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CHAPTER 1  

 

INTRODUCTION 

1.1 THESIS MOTIVATION  

The world we live in has drastically changed over the past few decades. The development of the 

first computers and their availability and usage on large-scale has played a significant role in this 

change. The computational power was initially available only within research centers and army 

institutes and afterwards within large companies. Lately, the computational power became 

available to almost anyone in the form of personal computers, smart-phones, PDAs, etc. 

Nevertheless, the regular consumer is not familiar with the human-machine interfaces available 

today and the further spreading of high-tech is somehow constrained by this issue. The human 

being is used to speak, to gesticulate, to think, etc. as opposed to type or use a mouse. This is the 

main reason for which human-machine interfaces have lately become an important topic for the 

research community. Spoken dialogue systems are apparently the most natural communication 

systems between humans and machines because speech is in fact the most natural 

communication method used by humans to exchange information. The human user is not 

required to have any special skills to be able to use a spoken dialogue system. On the other hand, 

the computer requires sophisticated tools to be able to understand what the user is speaking 

(speech recognition and understanding systems) and to be able to speak (speech synthesis 

systems).  

The field of Automatic Speech Recognition (ASR) has been a hot topic in the international 

scientific community for over twenty years now. This led to the development of resources and 
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methods and eventually high-performance commercial systems for most of the internationally-

spoken languages such as English, French, Mandarin, etc. One important advantage for these 

languages was the fact that speech resources needed to build robust acoustic models and text 

resources needed to build general or domain-specific language models were widely available on 

the Internet or were systematically provided by the evaluation programs organized by DARPA 

(Defense Advanced Research Projects Agency), NIST (National Institute of Standards and 

Technologies) and other organizations. On the opposite side, for many other languages the 

performance of ASR systems is directly dependent on the amount of available resources and is 

generally passable only in very particular cases: small vocabulary, or isolated words recognition 

or closed task grammar, etc. Moreover, the task of creating new language or acoustic resources 

for a given spoken language is typically a costly and tedious task. Given these facts, the amount 

of effort currently being invested into porting and adapting language and acoustic resources and 

even models from high-resourced languages to low-resourced languages is perfectly motivated. 

For Romanian, the target language of this thesis, there are practically very few speech and text 

resources available. Most of the existing resources have been developed by research groups and 

are not widely available. Even though several Romanian research groups focus on speech 

recognition, the lack of resources is probably the main reason for which a large-vocabulary 

continuous speech recognition (LV-CSR) system for Romanian has not been developed yet. 

This thesis is motivated by these facts and was started with the purpose of creating a LV-CSR 

system for Romanian and setting up a methodology for the development of domain-specific 

ASR systems for low-resourced languages. 

1.2 THE FIELD OF SPEECH RECOGNITION 

The automatic speech recognition (ASR) process addresses the problem of mapping an acoustic 

signal to a sequence of words. Automatic speech understanding (ASU) extends this goal to 

producing some sort of understanding of the sentence, rather than just the words. When the input 

acoustic signal contains speech uttered by different speakers, the ASR task can be regarded as a 

two-step process: speaker diarization (who spoke when?) and speech-to-text transcription (what 

did he say?). 

Automatic speech recognition has a wide range of applicability. The most important domain 

seems to be that of hands-free and eyes-free interfaces to computers or other devices. There are 

many applications in which the users need to use their hands and eyes for something else and 

speech remains their only alternative to being efficient. Moreover, as emphasized in the previous 

section, speech is the most natural mean of communication for human beings. Other major 

application areas are spoken dialogue systems for call centers and speech-to-speech translation 

systems. Speech-to-speech translation is at this moment a very hot topic in many academic and 

industrial research centers. Finally, ASR is applied to dictation: transcription of an extended 

monologue by a single specific speaker. Dictation is common in several fields, such as law, 

where many trials or official meetings need to be transcribed for further reference. Each of these 

applications is typically more restrictive than the general problem which requires the automatic 

transcription of naturally spoken continuous speech, by an unknown speaker, in any 

environment. The various sources of speech variability, which will be discussed further on, 

make the general task a very challenging one. Nevertheless, in many practical situations, the 

variability is restricted. For example, there may be a single, known speaker, or the speech to be 

recognized may be carefully dictated text rather than a spontaneous conversation, or the 

recording environment may be quiet and non-reverberant. In speech-to-text transcription, a 

distinction is made between parts addressing acoustic variability (acoustic modeling), and parts 

addressing linguistic uncertainty (language modeling). 
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One of the most important factors which influence the difficulty of the speech transcription 

process is the specific speech recognition task. This includes the language, the size of the 

vocabulary to be recognized and the linguistic uncertainty of the domain. Different spoken 

languages present different challenges for a speech recognizer. For a large number of languages 

there are very few speech and text resources available. These so-called low-resourced languages 

are spoken by a large number of people, but no prior work of collecting and organizing speech 

and/or text resources has been done. Consequently the task of designing an ASR system has to 

include resource collection also. There are other languages and dialects which are mostly spoken 

and have practically no written resources for language modeling. In this case the situation is 

even worse, because there is no way of acquiring the language resources and, in general, the 

linguistic rules are very loose. 

Other languages ñsufferò from a complex morphology. For example rich-morphology languages 

such as French and Romanian have larger vocabularies than poor-morphological languages such 

as English. In Romanian the present tense of the verb to go has five morphologically different 

forms: ñmergò, ñmergiò, ñmergeò, ñmergemò, ñmergeŞiò, ñmergò, while in French it has six: 

ñvaisò, ñvasò, ñvaò, ñallonsò, ñallezò, ñvontò. In English, the same verb has only two 

morphologically different forms: ñgoò, ñgoesò. German and Turkish are some of the so-called 

agglutinative languages. In these languages a large number of new words can be formed by 

concatenation of morphemes. This also leads to larger vocabularies and consequently makes 

automatic speech recognition a more challenging task. 

The size of the vocabulary is an important factor because it is obvious that a digits recognition 

task (with a ten words vocabulary) is much simpler than a spontaneous telephone speech 

recognition task (with a 64k words vocabulary). Nevertheless, larger vocabularies do not always 

mean a more difficult ASR task. The linguistic uncertainty of the possible speech utterances also 

plays a significant role. For example, a tourism-specific ASR task with a 64k words vocabulary 

which mostly contains proper names (places, restaurants, hotels, etc.) is not as difficult as a 

spontaneous telephone speech recognition task with an equal-size vocabulary. The low linguistic 

uncertainty (perplexity) of the first task makes it less difficult. 

The rough percentage of incorrect words on several standard speech recognition tasks is 

presented in Table 1.1. The data refers to state-of-the-art ASR systems designed for English 

[Jurafsky, 2009]. The word error rate (WER) is the standard performance figure used for ASR 

evaluation (see Section 2.5). 

Table 1.1 WER results reported around 2005 for ASR on various tasks [Jurafsky, 2009] 

ASR Task Vocabulary size WER [%]  

TI Digits 11 words (zero-nine, oh) 0.55 

Wall Street Journal read speech 5000 words 3.0 

Wall Street Journal read speech 20000 words <6.6 

Broadcast News 64000+ words 9.9 

Conversational Telephone Speech 64000+ words 20.7 

Another important factor which influences the difficulty of the speech process is the speaking 

style. The speaking style refers to how fluent, natural or conversational the speech is. Obviously, 

isolated words speech recognition, in which each word is surrounded by some sort of pause, is 

much easier than recognizing continuous speech in which words run into each other and have to 

be segmented. In fact, in the early days of automatic speech recognition, systems solved the 

problem of where to locate word boundaries by requiring the speaker to leave pauses between 

words: the pioneering dictation product Dragon Dictate [Baker, 1989] is a good example of a 

large-vocabulary isolated words recognition system. 
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Continuous speech tasks themselves vary greatly in difficulty. For example, the task of 

recognizing read speech is much easier than the task of recognizing more natural styles of 

speech such as conversational or spontaneous speech. The greater acoustic variability makes the 

latter task more challenging. This difference in difficulty between continuous speech tasks is 

reflected in the increased word error rates for spontaneous speech recognition compared with the 

recognition of read speech (see Table 1.1). 

The difficulty and consequently the accuracy of the speech recognition process is also 

influenced by the acoustic environment in which the speech is recorded, along with any 

transmission channel. Outside of quiet offices and laboratories, there are usually multiple 

acoustic sources including other talkers, environmental noise and electrical or mechanical 

devices. In many cases, it is a significant problem to separate the different acoustic signals found 

in an environment. The microphone used for recording also has a significant impact on the 

speech recognition accuracy. Commercial dictation systems and most of the laboratory research 

in speech recognition are done with high-quality, head-mounted microphones. Other types of 

microphones come with different disadvantages which contribute to the quality of the ASR 

system. Variations in transmission channel occur due to movements of the talkerôs head relative 

to the microphone and transmission across a telephone network or the internet. Probably the 

largest disparity between the accuracy of automatic speech recognition compared with human 

speech recognition occurs in situations with high additive noise, multiple acoustic sources, or 

reverberant environments. Noisy speech with a low signal-to-noise ratio can cause the word 

error rates to go up by 2 to 4 times compared to clean speech. 

Finally, the speaker characteristics have also a significant impact on the accuracy of a speech 

recognizer. The variability in speaker characteristics resides in the speaker accent, the 

language/dialect he uses, whether he is a native or a non-native speaker, the speech rate, the 

speaker  age and of course the differences in the speech production anatomy and physiology. 

Moreover, different speakers exhibit different degrees of intrinsic variability based on the 

emotional state, temporary health problems, etc. The inter-speaker variability can be dealt with 

by designing speaker-dependent ASR systems. The drawback here is that a new acoustic model 

has to be created for every new speaker. This leads to a more complex system, but also raises 

several trainability issues (insufficient training data for every speaker and others). On the other 

hand, speaker-independent ASR systems are simpler and more flexible (they can be used to 

recognize the speech of any speaker). Nevertheless, a speaker-independent system is less 

accurate for a given speaker when compared to a speaker-dependent system for that particular 

speaker (if sufficient training data is available for the speaker). Although speaker adaptation 

algorithms have made great progress over the past 15 years, it is still the case that the 

adaptability and robustness to different speakers exhibited by automatic speech recognition 

systems is very limited compared with human performance. 

The speaker characteristics variability is evident and very annoying in native versus non-native 

speech. Although human beings can understand quite well non-native speech, the automatic 

speech recognition systems exhibit very limited robustness when they are required to recognize 

this type of speech. Several studies reported huge differences in performance for native versus 

non-native speech on the same ASR task. For example, the word error rate on Vietnamese-

accented French and Chinese-accented French has been reported to be about 5 times higher than 

for native speakers on the same task [Tan, 2008]. Similarly, the word error rate on Korean-

accented English has been reported to be about 9 times higher than for native speakers [Oh, 

2007]. Obviously, the differences also depend on the speaking level for the non-natives and on 

the relationship between the two languages. For example, [Wang, 2003] reports that the word 

error rate on German-accented English is only 3 times higher than for native speakers on the 

same task. Nevertheless, non-native speech recognition is still an open issue and a high number 
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of studies (among which we mention [Tan, 2007; Oh, 2007; Tan, 2008; Sam, 2010]) have been 

published in the past few years on this subject. 

Although the field of speech recognition is very broad and different applications and possible 

solutions can be imagined, our focus in this thesis is on large-vocabulary continuous speech 

recognition (LV-CSR) systems. Large-vocabulary generally means that the systems have a 

vocabulary of roughly 20k to 60k words. As described above, continuous speech means that the 

words run into each other naturally. Moreover, our focus is on speaker-independent systems 

(systems that are able to recognize speakers to which the system has never been exposed 

before). 

The state-of-the-art paradigm for large vocabulary continuous speech recognition is the hidden 

Markov model (HMM). The HMM framework has been introduced as a viable candidate for the 

acoustic modeling part of speech recognition back in 1975 [Baker, 1975]. For LV-CSR in 

particular, the HMM-based acoustic model is used in conjunction with an n-gram model which 

is responsible for the language modeling part. Statistical language models (n-grams) have 

become the state-of-the-art solution for language modeling since the tremendous expansion of 

the Internet, which provided enough data to suitably train these systems. Large-vocabulary 

continuous speech recognition systems and the specific problems they pose are explored in-

depth in Chapter 2. 

1.3 AUTOMATIC SPEECH RECOGNITION SYSTEMS FOR ROMANIAN  

The field of speech recognition for the Romanian language has been approached by several 

research groups in Romania since the 1980ôs [Burileanu, 1983; DrŁgŁnescu, 1986]. The first 

studies focused on simple tasks such as vowels recognition [Grigore, 1998], isolated words 

recognition [Burileanu, 1998; Valsan, 1998a; Sabac, 1998; Burileanu, 2004] and word spotting 

algorithms [Valsan, 1998b; Burileanu, 2003]. 

The main problem which inhibited the development of high-performance continuous speech 

recognition systems was the absence of standard speech and text resources for Romanian. 

Specific speech databases have been created over the years by ASR research groups, but these 

resources have not been standardized and are not publicly available. The authors of [Munteanu, 

2006; Dumitru, 2008; Kabir, 2011] explicitly assert that there are no speech resources available 

for Romanian and that they were required to create speech databases before starting any research 

in continuous speech recognition. Due to this fact, large-vocabulary continuous speech 

recognition systems for Romanian are still a future plan. The latest work in speech recognition is 

still limited to small-vocabulary tasks, basic word-loop grammars or basic n-gram language 

models and pseudo speaker-independency. For example, in [Oancea, 2004] the authors report 

small-vocabulary (approximately 3000 words) continuous speech recognition results for a 

general ASR task modeled with a basic word-loop language model. The number of speakers is 

limited to 10, so speaker-independency is out of the question. Further development and research 

on speech recognition algorithms and techniques is reported in [Dumitru, 2008]. This work is 

still limited to a small-vocabulary task (approximately 4000 words) and presents recognition 

results for only 11 speakers. The first study which uses more complex language models (bi-gram 

LMs) for Romanian is [Militaru, 2009]. This work is also closer to speaker-independency, as it 

uses speech data from 30 speakers. Nevertheless this paper does not approach a general, large-

vocabulary task, but a small-vocabulary (approximately 500 words), domain-specific ASR task 

(broadcasted forecast news). 

In order to overcome the small speech database problem, researchers have tried to come up with 

innovative speech recognition methodologies. Several types of voice features were evaluated in 

[GavŁt, 2007; Dumitru, 2008] and lots of parameter-tuning experiments were performed in 

[Munteanu, 2006]. Moreover, several other recognition frameworks (different from the state-of-
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the-art HMM framework) were tried out. Neural network based approaches are presented in 

[Dumitru, 2008; Domokoĸ, 2009], a vector-quantization algorithm is illustrated in [Burileanu, 

2004] and more complex, hybrid recognition techniques (fuzzy-HMMs and neural networks plus 

HMMs) are proposed and evaluated in [Dumitru, 2008]. 

