database. Secondly, the language modelseenipldlye
experiments presented in this section are basicemnol language models because, at that time,

we had no text corpora to buildgram language model®evertheless, the usage of basic
language models was also beneficial because the acoustsmmgrovement could have been
emphasized. Finally, the evolution revealed in this chapter was also caused by the knowledge
and the experience the author has gained during this period of time.

In conclusion, this chapter starts with sogeneral, introduory issues regardingpeech units
(selection, contextiependency and clustering)development strategy and database
homogeneity.The chaptercontinuesby presenting the optimization experiments madehe
WORDS database, incluti model topology optimizéons anddecoding speed optimizations.

The chapter concludes with continuous speech recognition experiments made on the CS_01 and
CS_02 databases. These experiments show the evolution and improvement of our acoustic
models.
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5.1 INTRODUCTORYISSUES

The main tleoretical issues regarding acoustic modeling for automatic speech recognition were
presented in Sectio&4. In the end, the section concludetat stateof-the-art largevocabulary

speech recognition systems use Bdise Hidden Markov Models (HMMs)with Gaussian

Mixture Models GMMs) as output pdfs to modelubwords speech units such as context
dependent phones (triphones) or senones. The HMMs model these speech units using perceptual
acoustic features (MFCCs or PLP coe#iais) extracted out of the original tirdemain speech

signal.

In our attempt to create a continuous speech recognition system for Romanian wedided

to use the statef-the-art mathematical tool: HMMs with GMMs, as shown ahcved to tackle

all the other issues regarding thesign of the models, acoustic features selection, speech units
selection, etc. in an empirical manner.

5.1.1 Speechunits selection

The selection of thespeechunitswas the firstissue thatve approache It is obvious, as argued

in Section2.4.3 that for a largezocabulary continuous speech recognition system we cannot use
words as basic speech units. They are neither trainable (there are not enough occurrences for
every word to robustly train a modehor generalizablefdr every new ASR task, with a new
vocabulary, a new set of models nealbe constructed). Consequently, surds speech units

such as contexhdependent phones (simply called phones), comtegendent phones
(triphones) or syllales have to be employed. The trainahté&ibute (there should be enough

data to estimate the parameters of the wfith properly chose speech unit, as discussed in
Section 2.4.3 limited our possibilities tghones and tripones. The reason: we do not have
enough occurrences to train syllable models neither in the WORDS database, nor in the CS_01
databaseTable5.1).

Table 5.1 Speech units in the WORDSnd CS_01 speech databases

WORDS database CS_01 database
phones triphones syllables phones triphones syllables
. number of 36 models| 7359 models| 8321 34 models| 4524 models| n/a
different models models
total number of | o549 95801 37078 82873 82873 n/a
occurrences
less than 10 1type | 5235 models 8076 0 models | 2670 models n/a
occurences models
107 20
0 models | 980 models| 82 models | 1 models| 685 models n/a
occurences
2071 50
1 models | 832 models| 64 models | 0 models | 710 models n/a
occurences
o071 100 0 models | 210 models| 42 models | 1 models| 269 models n/a
occurrences
more than 100 34 models| 103 models| 58 models | 32 models| 191 models n/a
occurences

As Table 5.1 shows, the isolated words database (WORDS) is large enough to stiitably
phone models, and could be used to train triphone models if stiitient parametesharing
techniquesare adopted in order to overcome the data sparsendssmr@@ very small number

of occurrences for over 5000 models). Nevertheless, syllablelsmbdve no chance of being
suitably trained on this isolated words database as over 6000 models have less than two
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occurrences. Although this could be regarded as a disadvantage for the isolated words database,
we have to remmaber that its development pose was to cover all the syllables in Romanian
and not to create sufficiently numerous occurrences ftaldg modeling.

Regarding the continuous speech database CS_01, one can clearly see that, as it was built from a
relatively small number of phrasest{ich contain only common words), it does not include all

the speech unitsod types that the isolated v
phones in Romanian (02 and y), which had only a few occurrences in the WORDS database, do
not appear intte CS_01 speech @agase at all. As for the triphones, about 2600 types that had

less than 10 occurrences in the isolated words database do not appear in the continuous speech
datbase at all.