Some Romanian speech recognition studies discuss a more important issue for the international 

scientific community: speech recognition robustness to various factors. The robustness to noise 

is dealt with by [Munteanu, 2008]. In this paper a multi-style training methodology is proposed 

and evaluated on a Romanian speech database. The results show that the proposed methodology 

is very effective even for signal-to-noise values as low as 10 dB. In [Giurgiu, 2011] the authors 

propose a methodology (vocal tract normalization) to increase ASR robustness to inter-speaker 

variations. The methodology is evaluated on clean and noisy speech. The paper concludes that 
vocal tract normalization is only able to improve the ASR performance on clean speech. 

In conclusion, up until now several steps have been made towards developing a large-

vocabulary continuous speech recognition system for Romanian, but the final goal has not been 

reached yet. Moreover, speaker-independency which is directly dependent on the speaker-

variability of the training speech database has not been obtained. These two attributes: large-

vocabulary and speaker-independent are indispensable for a general-purpose speech recognition 

system. 

1.4 THESIS OBJECTIVES AND OUTLINE 

Given the review of the speech recognition systems for Romanian illustrated above, the main 

objective of this thesis was the development of a speaker-independent large-vocabulary 

continuous speech recognition system for Romanian. This system should be able to recognize 

general Romanian continuous speech produced by any speaker with a decent performance. In 

order to achieve the main goal, several specific objectives were addressed: 

a) The acquisition of phonetic, speech and text resources. These resources are all required 

to create a speech recognition system. A phonetic dictionary is needed to link the words 

to their phonetic form, a speech database is needed to create and evaluate the acoustic 

model, while text corpora are required to create general and/or domain-specific language 

models. 

b) The development of specific tools needed to create and process the above mentioned 

resources and required to create and optimize the acoustic and language models. 

c) The design, implementation and evaluation of a Romanian LV-CSR system using state-

of-the-art techniques: the HMM framework for acoustic modeling and the n-gram 

paradigm for language modeling. 

d) The design, implementation and evaluation of an ASR domain-adaptation methodology 

for under-resourced languages. 

The thesis is organized in eight chapters, as follows: 

Chapter 1 introduces the reader to the field of speech recognition and makes a brief summary of 

the main issues in this field. The first chapter continues with a review of the various Romanian 

speech recognition studies performed in the past several years. The solved and unsolved 

problems are underlined. Based on this review, chapter 1 concludes with the objectives and the 

outline of this thesis. 

Chapter 2 presents the theoretical basis for large-vocabulary speech recognition. The speech 

recognition formalism is briefly explained and the general architecture of a state-of-the-art 

speech recognition system is detailed. The core of the second chapter comprises theoretical 

aspects regarding the development of n-gram language models and the development of HMM 
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acoustic models. The state-of-the-art tools for language modeling and acoustic modeling are also 

summarized in this second chapter. 

In Chapter 3 we focus on presenting the main theoretical principles of statistical machine 

translation (SMT). As the thesis will show, SMT can be successfully used to help in the 

development phase of automatic speech recognition systems. The following chapters use SMT 

to create phonetic resources and domain-specific language models. 

Chapter 4 is the first chapter that illustrates specific contributions of the author of this thesis. 

The phonetic, speech and text resources required for the development of ASR systems are listed 

and detailed in this chapter. We review the existing resources and discuss their pluses and 

minuses in the context of ASR. The core of the chapter comprises the description of the 

acquisition and processing tasks for these various resources. The analysis of the collected 

resources is also very important as this leads to various conclusions regarding the Romanian 

language. This chapter also presents several NLP tools and speech acquisition tools developed 

by the author of this thesis. 

Chapter 5 deals with the development and optimization of the acoustic models. The extensive 

experiments that were performed in order to find the best setup for the HMM acoustic model are 

presented in this chapter. Besides these, chapter 5 proposes several methodologies for improving 

the recognition speed for isolated words. Isolated words recognition and continuous speech 

recognition results are given in this chapter. 

Chapter 6 describes our efforts towards creating a general language model for the Romanian 

language. We have experimented with two types of language models: finite state grammars and 

n-gram language models. The second approach was successful and was adopted to develop a 

large-vocabulary speech recognition system. This chapter presents the first LV-CSR results for 

Romanian. The second part of chapter 6 proposes an SMT-based domain adaptation 

methodology for ASR systems (the second main contribution of the author). 

Chapter 7 briefly deals with the speaker-independency issue. The best LV-CSR system 

presented in the previous chapter is evaluated in a more general setup, including speakers which 

were not part of the training database. The chapter concludes with some remarks regarding the 

speaker-independency of the LV-CSR system. 

Chapter 8 summarizes the main conclusions of this thesis and underlines the authorôs 

contributions. Moreover, this last chapter briefly discusses the envisioned future developments. 

 





 

 

CHAPTER 2  

 

LARGE-VOCABULARY 

CONTINUOUS SPEECH RECOGNITION 

2.1 THE AUTOMATIC SPEECH RECOGNITION FORMALISM 

The automatic speech recognition (ASR) process addresses the problem of mapping an acoustic 

signal to a sequence of words. This task is also called speech-to-text transcription. ASR is one of 

the first fields in which data-driven, machine learning, statistical modeling approach became 

standard. The basic statistical framework was created and developed during almost two decades 

by Baker [Baker, 1975], a team at IBM [Jelinek, 1976; Bahl, 1983] and a team at AT&T 

[Levinson, 1983; Rabiner, 1989]. The speech-to-text task can be formulated in a probabilistic 

manner as follows: 

What is the most likely sequence of words W* in the language L, given the speech utterance X? 

The formal representation uses the argmax function, which selects the argument that maximizes 

the word sequence probability: 

 )|(* maxarg XWpW

W

 (2.1) 
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Equation 2.1 specifies the most probable word sequence as the one with the highest posterior 

probability, given the speech utterance. Bayes rule is used to compute this posterior probability 

and the most probable word sequence becomes: 

 )(

)()|(
* maxarg

Xp

WpWXp
W

W

 (2.2) 

p(X), the probability of the speech utterance is independent of the sequence of words W, thus it 

can be ignored. Consequently, Equation 2.2 becomes: 

 )()|(* maxarg WpWXpW

W

 (2.3) 

Equation 2.3 exhibits two interesting factors which can be directly estimated. The initial 

problem (of estimating the word sequence given the speech utterance) has now been split into 

two simpler problems: a) the estimation of the prior probability of the word sequence p(W) and 

b) the estimation of the likelihood of the acoustic data given the word sequence p(X|W). The 

probability of the word sequence can be estimated using solely a language model, while the 

likelihood of the acoustic data given the words sequence can be computed based on an acoustic 

model. The two models can be constructed independently as shown in Figure 2.1, but will be 

used together to decode a speech utterance as specified in Equation 2.3. Figure 2.1 presents the 

architecture of an ASR system and also shows the methods and type of data required in the 

development phase. 

 
Figure 2.1 ASR system architecture 

Besides the acoustic model and the language model which have been mentioned in the above 

formalism, the general ASR architecture also includes a phonetic model. This is due to the fact 

that, for large vocabulary systems, the acoustic model does not model all the words in the 

vocabulary (due to their high number ï tens of thousands), but sub-words units such as 

phonemes. The phonetic model is most of the times a pronunciation dictionary which maps the 

words in the vocabulary to their phonetic representation. 

Figure 2.1 also shows that the ASR system does not model speech directly (at the waveform 

level). A feature extraction block is employed to extract specific acoustic features which are 

further used to create the acoustic model. Consequently, the same feature extraction block is also 

needed and used in the recognition (or decoding) process. 
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This section continues with the analysis and description of the several blocks in Figure 2.1. 

Section 2.2 describes various language modeling issues and evaluation metrics, Section 2.3 

focuses on phonetic modeling and Section 2.4 discusses several acoustic modeling issues. 

2.2 LANGUAGE MODELING 

The language model (LM) block in Figure 2.1 is utilized during decoding to estimate the 

probabilities of all word sequences in the search space. In general, the purpose of a language 

model is to estimate how likely is a sequence of words W = w1, w2, é, wn, to be a sentence in 

the source language. The probability for such a word sequence helps the acoustic decoding in 

the decision process. For example, in the Romanian language these two phrases: ceapa roĸie 

este sŁnŁtoasŁ (red onion is healthy) and ce apar oĸti ied este sŁnŁtoasŁ (what appear armies 

kid is healthy) are acoustically very similar, but the second one does not make any sense. The 

role of the language model is to assign a significantly larger probability to the first word 

sequence and consequently help the ASR system to decide in favor of the first phrase. 

The probability of the word sequence W = w1, w2, é, wn can be decomposed as follows: 

 ),...,|()....|()(),...,,()( 12112121 nnn wwwwpwwpwpwwwpWp  (2.4) 

This means that the task of estimating the probability of the word sequence W is split into 

several tasks of estimating the probability of one word given a history of preceding words. Due 

to computational reasons, the history of preceding words cannot extend to include an indefinite 

number of words and has to be limited to m words. To put it another way, we make the 

assumption that only a limited number of previous words affects the probability of the next 

word. This leads to the conventional n-gram language model, which has represented the state of 

the art for large-vocabulary speech recognition for the past 25 years [Renalds, 2010]. Typically, 

m is chosen based on the amount of training data available (more training data is needed to 

accurately create longer history n-gram language models). Most commonly, trigram language 

models are used. They consider a two-word history to predict the third word. This requires the 

collection of statistics over sequences of three words, so-called 3-grams (trigrams). Language 

models may also be estimated over 2-grams (bigrams), single words (unigrams), or any other 

order of n-grams. 

2.2.1 N-gram models construction 

An n-gram language model is constructed by estimating the probabilities discussed above using 

a large enough text corpus. For example, in the case of a bigram language model, the 

probabilities p(wj|wi) for every pair of words (wi, wj) have to be estimated. In order to compute 

this probability, we use the maximum likelihood (ML) principle and count how often wi is 

followed by wj as opposed to other words: 
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For a trigram language model one needs to estimate all the probabilities P(wk|wi ,wj): 
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(2.6) 

A large amount of training data (typically hundreds of millions or even billions of words) is 

needed to accurately estimate these probabilities. Also, higher order n-gram language models 

require larger amounts of training data. The problem of data sparseness, which is a typical 
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problem for any statistical system, has to be taken into account and is addressed in the next 

subsections. 

2.2.2 Addressing the data sparseness problem 

2.2.2.1 Count Smoothing Methods 

One of the key problems in n-gram modeling is the inherent data sparseness of real training 

corpora. Regardless how large the training corpus is, there will be n-grams which will not be 

seen within it, but may appear in the evaluation or test corpus. In this extreme case, the 

probability assigned to the unseen n-gram, given the maximum likelihood estimation equation 

2.5 (or 2.6) is 0. Besides this case, there are other n-grams which occur only very few times (less 

than ten times) in the training corpus. Moreover, this problem becomes more severe when higher 

order n-grams are employed. In all these cases the probabilities which were estimated based on 

the empirical counts that are observed in the training corpus, are very rough estimates and need 

to be adjusted. 

The methods involved in the adjustment process are called smoothing methods. They basically 

subtract probability mass from seen n-grams and redistribute it to unseen n-grams. There are 

several smoothing methods which tend to particularize the redistribution of probability mass 

given some specific reasons. 

The most basic smoothing method is called add-one smoothing. It simply adds a fixed number 

(for example 1) to every n-gram count. This means that even n-grams which do not appear in the 

training corpus, but are made up of words in the vocabulary, will be assigned non-null 

probabilities. Analyzing the newly assigned probabilities, we quickly notice that add-one 

smoothing gives undue credence to n-grams that do not appear in the training corpus [Koehn, 

2010]. One simple remedy would be to add a smaller number Ŭ, instead of 1 (a method called 

add-Ŭ smoothing). This number, Ŭ, will have to be empirically estimated on a held-out corpus. 

Deleted interpolation smoothing tries to adjust the actual n-gram counts by answering the 

question: ñIf we observe an n-gram c times in the training corpus, how often do we expect to see 

it in a real application (in the evaluation corpus, for example)?ò. This method splits the training 

corpus into two parts and uses one part to estimate n-gram counts and the second part to answer 

to the above question. Secondly, by switching the roles of the two parts and interpolating the 

results, this method comes up with better expected counts than the add-Ŭ smoothing method. 

Another smoothing method, Good-Turing, uses the actual counts (c) and the count-of-counts 

statistics (Nc is the number of n-grams which occur c times in the training corpus) to adjust the 

counts (c*) for all seen and unseen n-grams: 

 
c

c

N

N
cc 1)1(*  (2.7) 

The Good-Turing method provides a principled way to adjust counts, but is not very reliable for 

large c, for which Nc is typically 0. This drawback can be solved by simply not adjusting the 

counts for frequent n-grams. [Koehn, 2010] compares these smoothing methods and concludes 

that, on a particular analyzed corpus, the Good-Turing method obtains the best results, with the 

deleted interpolation method following closely. 

2.2.2.2 Back-off Methods 

A second approach to solve data sparseness is to use several language models, which have 

particular advantages, to create an interpolated language model that may benefit from all its 

constitutive parts. For example, higher order n-grams may provide valuable additional context, 

but lower order n-grams are more robust. If several orders (1, 2 and 3) n-gram language models 

pn have been already built, an interpolated language model pI can be constructed by linearly 

combining them: 
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The ɚ coefficients in Equation 2.10 have to be positive, sub-unitary numbers and should sum up 

to 1. Depending on their ratio, the lower order LMs, or the higher order LMs can be given more 

credit. The coefficients tuning can be done empirically on a held-out set. 

The back-off mechanism uses multi-order interpolated n-gram LMs to deal with unseen n-grams 

in a slightly different way than the smoothing methods. If we need to estimate the probability for 

an n-gram which was not seen or was rarely seen in the training corpus, a good idea would be to 

also take into consideration the probability assigned to this n-gram by the lower order n-gram 

model. The optimization problem here is to choose the right balance between the highest order 

n-gram models and all the lower order models (if these are to be used at all). Several back-off 

methods were proposed starting with the Witten-Bell smoothing method [Witten, 1991], which 

focuses on the diversity of words that follow a history. The most commonly method used today 

is the Kneser-Ney smoothing method introduced in [Kneser, 1995], which takes into account the 

diversity of histories for a particular n-gram. An extension to this method is the modified 

Kneser-Ney smoothing [Chen, 1998], which uses a method called absolute discounting to reduce 

the probability mass for seen events. 

[Koehn, 2010] compares these back-off methods and concludes that, on a particular analyzed 

corpus, the modified Kneser-Ney method leads to a 5-10% lower perplexity (see Section 2.2.3) 

than all the other methods. 