Another important issue to point out able 5.1 is that the total number of pha¢and
triphones) occurrences is similar between the two databases; from this point of view the isolated
words database is only 13.5% larger.

In conclusion, the purpose of the above argumentation was to deatert$tat, given these
speech database, only phones or triphones could be employed as basic speech units. Even if
most of the studies and books [Huang, 2001] vote in favor of triphones, we have decided to
experiment with bothtypes of speech units (contartlependent and contesependent).
Moreover, one of our isolated words recognition studies [Cucu, #0ihiestigates the
possibility of using a mixed phonésphones system.

Even though triphones are shown to yield better results [Huang, 2001] tlatksirt more
suitable context adaptation, their usage has to overcome an important caveat: due to their
constructive nature, the number offdient triphones is a lot larger than the number of different
phones. This is a drawback because it adfagetinability on small databases (the same speech
database could be large enough to train phone HMMs, but could be insufficient to properly train
triphone HMMSs).Triphone modeling assumes that every triphone context is different. Actually,
many phones have simil&ffects on the neighboring phondsl the triphones that share the
central phone are acoustically very similar; hence their models central states have similar
paameter values, as shown iBdulean, 1997; Liu, 1999; Steward, 2002hking these into
acount we have decided to use the {gtdtes techniqueriphones that share the central phone

are to be modeled with HMMs that share the central states. This approach reduces#reonu
parameters that have to be trained tlee triphones ASR system and thus reduces the risk of
ending up with undertrained HMMs.

The tiedstates technique has been used in all the isolated words recognition experiments which
were made using the HTK Toolkit. After the migration to CMU Sphinxictvimplicitly uses
senoneg(statedependent output pdfs across different phonetic models), we have used only
contextdependent triphone models with clustered states for all the continuous speech
recognition experiments.

Regardless of the chosen speechsyine speech pauses have to be modeled in a similar manner
using HMMs. We need to differentiate two types of pauses: the long pause at tirengegf

the phrase or between phrases, and the short pause that one usually makes between two words
The shortpause has been modeled by cloning one otémtral states of the long pause model

and using the previousimentioned tieestates technique, resulting in a esmittingstate

HMM.

5.1.2 Thehierarchical training strategy

The previous section presented the essuhat have to be taken into consideration when
designing an HMMbased ASR system. The output of this process isitial iset of HMMs that

have to be trained using the training speech database (the HMMs enclose model parameters
which now have to be estated).
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In order to @sign the training strategy for the ASR system several matters have to be
considered. First of all, the isolated speech unit training would definitely work well if there were
a large enough database of isolated speech units. In thalisasissed here (phones are being
used as basic speech units), thalaied phones database (PHONES) has been acquired for
initialization purposes only and is not large enough to be used on its own for training the system.
Moreover, buiting a large isoleed phones database is a tedious and-tiomsuming process.

These being said, the isolated speech unit training will only be used forizatiiah, while the
embeddedraining techniquewill be employed for the systenraining. This technique
(embeddedraining) uses the BawuWelch reestimation algorithm and only requires
information about the order (the sequence) of the speech units in a given utterance to perform
the HMM training. Every basic speech unit is typigathodeled with one HMM and all these
basic HMMs can be concatenated to form words HMMs, which can be further concatenated to
form word sequences HMMs. This is the mechanism which allows us to eventually estimate the
probability of a sequence of words givehe initial speech data. Moreover, this mechanism is

the basis for the embeddé@ining process: the estimation of parameters for multiple,
concatenated HMMs, given a speech signal composed of a sequence of speech units.

Although embeddetraining is quie comfortable from the database point of view, it is very

vul nerabl e t o valigomegts. Bhe estnation procdsds s®@s once the plibypabi

that the estimated models generate the given speech utterance reachaawmHxfor some
reasonthis maximum is a local and not the global one, then theiricawill not be optimal. In

order to have the best alignment, we have proposed a hierarchical system development strategy
that involves several steps, which will be presented further on.

First step HMM system design. This step involves choosing the speech units to be modeled, the
voice features to be used as modeling parameters, the HMM topology and the number of
Gaussian mixtures per st at e.i althemaelspgarpmeterswi | |
are given default values.