2.2.3 Language models evaluation metrics 

The role of a language model is to predict the next word given its predecessors by taking 

advantage of the language redundancy. The capability of prediction should be objectively 

measured if we want to be able to compare different language models and eventually improve 

them. 

2.2.3.1 Perplexity 

The most common evaluation metric for a language model, when a speech recognition system is 

available, is the word recognition error rate (Section 2.5). Alternatively, without involving 

speech recognition systems, we can asses the prediction power of a language model by 

measuring the probability that the language model assigns to test word sequences. A good 

language model should assign a high probability to a good text and a low probability to a bad 

text. In this case the most common evaluation metric is the perplexity. Perplexity is derived from 

cross-entropy, a measure which can be computed given a particular language model LM and a 

particular word sequence W = w1, w2, é, wn, as follows: 
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The perplexity is derived from cross-entropy using a simple transformation: 
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A higher perplexity on a particular word sequence means a lower capability of prediction for the 

language model, given the particular word sequence. In fact, the perplexity can be computed on 

both a test-set text and also on the training-set text and, obviously, it has slightly different 

meanings in these two cases. The test-set perplexity evaluates the generalization and prediction 

capability of the language model, while the training-set perplexity measures how the language 

model fits the training data, like the likelihood. It is generally true that, in the context of ASR, 

lower perplexity correlates with better recognition performance [Huang, 2001]. 
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2.2.3.2 Out of vocabulary words 

All the smoothing methods described above deal with n-grams which are not part of the training 

corpus, but are made up of words which appear in the training corpus. They cannot be used to 

adjust the language model to assign a non-null probability to a word which is not part of the 

initial vocabulary. These words are called out of vocabulary (OOV) words and, consequently, 

cannot be predicted by the language model. 

These OOV words make it harder to evaluate a language model. Because their perplexity is 

infinite, it cannot be summed up to the other n-grams perplexities to obtain the word sequence 

perplexity. In this case, besides perplexity, the percentage of OOV words (among the total 

number of words) needs to be specified and both these metrics have to be taken into account for 

comparison: 

 100
#

#
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words

OOVs
OOV  (2.11) 

2.2.3.3 N-gram hits 

The n-gram hits is another metric which can be used to draw some important conclusions 

regarding the prediction capability of an n-gram language model. As shown in the previous 

sections, back-off models use more n-gram language models to address the data sparseness 

problem. For example, a trigram language model tries to predict the current word based on a 

two-preceding-words history (trigram model), but may back-off (due to insufficient data) to a 

one-preceding-word history (bigram model) or even to a null history (unigram model). For a 

trigram model, the trigram hits percentage gives a measure of how many times the model could 

use the full two-preceding-words history as compared to how many times the model needed to 

back-off to find the probability for the current n-gram: 
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The n-gram hits metric is an auxiliary evaluation metric, which may be very useful to compare 

domain-specific language models. A higher n-gram hits correlates with better domain-adapted 

language models. 

2.2.4 Other language model types 

Besides n-gram language models which represent current state-of-the-art in language modeling, 

the experiments presented in this thesis also employ simpler language models such as word-loop 

grammars and finite state grammars. 

A word-loop grammar is a model which assigns equal probabilities to all the words in the 

vocabulary and, implicitly, to all word sequences. This type of language model is, in fact, a 

unigram language model with equal (not corpus-estimated) unigram probabilities. Of course, a 

word-loop grammar can be successfully utilized for isolated words recognition, but is expected 

to have poor results in a continuous speech recognition setup. 

A finite state grammar or word network grammar is a graph-based model in which the nodes are 

words and the directed links represent allowable word transitions. A finite state grammar 

explicitly specifies all the allowable sequences of words for a given task. Particular costs can be 

assigned to the existing links, thus specifying different probabilities for the allowable word 

sequences. If the task is relatively small (digits recognition, phone dial, menu browsing, etc.) 

than this type of language model can be successfully used. Moreover, finite state grammars can 

be successfully used in word spotting applications. However, this type of language models is not 

suitable for large-vocabulary continuous speech recognition. 
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2.3 PHONETIC MODELING 

General-purpose large-vocabulary speech recognition systems do not use words as basic speech 

units because a) every new ASR task comes with specific, new words for which there isnôt any 

available training data and b) the number of different words in a language is too large. Instead of 

using words as basic speech units, these systems model sub-words speech units, such as 

phonemes. Consequently, a phonetic model is needed to link the acoustic model (which 

estimates phonemes acoustic likelihoods) to the language model (which estimates word 

sequence probabilities). 

A phonetic model is usually a pronunciation dictionary that maps all the words in the vocabulary 

to a sequence of phones. The phonetic dictionary can be regarded as an interface between the 

acoustic model, which works with phones and the language model which works with words. 

The development of a phonetic dictionary is an important, but difficult task. Although a 

manually created dictionary could be very useful and would assure a perfect phonetisation, the 

task is extremely time-consuming and tedious and also requires a very good knowledge of the 

language. Therefore, several approaches of automatically building phonetic dictionaries have 

been proposed and successfully used (see Section 4.1.3). 

2.4 ACOUSTIC MODELING 

The previous section has argued that state-of-the-art continuous speech recognition systems do 

not estimate directly the likelihood of the acoustic data for a given word sequence (p(X|W) ï 

Section 2.1). Instead they estimate the likelihood of smaller speech units, most commonly 

phones. Consequently, the acoustic model consists of a set of phones models which are linked, 

during the decoding process, to form words models and eventually word sequences models 

(which are finally used to estimate p(X|W)). This generative approach has been proven to be 

very well served by the Hidden Markov Model (HMM) mathematical apparatus [Baker, 1975; 

Poritz, 1988; Rabiner, 1989; Jelinek, 1998]. 

HMMs are probabilistic finite state machines, which may be combined hierarchically to 

construct word sequence models out of smaller units. In large-vocabulary speech recognition 

systems, word sequence models are constructed from word models, which in turn are 

constructed from sub-word models (typically context-dependent phone models) using a 

pronunciation dictionary. 

2.4.1 Acoustic features 

HMMs do not use directly the time-domain waveform to model the speech signal. As Figure 2.1 

has shown, a feature extraction block is employed to compute some feature vectors which will 

be eventually modeled by the acoustic model. 

The speech signal is a rather un-stationary signal, therefore a spectral analysis cannot be done on 

the whole time-domain waveform, but only on short (20ms to 30ms), quasi-stationary frames. 

These frames are typically generated every 10ms (thus consecutive 25ms frames would overlap 

by 15ms). Each frame is multiplied by a window function. The window function is needed to 

smooth the effect of using a finite-sized segment for the subsequent feature extraction by 

tapering each frame at the beginning and end edges. As most features are spectral in nature, the 

Fourier Transform is employed and the multiplicative effect of the window function in the time 

domain is convolutive in the spectral domain. A tapered window function creates a smoother 

and less distorted spectrum. Without a specified window function the default arising from the 

framing operation is that of a rectangular window effect which will generate undesirable spectral 

artifacts. For the windowing process, the Hamming window is the most popular. 
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The initial time-domain speech waveform is transformed by the framing and the windowing 

processes into a time-domain sequence of quasi-stationary frames. Several types of speech 

features, which can be extracted out of these frames with the purpose to model speech, have 

been proposed over the past three decades. The most commonly used acoustic features are 

perceptual cesptral features such as the Mel-Frequency Cepstrum Coefficients (MFCCs) 

introduced by [Davis, 1980] and the Perceptual Linear Prediction (PLP) coefficients introduced 

by [Hermasky, 1990]. A particular advantage of cepstral representations compared with spectral 

representations is the de-correlation of cepstral coefficients, compared with the high correlations 

observed between neighboring spectral coefficients. 

MFCCs are based on the log spectral envelope of the speech signal, transformed to a non-linear 

frequency scale that roughly corresponds to that observed in the human auditory system. This 

representation is smoothed and orthogonalized by applying a discrete cosine transform, resulting 

in a cepstral representation. The MFCCs success arises from the use of perceptually based Mel-

spaced filter bank processing of the Fourier Transform and the particular robustness and the 

flexibility that can be achieved using the general cepstral analysis. The MFCCs are computed as 

presented is Figure 2.2. 

 
Figure 2.2 Analysis block diagram for MFCC feature vectors 

Perceptual linear prediction (PLP) includes an auditory-inspired cube-root compression and uses 

an all-pole model to smooth the spectrum before the cepstral coefficients are computed. The 

PLP analysis is an extension of the Linear Prediction Coding (LPC) technique, but it is more 

effective because it takes advantage of some characteristics derived from the psycho-acoustic 

properties of the human ear [Hermansky, 1990]. These characteristics are modeled by a filter-

bank. The PLP coefficients are obtained as presented is Figure 2.3. 

 
Figure 2.3 Analysis block diagram for PLP feature vectors [Hermansky, 1990] 

Even though each feature set (MFCC or PLP) is computed on a short frame of speech signal, it 

is well known that information embedded in the temporal dynamics of the features is also useful 

for recognition. Typically two kinds of dynamics have been found useful for speech recognition: 

a) velocity of the features (known as delta features), which is determined by its average first-

order temporal derivative and b) acceleration of the features (also known as delta-delta features), 

which is determined by its average second-order temporal derivative. Moreover, the total log 

energy of the feature and its derivatives have been proven to be useful for speech recognition. 

Consequently, speech recognition accuracy is substantially improved if the feature vectors are 

augmented with the first and second temporal derivatives of the acoustic features, thus adding 

some information about the local temporal dynamics of the speech signal to the feature 

representation [Furui, 1986]. Most commonly, ASR systems use a 39-dimensional feature 
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vector, corresponding to twelve MFCCs plus energy, along with their first and second temporal 

derivatives. 

2.4.2 The HMM/GMM framework 

The previous section has detailed the features which are generally extracted out of the speech 

signal for further modeling (in the training phase) or for speech recognition (in the decoding 

phase). The state-of-the-art approach for modeling basic speech units (typically sub-word units 

such as phones) makes use of the HMM/GMM framework. 

2.4.2.1 HMM definition  

An HMM is a probabilistic finite state automaton, consisting of a set of states connected by 

transitions, in which the state sequence is hidden. Instead of observing the state sequence, a 

sequence of acoustic feature vectors is observed, generated from a probability density function 

(pdf) attached to each state. This is why the Markov process is considered to be ñhiddenò ï the 

state sequence is not directly available to the observer. This type of Markov process has been 

proven to be a very good model of speech. 

A more detailed representation of an HMM is presented in Figure 2.4. As the figure shows, an 

HMM is characterized by these parameters: 

 states: a set of states Q = q1q2éqN; 

 transition probabilities: a set of probabilities A = a11a12éaNN. Each aij  = p(qj|qi) 

represents the probability of transitioning from state i to state j; 

 observation likelihoods: a set of observation likelihoods B = bi(xt) = p(xt|qi), each 

expressing the probability of an observation xt being generated from the state i. 

 

 
Figure 2.4 HMM representation as a parameterized stochastic finite state automaton 

Although the definition of an HMM allows the transition from any state to any other state, in 

speech recognition the models are created to disallow arbitrary transitions, just as Figure 2.4 

shows. This is because it is important and useful to model the sequential nature of speech, 

placing strong constrains on transitions backward or skipping transitions. Except in unusual 

cases, HMMs for speech disallow transitions to earlier states in the model. This kind of feed-

forward HMM structure is called Bakis network. The most common model used for speech is 

even more constrained, allowing a state to transition only to itself (self-loop) or to a single 

succeeding state. The use of self-loops allows a sub-phonetic unit to repeat so as to cover a 

variable amount of the acoustic input. 

The observation likelihood of a state qi can be regarded as a discrete function if there is only a 

finite number of possible observations xt. In the general case, the acoustic features, which are, in 

fact, the output of the HMM, may have a wide range of real values. Therefore, the observation 

likelihoods are discrete functions only in a simplifying approach, but in the general case they are 

probability density functions (pdfs). One of the most popular forms of output pdf for a state qi is 

a d-dimensional Gaussian, parameterized by a mean vector ɛi and a covariance matrix Ɇi: 

p(q1 | qi) 

 

qi qe 

x 

 

p(x | q1) 

 x 

 

p(x | q2) 

 x 

 

p(x | q3) 

 

p(q3 | q2) 

 

p(q2 | q2) 

 

q2 

p(q2 | q1) 

 

p(q1 | q1) 

 

q1 

p(qe | q3) 

 

p(q3 | q3) 

 

q3 



Towards a speaker-independent, large-vocabulary continuous speech recognition system for Romanian 

 

32 

 

 )()(
2

1
exp

)2(

1
),;()|()( 1

2/12/
ii

T

i

i

d
iiii xxxqxpxb  (2.13) 

For a typical acoustic vector comprising 12th-order MFCCs plus energy, with first and second 

temporal derivatives, d equals 39. 

Modeling speech using hidden Markov models makes two main assumptions [Renalds, 2010]: 

 Markov process: the state sequence in an HMM is assumed to be a first-order Markov 

process, in which the probability of the next state transition depends only on the current 

state: a history of previous states is not necessary. 

 Observation independence: all the information about the previously observed acoustic 

feature vectors is captured in the current state: the likelihood of generating an acoustic 

vector is conditionally independent of previous acoustic vectors given the current state. 

These two assumptions may lead to an unrealistic model of speech, but they are needed due to 

the mathematically and computationally simplifications they bring. The estimation and decoding 

problems cannot be addressed, or can be addressed in a very complicated way without these 

assumptions. Nevertheless, the last two decades of HMMs success in speech signal modeling 

prove that these ñlimitationsò are not so important. 

2.4.2.2 Evaluation, Decoding and Estimation 

Acoustic modeling using HMMs has become the dominant approach thanks to the development 

of various algorithms which enable some key computations to be carried out efficiently. These 

algorithms are based on the Markov and observation independence assumptions. To determine 

the overall likelihood of an observation sequence X = (x1, x2, é, xt, é, xT) being generated by an 

HMM, it is necessary to sum over all possible state sequences q1q2éqT that could result in the 

observation sequence X. Rather than enumerating each sequence, it is possible to compute the 

likelihood recursively, using the Forward algorithm. The key to this algorithm is the 

computation of the forward probability Ŭt(qj) = p(x1, é, xt, qt = qj | ɚ), the probability of 

observing the observation sequence x1, é, xt and being in state qj at time t. The Markov 

assumption allows this to be computed recursively using a recursion of the form: 
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The decoding problem for HMMs involves finding the state sequence that is most likely to have 

generated an observation sequence. This may be solved using a dynamic programming 

algorithm, often referred to as Viterbi decoding, which has a very similar structure to the 

Forward algorithm, with the exception that the summation at each time step is replaced by a 

max operation, since just the most probable state sequence is required. The decoding problem is, 

in fact, the speech recognition problem. The Viterbi algorithm is used to find the most likely 

sequence of words and estimate the probability that this sequence has generated the acoustic 

observations. 

The decoding and evaluation problems can be solved using the Forward and Viterbi algorithms, 

given that a set of HMMs is available. In order to obtain a set of trained models we need to 

estimate the parameters of an HMM: the transition probabilities and the parameters of the output 

pdf (mean vector and covariance matrix in the case of a Gaussian pdf). The most straightforward 

criterion to use for parameter estimation is maximum likelihood (ML) , in which the parameters 

are set so as to maximize the likelihood of the model generating the observed training data. 

Other training criteria may be used, such as maximum a posteriori (MAP) or Bayesian 

estimation of the posterior distribution, and discriminative training. Maximum likelihood 

training can be approximated by considering the most probable stateïtime alignment, which may 
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be obtained using the Viterbi algorithm. Given such an alignment, maximum likelihood 

parameter estimation is straightforward: the transition probabilities are estimated from relative 

frequencies, and the mean and covariance parameters from the sample estimates. However, this 

approach to parameter estimation considers only the most probable path, whereas the probability 

mass is in fact factored across all possible paths. Exact maximum likelihood estimation can be 

achieved using the ForwardïBackward or BaumïWelch algorithm [Baum, 1972], a 

specialization of the expectation-maximization (EM) algorithm [Dempster, 1977]. Each step of 

this iterative algorithm consists of two parts. In the first part (the E-step) a probabilistic stateï

time alignment is computed, assigning a state occupation probability to each state at each time, 

given the observed data. Then the M-step estimates the parameters by an average weighted by 

the state occupation probabilities. The EM algorithm has been shown to converge in a local 

maximum of the likelihood function. The key to the E-step lies in the estimation of the state 

occupation probability, ɔt(qj) = P(qt = qj | X, ɚ), the probability of occupying state qj at time t 

given the sequence of observations. The state occupation probabilities can also be computed 

recursively: 
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where Ŭt(qj) is the forward probability for state qj at time t, ɓt(qj) = p(xt+1, xt+2, xT | qt = qj, ɚ) is 

called the backward probability, and ŬT(qE) is a normalization factor (the forward probability for 

the end state qE at the end of the observation sequence, time T). The backward probabilities are 

called so because they may be computed by a recursion that goes backwards in time. 

The output pdfs are the most important part of this model, and restricting them to single 

Gaussians results in a significant limitation on modeling capability. In practice, Gaussian 

mixture model (GMMs) are used as output pdfs. A GMM is a weighted sum of Gaussians: 
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where we have a mixture of K Gaussian components, with mixture weights cik, for every HMM 

state. Training a GMM is analogous to HMM training: for HMMs the state is a hidden variable, 

for GMMs the mixture component is a hidden variable. Again the EM algorithm may be 

employed, with the E-step estimating the component occupation probabilities, and the M-step 

updating the means and covariances using a weighted average. 

2.4.3 Speech units selection, context-dependency and clustering 

We have already argued that, generally, large-vocabulary continuous speech recognition systems 

model sub-word units using HMMs. Still, there are several issues to be discussed when dealing 

with selecting the type of sub-word speech units. The authors of [Huang, 2001] see three high-

level features that a proper speech unit must have: 

 The unit should be accurate, to represent the acoustic realization that appears in different 

contexts. 

 The unit should be trainable (there should be enough data to estimate the parameters of 

the unit). 

 The unit should be generalizable, so that any new word can be derived from a predefined 

unit inventory for task-independent speech recognition. 

Given this, it is even clearer why words cannot be used as basic speech units in large-vocabulary 

systems: they are neither trainable, nor generalizable. 

Alternatively, phones can be chosen as basic speech units. Unlike word models, phonetic models 

provide no training problem because sufficient occurrences for all phones can be found in just a 

couple thousand phrases. Moreover, they are also vocabulary independent by nature and can be 
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trained on one task and tested on another. Thus, phones are more trainable and generalizable. 

However, the phonetic model is inadequate because it assumes that a phoneme is identical in 

any context. Although we may try to say each word as a concatenated sequence of independent 

phonemes, these phonemes are not produced independently, because our articulators cannot 

move instantaneously from one position to another. Thus, the realization of a phoneme is 

strongly affected by its immediately neighboring phonemes. While word models are not 

generalizable, phonetic models over-generalize and, thus, lead to less accurate models. 

If we make units context dependent, we can significantly improve the recognition accuracy, 

provided there is enough training data to estimate these context-dependent parameters. Context-

dependent phonemes have been widely used for large-vocabulary speech recognition, thanks to 

its significantly improved accuracy and trainability. A context usually refers to the immediately 

left and/or right neighboring phones. 

A triphone model is a phonetic model that takes into consideration both the left and the right 

neighboring phones. If two phones have the same identity but different left or right contexts, 

they are considered different triphones. We denote the different realizations of a phoneme with 

the term allophones. Triphones are an example of allophones. 

Triphone models are powerful because they capture the most important co-articulation effects. 

They are generally much more consistent than context-independent phone models. However, as 

context-dependent models generally have increased parameters, trainability becomes a 

challenging issue. We need to balance the trainability and accuracy with a number of parameter-

sharing techniques. 

Triphone modeling assumes that every triphone context is different. Actually, many phones have 

similar effects on the neighboring phones. The position of our articulators has an important 

effect on how we pronounce neighboring vowels. It is desirable to find instances of similar 

contexts and merge them. This would lead to a much more manageable number of models that 

can be better trained. 

The trainability and accuracy balance between phonetic and word models can be generalized 

further to model sub-phonetic events. In fact, both phonetic and sub-phonetic units have the 

same benefits, as they share parameters at unit level. This is the key benefit in comparison to the 

word units. Papers by [Bahl, 1991; Hon, 1991; Hwang, 1991; Lee, 1988; Young, 1993] provide 

examples of the application of this concept to cluster hidden Markov models. For sub-phonetic 

modeling, we can treat the state in phonetic HMMs as the basic sub-phonetic unit. Hwang and 

Huang further generalized clustering to the state-dependent output distributions across different 

phonetic models [Hwang, 1991]. Each cluster thus represents a set of similar Markov states and 

is called a senone [Hwang, 1993]. A sub-word model is thus composed of a sequence of senones 

after the clustering is finished. The optimal number of senones for a system is mainly 

determined by the available training corpus and can be tuned on a development set. 

Each allophone model is an HMM made of states, transitions, and probability distributions. To 

improve the reliability of the statistical parameters of these models, some distributions can be 

tied. For example, distributions for the central portion of an allophone may be tied together to 

reflect the fact that they represent the stable (context-independent) physical realization of the 

central part of the phoneme, uttered with a stationary configuration of the vocal tract. Clustering 

at the granularity of the state rather than the entire model can keep the dissimilar states of two 

models apart while the other corresponding states are merged, thus leading to better parameter 

sharing. This is one of the key solutions to create trainable context-dependent phonetic or sub-

phonetic units. 

In practice, senone models significantly reduce the word recognition error rate in comparison 

with the model-based clustered triphone models [Huang, 2001]. It is the senonic modelôs 
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significant reduction of the overall system parameters that enables the continuous mixture 

HMMs to perform well for large-vocabulary speech recognition [Hwang, 1993]. 

2.4.4 Conclusion 

To summarize the section on acoustic modeling we need to say that state-of-the-art large-

vocabulary speech recognition systems use Bakis-type HMMs with GMMs as output pdfs to 

model speech units such as context-dependent phones (triphones) or senones. The HMMs model 

these speech units using perceptual acoustic features (MFCCs or PLP coefficients) extracted out 

of the original time-domain speech signal. 

The Baum-Welch algorithm is used to estimate the HMM parameters. The Viterbi algorithm is 

used to decode the speech data: to find the most probable sequence of states given the acoustic 

features observations. 

There is typically one HMM per speech unit and all these basic HMMs can be concatenated to 

form words HMMs, which can be further concatenated to form word sequences HMMs. This is 

the mechanism which allows us to eventually estimate the probability of a sequence of words 

given the initial speech data. 

2.5 ASR EVALUATION  

The task of evaluating a speech recognition system involves comparing a reference (or correct) 

word sequence with the hypothesis word sequence returned by the system. The standard 

evaluation metric for comparing the two word sequences is the word error rate (WER). Given 

the correct word sequence, the first step in computing the word error rate is to compute the 

minimum edit distance in words between the reference and the hypothesized sequences. This is 

usually done using the dynamic programming algorithm called Dynamic Time Warping (DTW) 

given some standard weights for the three types of errors which can occur: insertions, deletions 

and substitutions. After the alignment and based on these three types of errors, the word error 

rate is computed using the following formula: 
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Note that sometimes the word error rate can be greater than 100% because the above equation 

also includes the number of insertions. 

In some applications a second evaluation metric, the sentence error rate (SER), might also be 

important. The sentence error rate is based on the word error rate and can be computed as 

follows: 
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2.6 SPEECH RECOGNITION TOOLS 

The most popular and commonly used development and speech recognition tools are the Hidden 

Markov Model Toolkit (HTK) [Young, 1994] and the CMU Sphinx [Lee, 2002]. Both of them 

are open source toolkits and are available online. They offer the possibility of developing 

speaker-independent, large-vocabulary, continuous speech recognition systems in any language. 

HTK was intensively used during the last ten years, but lately Sphinx became more popular, 

both in the scientific community and also in the industry thanks to its free license for 

commercial applications. The speech recognition performance of the two toolkits has been 

compared by some studies. They generally conclude that similar systems developed with the two 
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toolkits have a similar performance, but the acoustic modeling performed by Sphinx is slightly 

better [Samudravijaya, 2003]. 

The evaluation of speech recognition systems can be done using the HTK/Sphinx built-in 

evaluation tools, but the most commonly used evaluation toolkit is the NIST SCTK (National 

Institute of Standards and Technologies - Scoring Toolkit) [NIST, 2005]. The scoring tool 

performs the hypothesized-reference alignment, computes the word error rate and provides a 

series of other useful statistics. Among these, the most important ones are the words confusion 

matrices, showing which words are mostly misrecognized for others. This tool also presents 

summaries of the most inserted/deleted/substituted words and can compute the sentence/word 

error rates in a per speaker manner. 

The language modeling experiments presented in this thesis have been performed using the SRI-

LM Toolkit [Stolcke, 2002]. There are also several other open-source toolkits which provide 

language modeling facilities. Among these the CMU-SLM (Carnegie Mellon University ï 

Statistical Language Modeling) toolkit is the second most commonly used. 

 



 

 

CHAPTER 3  

 

STATISTICAL MACHINE TRANSLATION 

MAIN PRINCIPLES 

The field of machine translation can be traced back to the early 1950s, in the era of code-

breaking, when the translation process was firstly regarded as decoding an encrypted message. 

In fact, this principle is still valid today: we are still talking about decoding a foreign language 

and we are still using modeling techniques such as the noisy-channel model. Moreover, it 

appears that machine translation funding is basically driven by the same motivation: 

governments invest large amounts of money into translating the languages of countries which 

are considered to be a threat to national security. 

The first approaches used basic rule-based methods to translate words from the source language 

to the target language. These methods evolved into more complex techniques that utilized 

morphological and syntactic information. During the 1980s the interlingua concept, that aimed 

to represent meaning in a language-independent manner, was introduced and explored. These 

systems required more sophisticated grammars, which could be used to analyze and to 

conceptualize the text in the source language and in the end to generate the text in the target 

language. 

Given that one of the main applications of machine translation is helping human translators, a 

new idea emerged: the usage of translation memories in so-called example-based translation 

systems. These systems exploit the already available and growing parallel corpora created by 
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human translators. This was the first data-driven approach to be proposed as a viable solution to 

machine translation. 

The success of statistical methods in the field of speech recognition triggered their application in 

machine translation. The first statistical translation models were proposed in the labs of IBM 

Research in the late 1980s. Although the statistical approach was very intriguing, the scientific 

community continued to focus on syntax-based and interlingua systems throughout the 1990s. 

The growth of the Internet and consequently the increasing availability of text resources along 

with the development and openness of several standard tools implementing the IBM translation 

models led to the adoption of statistical machine translation (SMT) as the de facto approach 

around the year 2000. Since then a large number of academic and commercial research labs have 

developed statistical machine translation systems, while several large companies are on the 

market with such competitive systems. 

3.1 THE STATISTICAL MACHINE TRANSLATION FORMALISM 

The state-of-the-art systems in statistical machine translation are based on phrase translation 

models. The notion of phrase does not refer to a group of sentences as in the strictly linguistic 

sense, but to an expression, to a sequence of words. The phrase-based translation model was 

introduced in [Koehn, 2003]. These systems are the successors of the systems based on word 

translation models, developed by IBM. 

The machine translation task can be formulated in a probabilistic manner as follows: 

What is the most likely translation sentence e in the target language E, 

 given the input sentence f, in the source language F? 

The formal representation uses the argmax function, which selects the argument that maximizes 

the translation probability: 

 )|(* maxarg fepe
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 (3.1) 

Equation 3.1 specifies the most probable translation as the one with the highest posterior 

probability, given the input sentence in the foreign language. In order to factor in a language 

model we can use the Bayes rule similarly as in the speech recognition case: 
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Although this derivation does not simplify the problem (it just changes the translation direction 

from p(e|f) to p(f|e)), the language model can help a lot in obtaining a good translation, by 

assuring the fluency of the output sentence.  

In the case of a phrase-based translation model, the foreign sentence f is further split into I 

phrases fi. The segmentation of the foreign sentence is not explicitly modeled: any segmentation 

is equally likely. Using this segmentation, the probability of the foreign sentence given the target 

sentence p(f|e) can be further decomposed into: 
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Equation 3.3 highlights the two components which are used to estimate the likelihood of a 

phrase translation: a) the phrase translation table (ʬ(fi|ei)) and b) the reordering model (d). 

Reordering is handled by a distance-based reordering model. The reordering distance is the 

number of words skipped (either forward or backward) when taking foreign words out of 
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sequence. If two phrases are translated in sequence, then the lowest reordering cost (d(0)) is 

applied. 

The reordering model assigns a lower cost if the phrases are translated in sequence and a higher 

cost, dependent on the number of skipped words, if the phrases need to be reordered. In other 

words the reordering model assures that movements of phrases over large distances are mode 

expensive than shorter movements or no movements at all. 

The following equation integrates all the components that we have discussed so far (the 

translation table, the reordering model and the language model): 
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The three components contribute to producing the best possible translation by assuring that: 

 the foreign phrases match the words in the target language (ʬ); 

 the phrases are reordered appropriately (d); 

 the translated phrase is fluent (pLM). 

The three contributions might be disproportionate. For example, the output could be very fluent, 

but it might not be translated very well. Or, the reordering could be too strict. To compensate all 

these things, the contribution of the models could be scaled using some weighting factors: ɚʬ, ɚd, 

ɚLM. The weights can be taken into account as shown in the next equation: 
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Figure 3.1 presents the architecture of a statistical machine translation system and also includes 

the operations which have to be performed to construct the three components of the system. 