Secondstep System initialization. The set of Apr
initialized using the isolated speech unit training technique. The small isolated phones database
(PHONEYS) is utilizedor this purpose. The alternative to this type of system initialization would

be fAflat startingo, which consists in comput.
utterance, and using the statisticguits as initial model parameters. Thepuittof this step will

be a set of roughly initialized HMMs.

Third step Embedded phone HMM training. At this point the initialized models are trained
using the isolated words database (WORDS). The training metimpibyeed is obviously
embeddedraining, beause the WORDS databasevides only infemation on the order of the
phones and not on their temporal borders. In the end, the output of this step is a robustly trained
HMM set. Its qudty can beassessedind then, based on this evaluation, severalgdesi
parameters can be adjusted. Of course, any design adjustment would mean restarting the
development from step 1 and ending with evaluating the performance again. Sevetal step
step design adjustments have been made (as shown in S@ciiororder to reach the best
performance.

Fourth step Embedded triphones HMM training. This step consists of two parts: the first one is

a design adjustment that aims to create triphone models and the second one is another training
sessionGiven the best set of phone HMMs trained at the previous step, we can build triphone
HMMs by cloning the phone models (a triphone HMM is created by cloning the phone HMM

for the central state). The tieslates parametesharing technique is also used aplained in the
previous section. The newly created triphone HMM set is retrained (through e meaidid))

by using the WORDS database. After this training session the performance of the system is
reevaluated.
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Fifth step Embedded triphone HMMs trainin@his step uses the modelstained at step four
and retrains them using the WORDS database and the CS_01 database. Finally, the continuous
speech ASR system performance is eatdd.

In conclusion, this hierarchical training strategy is designed to lingi@nd train the HMMs

with small, but finergrained annotated databases at first and large, but comeseed
annotated databases as we go further. In this way we try to minimize the possibility of wrongly
aligning the speech units whilpglying the enbeddedraining method.

5.2 ACOUSTICMODELS FORISOLATED WORDSRECOGNITION

This section presents the isolated words recognition experiments we have employed in order to
find the best acoustic models. The experiments foitagelythe hierarchical training sitegy
presented in the previous section.

5.2.1 Experimental stup

For all the experiments in this section we have used two speech databases: the WORDS database
and the PHONES database. BidONES database contains singl®ne audio files and will be

used onlyfor the initialization step (as specified in the hierarchical training strategy). This
database was complete at the time these experiments were perfokmedre detailed
description and analysis of this databasee made in 8ction4.2.2andSectior4.2.3

The WORDS database is an isolated words database. At the time these experiments were
performed only 5 speakers (2 males and 3 females) had recorded the 0€000 different

words Most of theexperiments in the following sections were made using the whole database,
but some of them (will be outlined at the right time) were made only for a certain sp&aker.
more detailed description and analysis of this database were madelénin £ction4.2.2and
Section4.2.3

These two databasbéadto be split into a training part and an evaluation dade to the small
size of the PHONES database we have decided to use it all for training.n@Viseparate
evaluation part left, thehones recognition experimemtade after the initializatiors not very
Afairo. Regardless, we will present these re

The WORDS databasmnsisted of 50000 audio filesQQO0 per speaker) which were split into

a training part comprising 45000 files (9000 per speaker) and an evaluation part comprising
5000 files (1000 per speaker). The split was made based on the files ids as follows: the files with
ids between 5000 and 5®9vere used for evaluation and all the other files were used for
training. This split was made without any theoretical basis and could influence the recognition
results if the database is not homogeneous. Consequently, we were required to make some
experinents and validate the homogeneity of the WORDS database (Se&@ig@presents these
results) just to make sure all the other results will be conclusive.