As the figure shows and as previously discussed, the text in the source language is translated in 

the foreign language based on a phrase translation model, a phrase reordering model and a 

language model for the target language. The resources needed to train these components are: a 

sentence-aligned parallel corpus (text paired with its translation) and a plain text corpus for the 

target language. 

 
Figure 3.1 SMT system architecture 
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The first step in building the phrase translation table is to word-align the initially sentence-

aligned parallel corpus. Generally, this word alignment process is performed using word-based 

translation models. Word-alignment will be detailed in Section 3.2. Second, using the word-

aligned parallel corpus, phrase pairs that are consistent with this alignment are extracted and 

used to estimate the probabilities within the phrase translation table. This process is detailed in 

Section 3.3. 

As already discussed, the reordering model is not estimated from data. Even though reordering 

probabilities could also be learn from the parallel corpus, this is not typically done for phrase-

based models. Instead, reordering is handled by a predefined model. Some specific issues 

regarding the distance-based reordering model will be presented in Section 3.4. 

The construction of a general n-gram language model has been already discussed in the context 

of automatic speech recognition in Section 2.2. All these things are still valid in the case of 

machine translation: typically, trigram language models are used to assure the fluency of the 

translated texts. 

3.2 WORD-LEVEL ALIGNMENT FOR SENTENCE-ALIGNED CORPORA 

3.2.1 The task of word alignment 

Word alignment is the operation which transforms a sentence-aligned parallel corpus into a 

word-aligned parallel corpus. It is the first operation that has to be employed in order to build a 

phrase translation table. Let us suppose we have the following pair of sentences in English, 

respectively Romanian: 

English sentence: Last Saturday I slept on the couch. 

Romanian sentence: S©mbŁta trecutŁ am dormit pe canapea. 

Given this pair of phrases, the task of word alignment can be seen as finding a set of alignment 

points between the English words and the Romanian words. Figure 3.2 presents an alignment 

provided by a human translator. The English words (displayed on the lines of the matrix) are 

aligned to the Romanian words (listed in the columns) as indicated by the filled cells in the 

matrix. 
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Figure 3.2 An example of word alignment 

We can observe that there are words which align to multiple other words (for example, the 

English word slept aligns to the Romanian words am dormit), words which align to a single 
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word and some other words which are not aligned at all (for example the English word I is 

implied in the Romanian sentence). 

Although in most of the cases the word alignment can be easily accomplished, there are cases in 

which even a human translator can be confused. For example, in our sentence pair the pronoun I 

is implied in Romanian because the verb (am dormit) is properly inflected (first person). 

Consequently, we could argue that the word I could be aligned to the word am (which contains 

the information about inflection). 

There are other, more problematic cases in which the word alignment is not obvious at all: the 

idiomatic expressions. For example consider the case in Figure 3.3. The English idiomatic 

expression kicked the bucket and the Romanian expression a dat ortul popii have the same 

meaning: died. The two expressions can only be aligned at the phrase-level, because outside this 

context the English verb kicked is not a good translation for the Romanian a dat. Itôs the same 

case with the English noun bucket, which is obviously not a good translation for the Romanian 

ortul popii. In the particular case of idiomatic expressions we can only speak about phrasal 

alignment, an alignment that cannon be decomposed any further because the meaning is not 

preserved. 
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Figure 3.3 Problematic word alignment: idiomatic expressions cannot be word-aligned 

Word alignment is a task that can be accomplished by the simpler and ex-state-of-the-art 

translation models: the word-based models developed by IBM around the 1990s. 

3.2.2 IBM word-based translation models 

The first statistical translation systems were based on lexical translation: the translation of 

isolated words, independent of their context. This approach is very similar to a common 

bilingual dictionary with probabilities for every translation option. 

The translation model estimates a lexical translation probability distribution. The model is 

created using counts for every word-translation pair obtained from a word-aligned parallel 

corpus, by means of maximum likelihood estimation (MLE). 

Let us consider an example where the source language is English and the target language is 

Romanian. In order to construct the probabilistic translation table for a given word (for example 

car) we need to count how many times this word is translated by different Romanian words. If 

we suppose that the word car appears 10000 times in the corpus and it is translated 7000 times 

by maĸinŁ, 1700 times by automobil, 1100 times by autoturism and 200 times by vagon, then 

the lexical translation probability distribution for this word would be the one presented in Table 

3.1. 
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Table 3.1 Translation table for the English word car 

Translation of car Count Probability  

maĸinŁ 7000 0.70 

automobil 1700 0.17 

autoturism 1100 0.11 

vagon 200 0.02 

Translation tables for all the English words found in the training corpus can be created in a 

similar manner. Given these translation tables, an English sentence can be translated to 

Romanian in a word-by-word manner, using every possible translation for every word. This 

model assumes that the word-level translations are statistically independent and thus the 

translation probability of the whole sentence can be estimated only given the translation 

probabilities of its composing words. In order to find the best translation, all possible word 

alignments between the English words in the input sentence and the Romanian words in the 

hypotheses sentences are explored. Consequently, translating an English sentence to Romanian 

would implicitly generate a word alignment. 

The alignment model used in IBM model 1 is somehow more complex, because it also allows 

for other alignments than simple word-to-word alignments. This is something natural because 

we already saw that a word in the source-language can be translated to more than one word in 

the target-language and vice-versa. Unfortunately, IBM model 1 only allows this one-to-multiple 

alignment in one direction: one source-language word translated into multiple target-language 

words. It does not allow a target-language word to stand as a translation for multiple source-

language words. 

IBM alignment model 1 also permits dropping words in the source-language sentence and 

adding words in the target-language sentence (these will be aligned to an imaginary NULL 

token inserted in the source sentence). 

The construction of this type of translation models requires word-aligned corpora. Usually this is 

not a widely available resource: only sentence-aligned corpora are generally available. The 

training problem can be solved by the expectation maximization (EM) algorithm which works as 

follows: 

 we first initialize the translation model with uniform probability distributions, 

 second, we apply the model to the source language data (expectation step), 

 third, we train the model using the reference target language data (maximization step), 

 finally, we repeat steps 2 and 3 until convergence. 

Generally, the EM algorithm is guaranteed to converge to a local minimum, but in the case of 

IBM model 1 it was mathematically demonstrated that the convergence always reaches the 

global minimum. 

IBM model 2 uses IBM model 1 as an initialization step and further introduces an explicit word 

alignment model. This alignment model is also regarded as a probability distribution which is 

estimated using counts in the training data, in the same way (expectation maximization 

algorithm) as for the lexical translation probability distribution. 

IBM model 3 explicitly introduces the notion of fertility. This is another probability distribution 

that statistically models how many target-language words are usually produced by a source-

language word. Fertility explicitly deals with dropping source-language words, but cannot cope 

with inserting target-language words. This last issue is also dealt with in IBM model 3 by 
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creating a special context (defined by another probability function) for inserting the NULL token 

in the source-language sentence. 

In IBM model 4, the absolute alignment model introduced by IBM model 2 is replaced with a 

relative alignment model. In this model, the placement of the translation of a source-language 

word is typically based on the placement of the translation of the proceeding source-language 

word. This is motivated by the fact that large phrases tend to move together within long 

sentences. Words that are adjacent in the source sentence tend to be next to each other in the 

target sentence also. For instance, whether the 16
th
 source-language word is translated into the 

16
th
 target-language word depends to a large degree on what happened to the 15

th
 word. 

The higher IBM models are more complex and use the lower models as initialization. Regardless 

of the used model, what it is clear is that these translation models can be trained solely on 

sentence-aligned parallel corpora. A by-product of the training process is the word-level 

alignment of the training corpus. 

3.2.3 Word alignment based on the IBM models 

As discussed in the previous section, a by-product of training the IBM translation models is that 

it establishes a word alignment for each sentence pair within the initially sentence-aligned 

corpus. However, there is one fundamental problem with the word alignment performed by the 

IBM translation models: the one-to-multiple alignment. Unfortunately, IBM models only allow 

this one-to-multiple alignment in one direction: one source-language word aligned to multiple 

target-language words. It is impossible to end up with an alignment of one target-language word 

to multiple source-language words. 

However, in practice both one-to-multiple alignments are possible. In the example shown in 

Figure 3.2 the English words on the are aligned to a single Romanian word: pe, while the 

Romanian words am dormit are aligned to a single English word: slept. 

To overcome this problem a simple trick is usually employed: running the IBM training in both 

directions. The two resulting word alignments can then be merged by taking the intersection or 

the union of alignment points of each alignment. This process is called symmetrization of word 

alignments. Generally, the intersection will contain reliably good alignment points (a high 

precision of the alignment points), but not all of them. The union will contain most of the 

desired alignment points (a high recall of the alignment points), but also additional faulty points. 

An example, using the previously used pair of English-Romanian sentences, is given in Figure 

3.4. In this figure the intersection of alignment points is in grey and their union is in black. 

Several methods have been developed to explore the space between the intersection of the 

alignments and their union. The most commonly used method [Och, 2003] explores the space 

between intersection and union with expansion heuristics that start with the intersection and add 

additional alignment points. The decision about which points to add may depend on various 

criteria which I will not describe any further. 

The conclusion of this subsection is that the IBM word-based translation models can be 

successfully used to word-align an initially sentence-aligned parallel corpus. 
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last         last       

Saturday         Saturday       

I         I       

slept         slept       

on          on        

the         the       

couch         couch       

 English to Romanian    Romanian to English 
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Figure 3.4 Symmetrization of IBM model alignments 

3.3 THE PHRASE-BASED TRANSLATION MODEL 

3.3.1 The translation table 

The phrase translation table is the core of the SMT system. Its translation performance is to a 

large degree dependent on the quality of the translation table. Several methods were proposed to 

extract phrase pairs from a word-aligned text corpus. The technique which is currently 

considered as state-of-the-art was presented in [Zens, 2002]. This method proposes to build the 

phrase table using only the phrases which are consistent to the word alignment: the words in a 

legal phrase pair are only aligned to each other, and not to outside words. 

Let us consider again the example in Figure 3.2. Given this word alignment we would like to 

extract only the phrase pairs that are consistent with it, for example matching the Romanian 

phrase pe canapea with the English phrase on the couch. If we have to translate an English 

sentence that contains the phrase on the couch then we can use the evidence of this phrasal 

alignment to translate the phrase as pe canapea. Useful phrases for translation may be shorter or 

longer than this example. Shorter phrases occur more frequently, so they will more often be 
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applicable to previously unseen sentences. Longer phrases capture more local context and help 

translate larger chunks of text at once, occasionally even entire sentences. Hence, when 

extracting phrase pairs, both short and long phrases should be collected, since all of them are 

useful. 

So, the first step in creating the translation table is to extract phrase pairs based on their 

consistency with the word alignment. To be more specific, a phrase pair that is consistent with 

the word alignment is a phrase pair whose words (both source-language words and target-

language words) align only to each other and not to words outside the phrase pair. Consequently, 

the extraction method loops over all possible phrase pairs and verifies the above constraint. 

Figure 3.5 reminds the word alignment in our previous example and displays the complete list of 

consistent phrase pairs that can be extracted from this sentence pair. 

The first thing to be observed is that it is possible that for some English phrases, we are not able 

to extract matching Romanian phrases. This happens, for instance, when multiple English words 

are aligned to one Romanian word: on the are both aligned to the Romanian pe, so that no 

individual match for either on or the can be extracted. 

This also happens when the English words align with Romanian words that enclose other 

Romanian words that align back to English words that are not in the original phrase. See the 

example of Saturday I slept, which aligns to S©mbŁta é am dormit, words that enclose trecutŁ, 

which aligns back to last. Here, it is not possible to match Saturday I slept to any Romanian 

phrase, since the only matching Romanian phrase has a gap. 
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 consistent phrase pairs: 

last        last ï trecutŁ 

Saturday        last Saturday ï S©mbŁta trecutŁ 

I        last Saturday I ï S©mbŁta trecutŁ 

slept        last Saturday I slept ï S©mbŁta trecutŁ am dormit 

on         last Saturday I slept on the ï S©mbŁta trecutŁ am dormit pe 

the        last Saturday I slept on the couch - S©mbŁta trecutŁ am dormit pe canapea 

couch        Saturday ï S©mbŁta 

        Saturday I ï S©mbŁta 

        I slept ï am dormit 

        I slept on the ï am dormit pe 

        I slept on the couch ï am dormit pe canapea 

        slept ï am dormit 

        slept on the ï am dormit pe 

        slept on the couch ï am dormit pe canapea 

        on the ï pe 

        on the couch ï pe canapea 

        couch ï canapea 

Figure 3.5 Extracted phrase pairs given the word alignment 
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Examples can be easily found for Romanian phrases that cannot be matched to any English 

phrases, due to similar reasons as mentioned above: trecutŁ am dormit, am, dormit. 

A second observation regards unaligned words. Unaligned English words may lead to multiple 

matches for Romanian phrases: for instance, am dormit matches with two English phrases: I 

slept and slept. Vice-versa if there were any unaligned Romanian words they would have led to 

multiple matches for English phrases. 

The estimation technique for the conditional probability distributions of the phrase translation 

table is different than the technique which was used in the case of words translation models. The 

estimated probability that the source-language phrase f is the translation of the target-language 

phrase e is: 

 
if

ifecount

fecount
ef

),(

),(
)|(  

(3.6) 

In other words, we estimate this probability by dividing the number of times the phrase pair (e, f) 

is collected to the number of times the phrase e is collected with any pair fi.  

3.3.2 Some basic translation model extensions 

Although the translation model based on the phrase translation table appears to be very strong, 

there are some other aspects which have to be taken into account in order to avoid some 

translation errors. 

First there has to be some protection mechanism against overestimated probabilities for 

infrequent phrases, especially if they are collected from noisy data. If, for example, a phrase pair 

(e, f) occurs only once in the training corpus then its conditional probability would be ʬ(f |e)=1. 

This value is clearly an overestimate of how reliable the phrase pair is. To avoid this problem, 

the conditional probabilities for rare phrase pairs are decomposed into a product of the 

conditional probabilities for their composing word pairs. It is the same idea used in the word-

based translation models: a phrase pair is decomposed into its constituent word pairs and its 

probability is computed based on the probabilities of the word pairs. This is basically a 

smoothing technique, which is also similar to the ones used in the case of n-gram language 

models: when the statistics for a word sequence are not reliable we back-off to shorter word 

sequences for which we have richer statistics and hence more reliable probability estimates. In 

the context of machine translation this technique is called lexical weighting. 

Another interesting aspect which has not been considered in the basic translation model regards 

the number of words in the target-language sentence, or the output sentence length. One of the 

components of the SMT system, namely the language model, would always prefer shorter output 

sentences simply because fewer trigrams have to be scored. To guard against output that is too 

short or too long, a word penalty, which adds a factor w to each produced word, is usually 

introduced. A word penalty smaller than 1 favors shorter output sentences and vice-versa, if w is 

higher than 1, then longer output sentences are preferred. 