All the experiments in the following sections employ basic woop language modelsThis

means all possible phones (for the phones recognition experiment) or all possible words (for all
the other experiments) are equally probable to be outputted at all times, regardless of the output
history. Of course, the size of the plsfwords vocabulary is a key factor here: we used 36
possible phone@or the phones recognition experimengspectively 10000 possible wordsr

all the other experiments)

5.2.2 Isolated words database enlargement and homogengtgranents

The isolated wals database (WORDS) was subject to a set of experiments that aimed to
determine whether the database is large enough and whether the phonemes that make up the
words in the database are uniformly distributed over the whole set of files.
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Figure 5.1 Database enlargement experiment

SectionrOwi | | approach the ASR system design and w
model s designo for the p hpisuses infiS sectisnytcspertonm. Thi
nine tests that aim to decide whether a smaller training database (of less than 9000 words) is
enough to obtain the same ASR performance as in the case when the whole training database (all
9000 words) is ulized. Thetests were performed only for speaker 1 because the other audio

files for the other speakers were not available at the tiigere 5.1 presents the experimental
results.The figure shows, the ASR system performance significagtiyws when the training

database size increases from 100 up to 6D words, but starts to saturate at about 8000

9000 words. Consequently, the first few hundred audio files are very important, while the last

few thousands audio files do not bring toahyperformance gain.

All the experiments in Sectiob.2 were performed by splitting the databasm ian evaluation
part the audio files with ids in the range 500%999 and a training parta(l the other filek

The next gperiment aimed to guarantee that splitting the database into daw® (@ training
database and an evaluatidai@base) can be done in a random manner without artificially
increasing or decreasing the ASR system pamwoice.This experiment has also begerformed
only for speaker 1Table 5.2 summarizes the results for the different database splitting
experments.

Table 5.2 Database homogeneity experiments

i ) Database
Speaker| HMM configur ation —— — WER
training files testing files
00007 0999 | 5.94%
10007 1999 | 5.92%
200071 2999 | 5.81%
30007 3999 | 5.22%
Amost sui -
acoustic mi o ,4000'4999 5.51%
for bhones all except testing fileg -
or phor 5000i 5999 | 6.74%
(see Sectio)
60007 6999 | 6.7
700071 7999 | 7.7%%
800071 8999 | 6.71%

90007 9999 | 9.4%%
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The results presented Trable5.2 show some important aspects regarding the WORDS database
and uncoer a method that can be used to detect database inconsistencies possibly caused by
acquisition errors. For example the ASRsteyn presented on the last row has a 50% higher
word error rate when compared to almost all of the other ASR systems in theQuablef the

reasons for the inconsistency could be the fact that the speaker was anxious to finish the
database acqui®n task (this ASR uses the last recorded 1000 files in the database for testing
purposes). This assertion is alsostainedby Figure 5.1 which exhibits an increase in the
descending trend of the word error rate when these last 1000 files are appended to the training
database. This means that these last 1000 files do not help, but actually harm the training
proces.

5.2.3 ASRdesignexperiments

The first step in the hierarchical training strat@ggsented irsection5.1.2consists irchoosing
the HMM system designThe first configurationwe have experimented with was based on
Bakistype cortextindependent phondsimply called phonesHMMs and Mel-Frequency
Cepstral Coefficients (MFCCs)n the initial configuration, which was supposed to be optimal
for speech recognition ([Jurafsky, 20098very HMM had6 states (among which 4 were
emissie) with 2 Gaussian mixtures per state.

The phone recognitiorresults (obtainedafter the secondstep in the hierarchical training
strategy werecomputed, as mentioned in the experimental setup section, on the same PHONES
training databaseDue to the smbhamount of data the same database was used for training and
evaluation. Nevertheless, this experiment is only intended to roughly evaluate the phones
classification power of the ASR system after initialization. The performance figaressms of
phoneserror ratespre presented individually, per model type (phome3)able5.3.

Table 5.3 Individual PER for the phones in the PHONES database

Symbol | PER [%] Symbol | PER [%] Symbol | PER [%] Symbol | PER [%]

al 20 g 12 k 0 sl 16
22 h 8 [ 26 s 11
13 il - m 20 t1 10

d 22 i2 13 n 29 t 13

el 8 i3 5 ol 0 u 19

e 23 i 11 02 % 22

f 15 i 9 0 0 w 13

gl 8 k2 - p y

g2 k1 3 r 8 z 23

Going further to th third step in the training strategy, we have used the training part of the
WORDS database to train thestates HMM system. A speakierdependent system was trained

and evaluated using training and evaluation files from all the 5 speakers and, forisomar
speakerdependent systems were also developed and evaluated using training and evaluation
files in a fAper speaker o manner . The perfor
presented imMable5.4. This tableshowsthat, as expected, the word error rate for the speaker
independent ASR is higher than the word error rate for the spdakendent ASR. This issue

will be overcome by enlarging the database.
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Table 5.4 Speake -dependent vs. speakemdependent ASR systems