One last thing that might need some tuning is the length of the segmented source-language 

phrases. Before actually decoding an input sentence it first has to be split into several phrases. 

This segmentation into more phrases is not explicitly modeled and initially all segmentations are 

equally likely. Of course, in the end the best input sentence segmentation will be indirectly 

determined based on the scores provided by the translation table, the reordering model and the 

language model for a given translation sentence. Nevertheless, the segmentation process can be 

biased towards shorter or longer phrases by introducing a phrase penalty tuning factor p. This 

tuning factor is called phrase penalty because the number of segmented phrases is directly linked 

to their length: more phrases implies shorter phrases, while fewer phrases implies longer 

phrases. 
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3.4 THE PHRASE REORDERING MODEL: SPECIFIC ISSUES 

Reordering is one of the most difficult problems in machine translation. What makes it even 

harder is the fact that for different language pairs reordering manifests differently. There are 

language pairs for which restricting reordering to short local movements is sufficient for the 

translation of most sentences, while there are other language pairs for which reordering cannot 

be restricted at all. For example, the translation of the language pairs Chinese-English, French-

English and Arabic-English is characterized by short local movements, while in the case of 

German-English and Japanese-English the movements are more ample [Koehn, 2010]. 

The reordering model is constructed in such a manner that it penalizes movements. In-sequence 

phrase translation has the smallest cost, while out-of-order phrase translation receives a smaller 

or a larger penalty depending on the movement amplitude. There is one model which counter-

balances this behavior: the language model. If the reordering (the movements within the output 

sentence) produces better target-language sentences than the language model has the role of 

assigning a better score to the reordered sequence and hopefully to proclaim it as the winner. For 

example, the improvement in language model score for S©mbŁta trecutŁ over trecutŁ S©mbŁta 

(when translating the English last Saturday) should be much higher than the penalty involved in 

the movement. 

For language pairs in which a good translation implies only short, local movements, a typical 

trigram language model works very well. However, for language pairs which have a different 

syntactic structure (Romanian-German, for example) the typical 3-word window used by the 

language model is just too small for making adequate judgments about overall grammaticalness 

of the sentence. In these cases other reordering mechanisms should be used. 

Given the weaknesses of the reordering model, it may not come as a surprise that limiting 

reordering to monotone translation is not very harmful. Allowing no reordering at all has other 

benefits: the search problem for finding the optimal translation according to the model is 

reduced in complexity from exponential to polynomial, making search algorithms much faster 

[Koehn, 2010]. 

Allowing limited reordering, however, yields better translation results than allowing no 

reordering at all. If we permit moves within a window of a few words, we allow the local 

reordering required when translating ArabicïEnglish (subject-verb, adjective-noun) or French-

English (adjective-noun) [Koehn, 2010]. Since this is also something that the language model 

can handle, it often represents the best we can do with reordering. Larger reordering windows or 

completely unrestricted reordering often leads to worse translations. 

3.5 DECODING A FOREIGN SENTENCE 

Given the machine translation model presented in the previous sections, the task of decoding is 

the process of finding the best scoring translation according to this model. This is a hard 

problem, since there is an exponential number of choices, given a specific foreign sentence. In 

fact, it has been shown that the decoding problem for the presented machine translation models 

is NP-complete [Knight, 1999]. Consequently, examining all translation options for an input 

sentence and scoring them with the final goal of choosing the best translation is out of the 

question: this is computationally too expensive even for short sentences. 

As exhaustive search is not an option, the decoding task has been tackled with various heuristic 

search techniques. These methods do not guarantee to find the best translation option, but try to 

find one as close as possible to the best. Provided that the decoding algorithm is error-prone, we 

distinguish two types of errors that can lead to bad translations: a) search errors ï failures in 

finding the most probable translation according to the model and b) model errors ï errors caused 

by a lousy phrase table, reordering model, etc. 
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The most popular decoding method, which is also state-of-the-art in machine translation, is the 

beam search algorithm, similar to the one introduced in [Jelinek, 1998] for speech recognition. 

This algorithm generates translation hypotheses from left to right, in sequence, marking off all 

the words in the source sentence. When all the words in the source-language sentence are 

exhausted, the various hypotheses are analyzed and the best translation, according to the 

translation model, is picked out. 

3.5.1 The translation process 

A human translator would generally translate a foreign sentence in the same manner as 

mentioned for the beam search algorithm. He would begin by translating the first word in the 

output sentence (this is not necessarily the first word in the input sentence) and would map this 

output word to a word in the input sentence. Afterwards, he would try to find the next best word 

in the translation and map it to a word in the input sentence. He would continue with translating 

small chunks of data until there are no more words to be translated in the input sentence. The 

notion of reordering is accommodated into this translation process by the possibility of picking 

input words out-of-sequence, while building the translation in-sequence. 

Recalling the translation model described in the previous sections, we can make two important 

remarks: a) given an input sentence and its translation we can compute the probability of the 

translation using the phrase translation table ʬ, the reordering model d and the language model 

pLM and b) the translation probability can be computed incrementally, as the translation is 

created, by adding in a partial cost every time a phrase is added to the translation. 

To conclude: if the translation is constructed in-sequence, from left to right, then its probability 

can be computed incrementally every time a new phrase is added to the output sentence. 

3.5.2 The Beam Search algorithm 

The first step taken by the search algorithm, when it is given the task of translating a sequence of 

words in the source-language, is to create a complete list of translation options. This list contains 

all possible translations for the given sentence. Creating this list allows a quicker lookup than 

consulting the whole phrase translation table during decoding. 

The algorithm continues by building partial translations using the various phrases within the 

translation options list. These partial translations are called hypotheses and store information 

about the translated words, the input words to which they map to, the partial score, etc. The 

algorithm starts with an empty hypothesis and expands it (creating a new hypothesis) by picking 

a phrase in the translation options list. Let us follow the example in Figure 3.6 which shows the 

construction of the hypotheses search graph for the English sentence I have a green book. We 

see that in this example the empty hypothesis is expanded into multiple one word hypotheses 

(eu, mie and am). These hypotheses are further expanded covering more words in the input 

phrase (the covered words are marked with an x). For example the hypothesis eu is expanded 

into eu are and eu am. This process continues until all the words in the foreign sentence are 

translated. In the example presented in Figure 3.6 we have three such cases: eu am o verde carte, 

eu am o carte verde and am o carte verde. These hypotheses cannot be expanded any further and 

represent endpoints in this search graph. 

The final step in the algorithm is responsible for scoring all the endpoints in the search graph 

and sort them based on their score (or probability). In the end the translation option with the 

highest probability is proclaimed the winner. 

There is one big issue regarding this search algorithm: the computational complexity. The 

hypotheses expansion process would end up by creating and scoring all possible translations and 

this makes the search heuristic computational prohibitive for any large sentence, because the 

search space grows exponentially with the sentence length. 
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Figure 3.6 The decoding process: expanding the translation hypotheses 

This computational problem is addressed in two ways: by reducing the number of hypotheses 

using hypothesis recombination and by pruning: deciding which low-probability hypotheses 

should be dropped early on, at the risk of failing to find the best translation. 

The beam search algorithm organizes the hypotheses into comparable clusters called hypothesis 

stacks. The hypotheses are clustered based on the number of input words translated. From time 

to time these stacks are pruned and the worst hypotheses are discarded. Of course, a hypothesis 

which was pruned out at some moment could have turned out to be the best translation, but this 

risk has to be taken. The most popular pruning method employs a threshold by which a 

hypothesis is allowed to be worse than the best one in the stack. All other hypotheses are pruned 

out. This threshold is also denoted beam width, thus the name of the algorithm. The beam search 

algorithm assures that the computational complexity becomes manageable and an input sentence 

of any length can be decoded in a decent amount of time. In fact, the beam width or the 

threshold can be tuned for better performance or speed. 

One last problem which must be approached when discussing comparable translation hypotheses 

is that of future cost estimation. A hypothesis that covers 3 input words is not necessarily 

comparable with a second hypothesis that covers other 3 input words, because in most of the 

cases there are some parts of the foreign sentence which are harder to translate and some other 

parts which are easier to translate. Consequently, when pruning out a hypothesis stack the score 

of the hypotheses has to include the partial score for the already translated words and an 

estimate of the future score (for translating the other parts of the sentence). 

Event though the beam search algorithm is also used in speech recognition and part-of-speech 

tagging, all these issues that have been discussed for the machine translation version make the 

decoding process a lot more harder. The cause for this increased difficulty is of course machine 

translationôs particularity: reordering; the fact that the input can be processed out-of-order. 

3.6 SMT EVALUATION  

When it comes to evaluating machine translation systems we find there is a huge debate 

regarding the best evaluation method. Human subjective evaluation is clearly the most relevant 

because, in the end, humans will benefit from the resulted translations. However, a system 

which evolves several times a day cannot be assessed fast enough and cheap enough in a 

subjective way. Consequently, it is very important to design automatic evaluation procedures 
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and performance metrics that can be computed on-the-fly by a computer program. The debate 

regarding SMT evaluation is focused upon the correlation between automatic evaluation (and 

performance metrics) and human evaluation. 

All the evaluation metrics which are currently used to automatically assess the performance of 

SMT systems compare one or more reference translations with the hypothesis translation. 

One basic assessment of a hypothesis translation can be made by means of precision and recall. 

Precision compares the number of correctly translated words with the total number of words in 

the hypothesis translation, while recall compares the number of correctly translated words with 

the total number of words in the reference translation. The two evaluation metrics are equally 

important for SMT systems, because a 100% precision translation can have a poor recall and 

vice-versa. The standard way to combine the two evaluation metrics is by computing the F-

measure, defined as the harmonic average of the two. However, there is one more problem with 

these evaluation metrics: they do not take into account the word order. Consequently we could 

end up with an incomprehensible translation with 100% precision and 100% recall (the meaning 

can be completely lost if the right words are wrongly reordered). 

Another evaluation metric that was used in the early times to assess SMT systems is the word 

error rate. This evaluation metric was borrowed from speech recognition, but turned out to be 

too harsh for machine translation. For example, the hypothesis translation: Cei trei bŁieŞi au 

construit o casŁ has the same meaning as the reference: O casŁ a fost construitŁ de cei trei 

bŁieŞi, but it will receive a very low word error rate due to inconsistent word order. This 

situation can be solved in some degree by the usage of the position-independent word error rate. 

The standard automatic evaluation metric for statistical machine translation systems is the 

BLEU score [Papineni, 2002]. BLEU has an elegant solution to the role of word order: it works 

similarly to position-independent word error rate, but considers matches of larger n-grams with 

the reference translation. Base on the n-gram matches it computes the n-gram precision (the ratio 

of correct n-grams in relation to the total number of possible n-grams) for n-gram orders 1, 2, 3 

and 4. BLEU is defined as: 
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BLEU  (3.7) 

The problem of precision-based metrics (no penalty for dropping words) is addressed by the first 

factor in this equation. This factor penalizes hypotheses that are too short. BLEU is usually 

computed on a larger text, because a single sentence may not have any 3-gram or 4-gram 

matches and, with zero matches for one of the n-grams, the BLEU score drops to zero. 

The BLEU score has many critique points and intensive efforts are currently made to create 

variations and extensions that would eventually turn out to be more correlated with subjective 

evaluation. Nevertheless, state-of-the-art SMT systems are still evaluated and compared on 

large-scale using the BLEU score. 

3.7 SMT TOOLS 

The most popular translation toolkit used today is the Moses Toolkit [Koehn, 2007]. Moses is a 

statistical machine translation system that enables the development of translation models for any 

language pair. Besides the phrase-based translation models, which were described and used in 

this thesis, Moses can also be used to create tree-based models or factored translation models 

(models which enable the integration of linguistic information at the word level). 

The Moses Toolkit makes use of GIZA++ [Och, 2003] for creating the word alignments. Giza++ 

is a statistical machine translation toolkit that can be used to train IBM Models 1-5 and an HMM 

word alignment model. 



 

 

CHAPTER 4  

 
THE ACQUISITION AND ANALYSIS OF 

SPEECH, PHONETIC AND LANGUAGE 

RESOURCES 

One of the main contributions of this thesis regards the acquisition and processing of the main 

resources needed in creating a speaker-independent, large-vocabulary continuous speech 

recognition system (LV-CSR). Although it is one of the European Union languages, Romanian 

is still considered a low-resourced language from the point of view of speech and natural 

language processing resources. For example, the Linguistic Data Consortium (LDC) distributes 

speech resources for languages such as Czech, Brazilian Portuguese, Vietnamese, Tamil, 

Egyptian Arabic, etc., but does not provide any resources for the Romanian language. The 

situation is similar in the case of ELRA (European Language Resources Association), which 

also distributes language resources and speech resources. ELRA provides some basic linguistic 

resources for Romanian, but does not have any speech resources for this language. Moreover, 

recent work on Romanian speech recognition [Munteanu 2006; Dumitru, 2008; Petrea, 2010; 

Kabir, 2011] complain about the absence of a Romanian standard speech database and report the 

usage of self-created resources. Of course, this is not the best solution, because, without standard 

evaluation resources, the efforts of different Romanian speech-research groups cannot be 

directly compared. The only research-open Romanian ñspeechò database is ñSounds of the 

Romanian Language Corpusò [Teodorescu, 2009]. This corpus contains only basic recordings 
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such as vowels, consonants and other Romanian specific sounds and a few emotionally charged 

phrases and, consequently, cannot be used for speech recognition. In conclusion, any effort 

towards the development of an automatic speech recognition system must start with the 

acquisition of a speech database. This is one of the main contributions of this thesis. 

Regarding Romanian text corpora, which are needed for statistical language modeling, the 

situation is slightly better. LDC does not provide any standard text databases for Romanian, but 

ELRA distributes a few small Romanian text corpora. Regardless, [Macoveiciuc, 2010] states 

that prior to their work in 2010, there were no large, accessible, general-language corpora for 

Romanian. This is probably why recent work on Romanian NLP report the usage of different 

self-created corpora, obtained out of literature books [Vlad, 2007; Ungurean, 2008; CiucŁ, 

2010], legal documents [Domokoĸ, 2009], online newspapers [Bick, 2010] and the web as 

corpus [Macoveiciuc, 2010]. In [Cristea, 2006], the authors make an extensive review of all the 

language resources and tools created for Romanian as of 2006. As most of these resources are 

not generally available outside their research groups, we were also required to collect a large 

Romanian text corpus in order to create a robust, general language model for Romanian. The 

acquisition and processing of this corpus is another resource-creation contribution of this thesis. 

As a conclusion, for the sake of future research on Romanian, it will probably be a very good 

idea to create standard speech and text resources and make them freely or commercially 

available to other research groups as well. 