Speaker HMM configuration WER
1,2,3,4,5 51.0%%
1 22.3%%
models for phones
2 6-state HMMs 21.9%6
3 2 GMs per state 30.59%
12 MFCCs+ energy +1st order derivatives
4 25.5%%
5 28.5®%

The resultspresented inable 5.4 will be regarded as a baseline for further experimefss.
mentioned inSection5.1.2 the third step in our development strategyoivesnumerous SR
desigh experiments thatira to find the besHMM configurationfor the phonanodels The tests
for finding the besHHMM configurationinvolved modifying the number of states in the HMMs,
modifying the number of Gaussian xnires per stat and using the first and second order
tempaal derivatives for the voice features

Table 5.5 presents the word error rates for ASR systems that differ by tiMberuof voice
feature coefficients. The results clearly show that the most powerful ASR system is the one that

takes into account only the MFCC coefficients and their first order temporal derivatives. These
results are closely related to the size of thelmiede:a small database can be used to suitably
train only a few parameters, while a large database can béousath more voice featuse

Table 5.5 Varying the number of voice features

Speaker HMM configuration WER
12 MFCCs + energy 80.3%%
models for phones
1,2,3,4,5 6-stateHMMs 12 MFCCs + pergy + 1st order derivatives | 51.0%%
2 GMs per state
12 MFCCs + energy + 1st and 2nd order derivati 65.03%
The HMM6 s n u mb e andtbef nunsber aft Gaussianomponentgper state are important

parameters whichight influence the performance of an ASR system.eéfeerimented starting
from the classical Bakis mod@@ states HMMs with 2 GMs per stat@)d we varied the number
of states per HMM as well as the number dfi$sper HMM state, in order to find the optimal
model with respect to the performance of the AyRem. The number of states in an HMM is a

design parameter that hasso a physical interpretation: an HMM with more states models

longer phonemes better than an HMM with fewer states, aneveisa for shorter phonemes.
Having this in mind, after reaaing an optimal performance for an ASR system with a fixed

number of states for the HMMs, we tried to vary the numberbfat es i n a
Table 5.6 Varying the number of GMs per HMM state
Speaker HMM configuration WER
2 GMs per statq 51.0®%
1,2,3,4,5 3 GMs per statg 43.96/%6
models for phones 4 GMs per statq 64.7P%
6-state HMMs
12 MFCCs + energy + 1st order derivatiy 1 GM per state| 21.93%
2 2 GMs per statq 21.93%
3 GMs per statq 23.64%6
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A lot of experiments were performed in order to determine the optimal numbers for these two
parametersTable5.6 andTable5.7 summarize some results of these design experiments.

Several conclusns can be drawn from the resultsTiable5.6. It is obvious that the optimum
number of Gaussian mixtures for the spedkdependent ASR system and for the given
database is three. Also, it is clear that for a spedd@endentASR system this parameter is less
important and could be set to one in orderibnoize the computation time. The results are not
surprising at all:

e For a speakedependent system one Gaussian mixture is enough to model the variability
of a single voiceEven though the phones are not uttered exactly the same, they are very
similar and so are the cepstral coefficients for every state in the model.

e For a speakedependent system (and in our case only five speakers in thendrai
database) three Gaussiaoderls are needed to best model the variability of these five
voices. The phones are uttered in a particular manner by every speaker and thus the
cepstral coefficients are also quite different. We expect that for a database with more
than five speakers tleptimum number of Gaussianxtires to be larger.

e Asthe HMMs better model the training database, the recognition rateeddée between
the speakeindependent and speakdependent ASR systems gets smaller.