4.1 THE PHONETIC DICTIONARY AND THE GRAPHEMES-TO-PHONEMES TOOL 

4.1.1 Romanian phonetics 

The total number of phones in the Romanian language is somehow vague due to several reasons, 

among which the most important is the adoption of foreign words. In [Munteanu, 2006] the 

author uses 34 phones: 8 vowels, 4 semivowels and 22 consonants. In [Ordean, 2009] the 

authors consider the expert-knowledge provided by [Iordan, 2005] and use a set of 36 phones. 

The same number of phones, but with a slightly different approach is employed in [Domokoĸ, 

2011]. 

In other languages the number of phonemes is quite different and also implementation 

dependent. For example, [Huang, 2001] uses 41 phones for English ASR, while [Mareuil, 1999] 

uses 44. In [Mareuil, 1999] an automatic multi-lingual phoneme classification is described and 

the number of phonemes for 6 European languages is asserted to be: 34 for French, 44 for 

English, 46 for German, 24 for Spanish, 49 for Italian and 38 for Portuguese. 

In our studies we have employed the set of 34 phones used in [Munteanu, 2006] supplemented 

with two more vowels which are mostly used in pronouncing foreign words. The set of phones is 

presented in Table 4.1. Due to technical reasons we have used a different phoneme coding than 

the standard IPA coding. The table lists the standard IPA symbols along with our in-house 

symbols and also gives some words examples. 
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Table 4.1 Romanian phoneme set 

Phoneme Words examples 

Type IPA symbol Used symbol Written form  Phonetic form 

vo
w

e
ls 

a a sat (village) s a t 

ᴅ a1 gurŁ (mouth) g u r a1 

e e mare (sea/large) m a r e 

i i lift (elevator) l i f t 

ɸ i1 tari (strong) t a r i1 

Ư i2 între (between) i2 n t r e 

o o loc (place) l o c 

u u ĸut (shot) s1 u t 

y y ecru (ecru) e c r y 

ø o2 bleu (light blue) b l o2 

se
m

i-v
o

w
e
ls e e1 deal (hill) d e1 a l 

j i3 fiarŁ (wild animal) f i3 a r a1 

o o1 oase (bones) o1 a s e 

w w sau (or) s a w 

c
o
n

so
n

a
n

ts 

c k2 chem (call) k2 e m 

b b bar (bar) b a r 

p p par (pole) p a r 

k k acum (now) a k u m 

Ǯ k1 cenuĸŁ (ash) k1 e n u s1 a1 

g g galben (yellow) g a l b e n 

ǫ g1 girafŁ (giraffe) g1 i r a f a1 

Ʀ g2 unghi (angle) u n g2 

d d dar (gift) d a r 

t t tot (all) t o t 

f f faŞa (the face) f a t1 a 

v v vapor (ship) v a p o r 

h h harta (the map) h a r t a 

… j ajutor (help) a j u t o r 

Ǌ s1 coĸ (basket) k o s1 

l l lac (lake) l a c 

m m mŁr (apple) m a1 r 

n n nas (nose) n a s 

s s sare (salt) s a r e 

z z zar (dice) z a r 

r r risc (risk) r i s k 

ǭ t1 ŞŁran (peasant) t1 a1 r a n 
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Table 4.1 shows the set of Romanian we used in our experiments, but it does not give any 

information regarding the frequency of occurrence for the phonemes, although in designing a 

speech recognition system this is a key factor. Speech databases need to be acquired and, during 

the acquisition process, we would like to take into account the relative frequency of occurrence 

for these phonemes. The reason is obvious: if the speech database is phonetically balanced 

(according to the usual phonemes occurrence distribution) then the individual acoustic models 

will be trained adequately to the phonemes they will be required to recognize. Our goal is, of 

course, to robustly train the acoustic models for the phonemes which occur very often. If, for 

example, the speech database does not provide sufficient training examples for a phoneme 

which occurs very often, then the ASR performance will surely decrease more comparing to the 

case when the speech database does not provide sufficient training examples for a phoneme 

which rarely occurs. 

The occurrence distribution of the phonemes has been computed using three large text corpora 

we have collected (see Section 4.3.2): europarl, 9am and hotnews. All the words in these corpora 

have been phonetized using an existing phonetic dictionary and a graphemes-to-phonemes 

conversion tool (see Section 4.1.2 and Section 4.1.3). In the end, the phonemes frequency of 

occurrence has been computed. Table 4.2 and Table 4.3 show the most/least frequently used 

phonemes in the Romanian language.  

Table 4.2 The most frequently used Romanian phonemes 

Phoneme 
Occurence in corpus [%]  

europarl 9am hotnews all corpora 

e 11.83% 10.91% 10.85% 10.91% 

a 9.39% 9.55% 9.51% 9.52% 

i 7.87% 7.86% 7.75% 7.79% 

r 7.77% 7.35% 7.15% 7.25% 

t 6.55% 6.61% 6.35% 6.46% 

s 5.62% 6.24% 6.34% 6.26% 

n 6.43% 6.08% 6.31% 6.25% 

u 5.41% 5.44% 5.44% 5.44% 

l 4.48% 4.69% 4.57% 4.61% 

o 4.40% 4.31% 4.43% 4.38% 

The three text corpora employed for these statistics contain 29 million phonemes (europarl), 323 

million phonemes (9am) and respectively 513 million phonemes (hotnews), and thus we assert 

that the overall statistics (all corpora) are very close to the real phonemes usage frequency for 

the Romanian language. In fact the data comes to support our assertion: the most frequently used 

phonemes are listed in Table 4.2 in their frequency descending order as given by the overall 

statistics on all corpora, but we can note that the same order is maintained for the individual 

corpora also (one single exception: in europarl the ñsò is less frequent than the ñnò). The 

phonemes occurrence percentages within the three corpora are also very close, except for the ñeò 

and ñsò in europarl. The fact that occurrence exceptions are noticed in the europarl corpus is due 

to the fact that this first corpus is slightly small. The fact that the phonemes occurrence 

distribution is roughly the same for the other two larger corpora is another argument supporting 

the assertion that these statistic estimations are very close to the real ones. 
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Table 4.3 The least frequently used Romanian phonemes 

Phoneme 
% in corpus 

europarl 9am hotnews all corpora 

o2 0.0003% 0.0005% 0.0006% 0.0005% 

y 0.0011% 0.0015% 0.0013% 0.0014% 

g2 0.0093% 0.0261% 0.0291% 0.0273% 

k2 0.1352% 0.2018% 0.2183% 0.2094% 

j 0.1838% 0.2012% 0.2254% 0.2150% 

h 0.0635% 0.1860% 0.2451% 0.2170% 

o1 0.3293% 0.2200% 0.2278% 0.2283% 

g1 0.2647% 0.2562% 0.2738% 0.2669% 

w 0.3020% 0.5984% 0.6162% 0.5990% 

g 0.5745% 0.6042% 0.6274% 0.6170% 

The least frequent phonemes distribution is not that similar over the three corpora. This is 

probably due to the fact that for some of these phonemes the number of occurrences is not 

sufficient to issue proper statistics. Large differences between the phonemes percentages within 

the three corpora can be noticed for ñg2ò, ñhò and ñwò. 

Figure 4.1 displays the entire phonemes distribution in the Romanian language. The figure uses 

the data within all corpora. Please note the huge difference in occurrence frequency between the 

most used vowels (ñeò, ñaò and ñiò) and a large number of other phonemes which have an 

occurrence frequency of less than 1%. 

 

Figure 4.1 The phonemes occurrence distribution in Romanian 

Figure 4.2 emphasizes better the differences in occurrence frequency for the various phonemes 

in Romanian. Note that the percentage of occurrence for the most frequent phoneme (ñeò) is 

similar to the summed percentages for the least frequent 18 phonemes, while the most frequent 6 

phonemes account for almost 50% of all phonemes. 
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Figure 4.2 The phonemes sorted occurrence distribution in Romanian 

The two figures clearly show a highly unbalanced occurrence distribution for the phonemes used 

in the Romanian language. This is an important piece of information needed in order to 

successfully develop a low-cost large-vocabulary automatic speech recognition system. If the 

cost (expressed in time and money) is not an issue, then one would create a huge speech 

database with enough occurrences for all the phonemes in the language, regardless of their 

occurrence frequency. On the other hand, if the cost is important and only a small speech 

database can be acquired, then the Romanian phonemes occurrence distribution needs to be 

taken into account. If a large-vocabulary speech recognition system is the target, then the 

training database should be designed to exhibit a similar phonemes occurrence distribution. The 

acoustic models trained on such a database will statistically recognize better Romanian phrases 

than other models trained on, for example, a speech database with a flat phonemes distribution. 

In the case of a large-vocabulary ASR is more desirable to better train the acoustic models 

which are needed more often during recognition (the models for the frequent phonemes) and 

invest less efforts in training the less frequent phones acoustic models. 

4.1.2 The phonetic dictionary 

A phonetic dictionary is mandatory for a large-vocabulary speech recognition system. Command 

and control systems or isolated words recognition systems can be implemented with acoustic 

models that use words as basic speech units, but for large-vocabulary speech recognition 

systems modeling sub-words speech units is mandatory. Most commonly used sub-words units 

are context-independent phones, context-dependent phones (usually triphones) or senones (parts 

of phones). In either case the decomposition of the wordôs written form into a sequence of 

phonemes is mandatory. This is exactly the role of a phonetic or pronunciation dictionary: to 

map the wordôs written form to its single (or multiple) pronunciation(s) (a sequence of phones). 

An excerpt of a phonetic dictionary is presented in Table 4.4. 

An extensive phonetic dictionary of about 600 thousands word pronunciations was available 

before this work was started. The dictionary contains many, but not all the words in Romanian. 

A more important deficit is that it does not contain any proper names. Due to these facts the 

phonetic dictionary had to be updated several times during the process of speech databases 

acquisition (several hundreds words within the recorded phrases were not available in the 

pronunciation dictionary). This first problem was solved by manually creating phonetic 

transcriptions for all these missing word forms. 
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Table 4.4 Phonetic dictionary excerpt 

é 

auxiliari a u k s i l i a r i1 

auz a u z 

auzea a u z e1 a 

auzeam a u z e1 a m 
auzeaŞi a u z e1 a t1 i1 

auzeau a u z e1 a w 

auzi a u z i 

auzi(2) a u z i1 

auzim a u z i m 

auzind a u z i n d 

é 

When the large-vocabulary desiderate was approached more seriously, a critical problem 

occurred: several thousands words within the text corpora used for language modeling had no 

pronunciation in the phonetic dictionary. In order to take full advantage of the language model, 

an ASR system has to benefit from a full phonetic dictionary (pronunciations for all the 

unigrams in the language model). Otherwise, the words which do not have a phonetic 

transcription will not have any chance of appearing at output, because they are not part of the 

speech decoding search graph. Most of these missing words were, of course, proper names 

(country names, city names, people names, etc.). 

This second issue could not be addressed as the first one, by manually creating phonetic 

transcriptions for all these missing word forms. The amount of work would have been enormous 

and would also require phonetic and linguistic knowledge. Moreover, this problem is expected 

to appear for every new speech recognition task (which generally comes with a new 

vocabulary). Thus, the need for a graphemes-to-phonemes tool which could automatically create 

phonetic transcriptions for a given vocabulary is obvious. 

4.1.3 The graphemes-to-phonemes tool 

Our need for a graphemes-to-phonemes tool is not singular. The task of automatically creating 

phonetic transcriptions for the words in a vocabulary is very important in speech recognition, but 

also in speech synthesis and it has been approached by several researchers. 

4.1.3.1 Related work 

Several approaches to the problem of automatic grapheme-to-phoneme conversion were 

proposed in the literature. Among these, the most popular are rule-based approaches, machine-

learning-based systems and statistical systems. 

The rule-based approach considers designing and applying a set of linguistic graphemes-to-

phonemes conversion rules. Although these systems are most of the time very efficient, their 

construction requires strong knowledge of linguistics. Moreover, for some languages the number 

of rules and exceptions can be huge: 1500 rules for English [Bisani, 2008], over 600 rules for 

French [Bisani, 2008], etc. On the other hand, for languages such as Spanish [Bonaventura, 

1998], Italian, Romanian [Toma, 2009], for which the pronunciation system is quite regular, the 

number of rules is lower and thus the system is simpler. 

The systems that use machine learning are based on the idea that having a smaller set of 

examples of phonetic transcriptions, we can build a system that will incorporate knowledge from 

these examples (called training set) and, based on the generalization of the rules, will be able to 

predict the transcription of words which are not found in the training set [Bisani, 2008]. In 

practice, these systems are trained using hand built transcription dictionaries covering the most 

common words for that language. The most widely used systems are based on decision trees or 

neural networks. 
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A more novel approach of converting graphemes to phonemes uses Statistical Machine 

Translation (SMT) principles [Laurent, 2009; Karanasou, 2010]. The graphemes are regarded as 

words in the source language and the phonemes as words in the target language. A machine 

translation system is trained based on an initial phonetic dictionary and afterwards this system 

can be used to convert any other word to its phonetic form. 

The most trivial graphemes-to-phonemes conversion approach, which seems to work quite well 

for some languages, consists in simply modeling graphemes instead of phonemes [Billa, 2002], 

[Bisani, 2003]. The ñphonetic translationò of the word is, in fact, its written form. The 

graphemes are used instead of real phonemes. These systems have decent results only for 

languages with low grapheme-to-phoneme ambiguities. 

Over the past decade, several research groups have created graphemes-to-phonemes tools for the 

Romanian language. These tools are regarded as indispensable modules within text-to-speech 

systems [Burileanu, 1999; JitcŁ, 2003; Ordean, 2009; Ungurean, 2011] or for the generation of 

phonetic dictionaries [Toma, 2009; Domokoĸ, 2011]. The main methodologies utilized are still 

the ones used for other languages: machine learning [Burileanu, 1999; Domokoĸ, 2011], rule-

based [Toma, 2009; Ungurean, 2011] and hybrid (machine learning and conversion rules) [JitcŁ, 

2003; Ordean, 2009]. All these papers report evaluation results in terms of word error rate 

(WER) or phone error rate (PhER). Generally, there is a single phone error per word [Burileanu, 

1999], and thus the PhER is smaller than the WER (as the total number of phones is larger than 

the total number of words). Even if the results reported in the above papers are not directly 

comparable due to the different experimental setups (different set of phonemes, different 

evaluation words, different number of evaluation words, etc.) and the lack of complete 

evaluation metrics (PhER and WER), we have summarized them in Table 4.5.  