Table 5.7 Varying the number of states per HMM

Speaker HMM configuration WER

6-state HMMs | 51.0%%
7-state HMMs | 52.48%
8-state HMMs | 43.60%
models for phones 9-state HMMs | 36.23%
1,2,3,4,5 2 GMs per state 10-state HMMs| 32.22%
12 MFCCs + energy + 1st order derivativ 11-state HMMs | 30.3%%
12-state HMMs| 26.9%%
13-state HMMs| 30.126
14-state HMMs| 28.724

The results presented ihable 5.7 show that the ASR system performance grows with the
increase of the nuneb of states for the HMMs and reaches atinoum when the number of
states is 12The results are somehosurprisingbecuse 12 states is quite a large number
compared to the Bakis model (with only six statedjout which the literaturgays to have the
smallest word error rate for small vocabularies.

Up to this point the number of states has been kept constant over all the phone models which is
not necessarilyright. Somephones (such as camsnts, for example) are clearly shorter that
other phones (sudds vowels, for example). The optimumnnher of states obtained so far (12)

is in fact a weighted average of all the phones optimum number of states. This idea led to our
next experiment : modi fying the numbedecidef st
which would be the optimum number of states for a particular magehave used the average
length for that phoneas given by the 12 states ASR system. This average length (expressed in
number of states) is summarized for some phon&alite5.8.
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Table 5.8 Average length for some phonmes

Phoneme

k1 | m

p r s | u

Average length [no. states]| 17 | 8 | 10

9 6 [ 15| 9

This data has been used tedesign the 1&tate HMMs ASR systermmiorder to have different

HMM models for the seven phones listedliable 5.8. Seven diferent ASR systems have been
generated and trained using the same development strategy and their performance was
evaluated. Theesults are pesented iTable5.9.

Table59Varying the number of states

Speaker HMM configuration WER
all HMMs 1 12 states | 15.126
HMM for k17 17 states| 15.53%0
HMM for | i 8 states | 16.460
models for phones -
12345 12-state HMMs HMM for mi 10 states | 15.3%0
B 3 GMs per state | HMMfor pi 9 states | 15.926
12 MFCCs + energy + 1st order derivative
HMM for r i 6 states | 17.08%
HMM for si 15 states | 16.34%
HMM for ui 9 states | 15.3%

Although the preliminary observations seemed right, the performance of the ASR system did not
increag when we modified the numbef states for one of the HMMs$o take into account the
most appropriate length for that patiar plfone In conclusion, the model size and oégyy

should be kept identical over all the models.

n

a

A

per

While all these design experiments were in progress, the WORDS database was also being
extended and, in the ende were able tevaluate the ASR systemsth an 8speaker database.

Of course, for the 8peakerASR we had to redo the number of Gaussian mixtures per state

optimization process. It was no surprise to see that better results were obtained with more than 3

GMs per state.

Table 5.10 Best isolated words recognition results

Speaker HMM configur ation WER

175 15.1%%

1 6.74%

2 5.5

3 8.2%%

4 models for phones 3 GMs per statq 6.78%

5 12-state HMMs 4.8

9 12 MFCCs + energy + 1st order derivatiy 11.676

12 3.2%

15 29.3%%0

171 5,9, 12,15 3 GMs per statg 23.6%6
171 5,9, 12,15 6 GMs per statq 15.4®%
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The best results for the phone models that have been obtained for the eight speakers are
presented imMable5.10. As the table showshe results are really good for most of the speaker
dependent systems. The poorer results for speaker 9 and 15 are probably due to inconsistent
recordings and they are probably also responsible for the relatively large faWElRe 8
speakers ASR siem.

The embeddetraining technique does not issue the best results after the first training iteration
of the Baum Welchalgorithm. Consequently, several training iterations have to be employed
until the word error rate for the 3R system reaches an optimuRigure 5.2 presents the
performance variation over several training iterations for the optimal speaegendent (5
speaker) ASR system.

Wiford Error Rate [%]
in

; L-\_

1 4 9 12 21 30 39 48 57 &5 75 34 43

training/testing iteration

Figure 5.2 WER variation over the training iterations

Going further, we have continued witte development steps (step 4 in the hierarchical training
straegy),and createdontextdependent phone (triphone) modelg of thecontextindependent
phone modelsTable 5.11 compares the performance of the phones ASR system and the
triphones ASR system.

Table 5.11 Varying the type of models: phones vs. triphones

Speaker HMM configuration WER
12-state HMMs models for phones| 15.1%%
1,2,34,5 3 GMs per state
12 MFCCs + energy + 1st order derivatiy models for triphoned 11.42%6

Although the results presented Trable 5.11 show that the triphones ASR system performs
bette than the phones ASR system, a mordepth analysis proved that the gain in recognition
rate is not purely incremental. In other words, the triphones ASR system fails to recognize some
of the words that are recognized by the phones ASR system ardevéze Namely, the set of
words recgnized by the triphones ASR system (88.59% of the total words) does not include all
the words recognized by the phones ASR system (84.8BRyre 5.3 illustrates the actual
intersection of the wrd setsFigure 5.3 shows that if the triphones ASR system would also be
able to recgnize the words recognized by the phones ASR system otveisa we would

obtain a system with a recognition rate of 95% (or a word erroof&i#).
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m words recognized by both the
ASR systems

words recognized only by the
phones ASR system

m words recognized only by the
triphones ASR system

m unrecongnized words

Figure 5.3 Recognized and unrecognized word sets for the ASR systems presentedale 5.11

The previous result supports the idea of creating a mixed ASR system thatmakdduse of

both phones and triphones as basic speech units. The two sets of models tragveduaneldso

far can be utilized to perform a double recognition. In the end, the two recognition results are
compared and the better rgoized word is seleetl. The selection of the better recognized
word is in this case very simplbecause the two recognition probabilities outputted by the two
systems can bermctly compared.

The experiments showed a significant performance improvement for the mixedtppboae
ASR system: word error rate of only 7.28% (two times lower than the phonesvA&Rerror
rate. The downside of this system is that its redtign time is the sum of the recognition times
for the composing systems plus a phones/triphones detisien

5.2.4 Languagerestrictionsexperiments

All the experiments msented in the previous sectigrere done usinga basic wordoop
language modelith no restrictions The ASR systeswere required to recognize among the
words in the exteded 10kwords vocablary, although the testing audio files contained only a
subset of 1000 words. Moreover, the ASR systems were allowed to output any combination of
any words for every audio fil@lthough every aud file contained only one word hanks to the

fact that weknow that we are dealing with singdeord audio files and thiahe words uttered in

these evaluation files are all part of a 180frds vocabularywe can create more restrictive
language modelsObviously, these restrictions can be imposed only in afatessd words
recognition scenario (continuous speech recognition will be dealt with separately).

Table5.12 presents the word error rates for the phamesed ASR system, for the triphones

based ASR system and for the mixeddels ASR system, given three types of language
restrictions. The first experiment (lines 1, 4 and 7 in the table) uses an unrestricteldapord
language model (the same as in the experiments presented in the previous section). The second
experiment (lines 2, mnd 8) uses a |l anguage model whi ch
contains one single word, while the third experiment (lines 3, 6 and 9) employs a word loop
language model with a reduced vocabulary (1000 words).

Several conclusions can be drawn frdable5.12. First, for the phonebased ASR system the
language restrictions have a significampact, decreasing the word error rateout four times.
Second, for the triphondsased ASR system these language restrictions seem tesbée
significant. Third, a conclusion that is, in fact, an outcome of the first two: the tripthasesl

ASR system performs better that the phebesed ASR sgem only when loose language
restrictions are being applied. Consequently, triphdrzesed systms should be even better in
largevocabulary continuous speech recognition, but in the case of isolated words recognition,
when strict language restrictions ameposed phonebased systems are better. And finally,
regardless of the language restrictiahg, mixedmodels ASR system is the best.
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Table 5.12 Imposing a set of language restrictions

) ) Word -loop languagemodel restrictions
Speaker HMM configuration WER
Vocabulary size | Words sequence restrictions
models forphones 10000 words | any combination of any word] 15.1%%6
12-state HMMs
1,2,3,4,5 3 GMs per state 10000 words only one word 8.47%%6
12 MFCCs + energy + 1st orde
derivatives 1000 words any combination of any word] 3.76%
mocels fortriphones 10000 words | any combination of any word| 11.4%%
12-state HMMs
1,2,3,4,5 3 GMs per state 10000 words only one word 10.9%9%
12 MFCCs + energy + 1st orde
derivatives 1000 words any combination of any word| 7.08%
mixed phonetripho ne models 10000 words | any combination of any word|  7.28%
12-state HMMs
1,2,3,4,5 3 GMs per state 10000 words only one word 5.61%
12 MFCCs + energy + 1st orde
derivatives 1000 words any combination of any word| 2.27%6

5.3 TIME OPTIMIZATIONS FORISOLATED WORDSRECOGNITION

All the experiments presented in Sect®@ aimed to find the best models from the recognition
accuracy perspective and did not raise teal-time question.In some speech recognition
applications realime might notbe a must, but in most of the cases it is. In speech recognition,
the realtime factor is defined as the ratio between the processing (recognition) duration and the
audio file length or duration. A lowdhanl realtime factor is desirable for most common
speech recognition applications such as dictation, htooarputer dialogue systems, etc.

This section introduces an innovative thetep recognition method that helps achieve the real
time desiderate for the HTFHeveloped isolated words recognition syste The baselinéo
compare our method with is presentedTiable 5.13. These are, in fact, the ASR systems
presented iMable5.11 for which the reatime factor was also computethe realtime factor

(RTF) was computed as follows: the durations of all the audio files in the evaluation database
were summed up (we obtained approximately 2 hours of speech) and the duration of the
recognition process is divided by this number. For example, for the twoiraepés presented

in Table5.13, the recognition process took approximatly hours, respectively 3.5 hours.

Two important things should be noted about the results present&dbie 5.13. First, the
triphones ASR system is more accurate and also twice as faster as the phones ASR system. And
second, both ASR systems are still far from achiettiegreaitime recognition goal.

In order to better understand these results and try to get closer to thieneeecognition goal,
the recognition process algorithm has to be analyzedused

Table 5.13 Best recognition results using the usual recognition method

Language information Recognition algorithm
HN(;MI WER | RTF
MOCEIS | vocabulary | Words sequence Steps
: s Type L
size restrictions description
phones o . 15.1%6 | 3.24
10000 words Y combination| one step | recognize
of any words | recognition words
triphones 11.4%%6 | 1.77
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5.3.1 Tokenpassingalgorithm analysis

The process of g@ch recognition is to find the best possible sequence of words (or units) that
will fit the given input speech. It is a search problem, and in the case of -Ha&ed
recognizers, a graph search problem. To solve this problem, the well known Token Passing
algorithm [Young, 1989] (a specific version of the Viterbi algorijhsused

Before the actuakecognitionstarts a search graph is constructed based on the set of acoustic
models and the language model (or language restrictions). The nodes in thisgsapltare
HMM states, while the transitions ané several types: a) inttlMM transitions, b) intetHMM
transitions and c) intewords transitionsThe search graph is meant to represents all possible
sequences of phonemes in the entire language @&skeunder consideration. For example, the
search graph irigure 5.4 is designed for a digit recognition task. It can decode any speech
input which contains the word®ro(zerg, unu(oné, doi (two), ...,n o Ynine). As you can see

the search graph is composed of HMMs for basic speech units, such as theuphodes, i3,

w, al, etc., which are concatenated to formwuds in the task vocabularynu, doi, nout, etc.

All the transitions in the seardjraph are probabilistiche intraHMM transition likelihoods

have been computed during the acoustic model training (B&efoh algorithm), the inter

HMM transitions are straight forward and finally, the imteord transitions likelihoods are

given by thelanguage model (or language restrictionSpr example, a basic woidop
language model would generate a search graph in which allwotel transitions are as
probable (all words are as probable and any word can follow any other word with the same
probability). On the contrary, an-gram language model would have specific probabilities for
every word and specific probabilities for sequences of three words and would generate a search
graph in which the inteword transitions will not be as probable.

Congructing the above search graph requires knowledge from various sources. It requires a
dictionary, which maps the wounuto the phonemes, n andu, the worddoi to d, o andil,

etc., t requires the acoustic model to obtain the HMMs for the phonandfinally, it requires

the language model to obtain the intarrd transition likelihoods.
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Figure 5.4 A simple search graph example
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