Table 4.5 Graphemes-to-phonemes tools for the Romanian language 

System Evaluation words PhER WER 

[Burileanu, 1999] 1000 n/a 2.9% 

[JitcŁ, 2003] 400 n/a ~ 5% 

[Ordean, 2009] 1000 n/a 5.2% 

[Toma, 2009] 
4779 0.72% 4.79% 

15599 n/a 9.46% 

[Domokoĸ, 2011] 100 7.17% n/a 

[Ungurean, 2011] 11819 n/a 3.01% 

4.1.3.2 Graphemes-to-phonemes method description 

In our work, an SMT-based approach, similar to the ones presented in [Laurent, 2009; 

Karanasou, 2010], has been adopted for the task of automatically creating phonetic 

transcriptions. This type of approach has not been used before for the Romanian language. An 

SMT system generally translates text in a source language into text in a target language. Two 

components are required for training: a) a parallel corpus consisting of sentences in the source 

language and their corresponding sentences in the target language, and b) a language model for 

the target language. 

For our specific task (graphemes-to-phonemes), we consider graphemes (letters) as ñwordsò in 

the source language and sequences of graphemes (words) as ñsentencesò in the source language. 

As for the target language, its ñwordsò are actually phonemes and its ñsentencesò are actually 

sequences of phonemes. Table 4.6 lists a few examples of parallel ñsentencesò within the 

training corpus. 
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Table 4.6 Examples within the phonetic dictionary (parallel corpus) 

Example Source language (graphemes) Target language (phonemes) 

1 d e z n o d Ł m © n t u l d e z n o d a1 m i2 n t u l 

2 a c h i t â n d a c i t i2 n d 

3 t a p i Ş e r i e t a p i t1 e r i e 

The implementation of the SMT system is based on the Moses Translation Toolkit [Koehn, 

2007]. Moses is a widely known toolkit which is mostly used for SMT tasks, but can also solve 

generic transduction problems as the one presented above. The training of a graphemes-to-

phonemes translation model is similar to the one of a general translation model, as described in 

Section 3.3. 

4.1.3.3 Experimental setup and results 

The already available phonetic dictionary described in Section 4.1.2 is exactly the parallel 

corpus needed for SMT training. It was randomly split into three parts: a) a training part (580k 

words), b) an optimization (tuning) part (10k words) and c) an evaluation part (10k words). The 

same phonetic dictionary, specifically the phonetic representations, served as training corpus for 

creating the language model for the target language. 

The translation modelôs optimization should have been made by minimizing the phone error rate 

(PhER), but this type of optimization module was not available. Therefore, for this process, we 

chose to use both the two available tuning methods: a) maximization of the BLEU score 

[Papineni, 2002] (the default in Moses) and b) minimization of the position independent phone 

error rate (PIPhER) [Bertoldi, 2009]. The evaluation of the translation results has been made 

using the sclite tool in the NIST Scoring Toolkit. Table 4.7 lists these results, in terms of BLEU 

score, phone error rate (PhER) and word error rate (WER). Please note that BLEU score is the 

default evaluation metric for machine translation systems, but is not suitable for our specific task 

(graphemes-to-phonemes). 

Table 4.7 SMT-based graphemes-to-phonemes conversion results 

Exp Optimisation BLEU PhER WER 

1 none 98.89 0.53% 4.79% 

2 BLEU 99.49 0.33% 3.24% 

3 PIPhER 99.39 0.31% 2.76% 

4.1.3.4 Conclusion 

The graphemes-to-phonemes tool created using the SMT-based approach shows better results 

(Table 4.7) than all the other systems previously developed for Romanian (Table 4.5). The large, 

10k words, evaluation database assures us that the results are conclusive. 

The graphemes-to-phonemes tool solves the problem of updating the phonetic dictionary for a 

new ASR task. The new speech recognition task generally comes with a specific language model 

and a specific vocabulary. The words in the specific vocabulary need to be phonetically 

transcribed before the actual recognition process can be started. This process is performed in two 

steps: 

a) all the words within the specific vocabulary which are found in the 600k words phonetic 

dictionary are transcribed using the 600k words phonetic dictionary, 

b) all the other words are transcribed using the graphemes-to-phonemes tool. 

Using the above methodology, the conversion error rate will probably be much lower than the 

one reported in Table 4.7 because most of the words in the specific vocabulary will be found in 
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the 600k words phonetic dictionary, while the graphemes-to-phonemes tool will only be used for 

proper names and uncommon words. 

4.2 SPEECH DATABASES AND ACQUISITION TOOLS 

Section 2.4 has explained the acoustic modeling process and has argued that large amounts of 

data are required to train the various parameters of an HMM-GMM speech recognition system. 

The Baum-Welch training paradigm needs speech audio clips along with their textual 

transcriptions in order to estimate the models parameters. Consequently, speech databases are 

critical resources and their characteristics (number of hours of speech, number of speakers, noise 

level in audio clips, type of speech, etc.) are very important to the development of a speech 

recognition system. 

CMU Sphinx acoustic training tutorial gives some empirical database numbers for creating good 

speech recognition systems (Table 4.8). The command and control task is a typical small-

vocabulary pseudo-continuous speech recognition task, while the dictation task is a typical 

large-vocabulary continuous speech recognition task. Note that the speaker-independency 

desiderate seems very difficult to achieve as resources from approximately 200 speakers are 

required. This number could seem exaggerated, but inter-speaker speech variability is indeed an 

important factor and can be overcome only by thoroughly modeling the various possible 

pronunciations of every phone. This can, in turn, be achieved by recording speech from many 

different speakers. 

Table 4.8 CMU Sphinx suggested database sizes 

ASR Task 
Speaker dependent 

system 

Speaker independent 

system 

command and control 

(SV-CSR) 

1 hour of recordings, 

1 speaker 

5 hours of recordings, 

200 speakers 

dictation 

(LV-CSR) 

10 hours of recordings, 

1 speaker 

50 hours of recordings, 

200 speakers 

4.2.1 Speech databases review 

As previously remarked, Romanian has very few speech resources, all created by research 

groups and neither freely, nor commercially available. The authors of [Munteanu, 2006; 

Dumitru, 2008; Petrea, 2010; Kabir, 2011] explicitly assert that there are no speech resources 

available for Romanian and that they were required to create speech databases before starting 

any research in speech recognition. The speech resources created and used by the various 

Romanian speech recognition research groups are listed in Table 4.9. 

Neither of the speech databases described in the previous table is available to other research 

groups. The size of the databases (in hours of speech) is not mentioned for these speech 

databases, but, if we estimate an average of 10 seconds per phrase, the largest databases are still 

smaller than 11 hours of speech. Consequently, given the CMU Sphinx suggestions, none of 

these databases, even if they were available, would not be large enough for a speaker-

independent large-vocabulary speech recognition task. In conclusion, larger speech databases 

have to be acquired; this process is the next sectionôs subject. 
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Table 4.9 Romanian speech databases summary 

Database 

name 

Usage/Acquisition 

reported by 
Domain # phrases 

# 

words 

# unique 

words 

# 

speakers 

OCDRL 
[Oancea, 2004], 

[Dumitru, 2008] 
telephone dial 850 n/a 3000 8M / 2F 

CDRL 
[GavŁt, 2007], 

[Dumitru, 2008] 

information, sports, 

geography, history 
3500 n/a 4000 7M / 4F 

- [Munteanu, 2008] n/a 4000 n/a n/a 11 

METEO [Militaru, 2009] forecast news 760 13500 535 15M / 15F 

RO-GRID 
[Kabir, 2011], 

[Giurgiu, 2011] 
six-words commands 8400 50400 36 12M / 9F 

4.2.2 Speech databases acquisition 

A complete speech database consists of the following components: 

 a set of speech signal samples; 

 a set of transcription files marking the text which is spoken in each speech sample; these 

files may include information regarding the temporal boundaries between the speech 

units; 

 additional information regarding speech type (isolated words, continuous, spontaneous), 

speaker identity, etc;  

A database can be collected via several different methods [Petrea, 2008]: 

 direct recording; this yields a series of particular issues: choosing the recording place and 

recording workstation, choosing the microphone, etc.; 

 labeling audio books or other spoken materials; the particular issues in this situation are: 

leveling the differences in sampling rate for the different spoken materials, splitting the 

audio and labeled content into smaller parts, detecting and correcting labeling errors. 

We have started to build speech databases using the second method listed above. The first output 

was a continuous speech database (CS_BOOKS) obtained by labeling the audio content of 

several audio books. Initially, the long audio clips were split into smaller files (approximately 60 

seconds). Secondly, transcription files, containing the group of words uttered in the audio files, 

were created. This resulted in a database of approximately 11 hours of speech. It comprises read, 

continuous speech uttered by 7 different speakers (4 males and 3 females). The domain is 

Romanian literature. 

The second database (PHONES) was developed strictly for the initialization of the acoustic 

models. It was created by time-stamping and labeling the phones in the ñSounds of the 

Romanian Language Corpusò [Teodorescu, 2009]. Smaller, single-phone audio clips were 

created and labeled. This database contains isolated utterances (20 to 500) of the Romanian 

phones, spoken by 10 speakers (7 males and 3 females). 

During the acquisition of these two databases, several acquisition-method issues have gained our 

attention. Firstly, the audio files and the corresponding transcription have to be split into smaller 

files (5 seconds to 25 seconds, as CMU Sphinx suggests). This is typically a time-consuming 

process. Secondly and more importantly, the labeling process is very sensitive to human errors. 

Typos often occur, creating unknown words or substituting different known words or, even 

worse, substituting diacritical characters with non-diacritical characters. Moreover, the labeling 

process is even more time-consuming in case there is no prior draft transcription of the audio 

file. 
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These issues triggered us to try a different database acquisition approach: to directly record 

some prior selected texts. For this purpose we have designed and implemented a speech 

recording Java application (see Section 4.2.4). The application keeps track of the audio and 

transcription file names and displays a simple graphical user interface showing the sentence to 

be recoded, thus making the recording process easier and faster. We have estimated that the 

recording time was 5 times smaller comparing to the time it would have taken to record the same 

databases with the operating systemôs default recorder. 

We have used this second approach to record a large isolated words database (WORDS) and 

several continuous speech databases (CS_01, CS_02 and CS_03). For the isolated words 

database we have recorded a list of 10000 different words covering all the syllables in 

Romanian. 9 speakers (3 males and 6 females) have recorded the whole list of words, 2 speakers 

(2 males) have recorded only a subset of 7000 words and 6 more speakers (2 males and 4 

females) have recorded an even smaller subset of 1000 words. Summarizing, the WORDS 

database consists of 110000 single-word audio clips recorded by a group of 17 speakers (7 males 

and 10 females). The total size of the database, expressed in hours of speech, is 42 hours. 

Some of the authors of the WORDS database have also recorded continuous speech audio clips. 

The first and the largest continuous speech database is CS_01. The first step we have performed 

consisted in selecting a set of 1000 phrases from online newspapers, journal interviews, etc. The 

domain is quite broad. The set of 1000 phrases contain a total amount of 16300 words among 

which 5175 are different. These phrases were afterwards recorded, one per audio clip, using the 

speech recorder application, by 11 speakers (4 males and 7 females). The resulted database 

(CS_01) consists of 11000 single-phrase audio clips with an average size of 6.4 seconds, 

summing up to a total size of 20 hours of continuous speech. 

The CS_02 continuous speech database has been recorded for evaluating a digital library speech 

recognition system. A set of possible dialogues between a human user and a computer system 

were created and 244 phrases (the human user part) were selected for future recording. The set 

of 244 phrases contain a total amount of 1903 words among which 611 are different. These 

phrases were recorded, one per audio clip, using the speech recorder application, by 3 speakers 

(2 males and 1 female). The resulted database (CS_02) consists of 732 single-phrase audio clips 

with an average size of 3.5 seconds, summing up to about of 45 minutes of continuous speech. 

The CS_03 continuous speech database has been recorded for evaluating a tourism speech 

recognition system. The recorded text was manually translated from a tourism French corpus. 

This database is used in Section 6.2 only for testing purposes: to evaluate an ASR system which 

makes use of a language model built using a machine-translated text corpus. For this purpose 

300 phrases were manually translated to Romanian and recorded, one phrase per audio clip, by 3 

speakers (2 males and 1 female). A set of 300 phrases contain a total amount of 1872 words, 

among which 358 are different. The resulted database (CS_03) consists of 900 single-phrase 

audio clips with an average size of 3.1 seconds, summing to about 1 hour of continuous speech. 

The last continuous speech database which was acquired is called CS_04. It was created only or 

speaker-independency evaluation purposes. The evaluation part of the CS_01 database (100 

phrases with ids between 500 and 599) were selected and recorded by 8 other speakers (4 males 

and 4 females). We have selected this methodology in order to make a fair comparison between 

the errors made by the ASR system when it was required to recognize speech uttered by known 

speakers (the ones which recorded all the 1000 phrases in the CS_01 database) versus speech 

uttered by unknown speakers (the ones which only recorded the 100 evaluation phrases in the 

CS_04 database). The set of 100 phrases contain a total amount of 1803 words, among which 

867 are different. The resulted database (CS_04) consists of 800 single-phrase audio clips with 

an average size of 8.5 seconds, summing up to a total size of about 2 hours of continuous 

speech. 
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Table 4.10 Created speech databases 

Database 

name 

Text Speech 

Domain Phrases Words 
Unique 

words 

Type of 

speech 

Hours of 

speech 
Speakers 

BOOKS literature n/a 89266 14240 continuous 11 4M / 3F 

PHONES n/a n/a n/a n/a isolated phones n/a 7M / 3F 

WORDS n/a 110000 110000 10000 isolated words 42 7M / 10F 

CS_01 news, interviews 11000 179300 5175 continuous 20 4M / 7F 

CS_02 library dialogue 732 5709 611 continuous 0.75 2M / 1F 

CS_03 tourism (booking) 900 5616 358 continuous 1 2M / 1F 

CS_04 news, interviews 800 14424 867 continuous 2 4M / 4F 

All audio clips in the databases share the same sampling frequency (16 kHz) and the same 

sample size (16 bits). The most important information regarding the speech resources are 

summarized in Table 4.10. 

In [Burileanu, 2008] a detailed description and analysis of these speech databases is made. The 

article gives a glimpse of the database development status as of 2010. The PHONES database 

was used for some preliminary ASR tests in [Burileanu, 2010a]. The PHONES and WORDS 

databases were used in the work reported in [Petrea, 2010; Buzo, 2011a; Buzo, 2011b; Cucu, 

2011a]. The WORDS, CS_01, CS_02 and CS_03 databases were used in [Cucu, 2011b] and 

[Cucu, 2011c]. 

The author of the thesis was one of the main speakers and coordinators for the acquisition of 

these speech resources and guided several groups of students with the purpose of achieving this 

goal. 

4.2.3 Speech databases phonetic analysis 

As argued in Section 4.1.1 the phonetic balance of the speech databases (according to the real 

phonemes occurrence distribution in Romanian) is extremely important when their size is 

relatively small. This section aims to present the phonetic statistic analysis for the various 

speech databases described in the previous section. 

The PHONES database was developed strictly for the initialization of the acoustic models. We 

did not take into account the Romanian phonemes occurrence distribution when we have 

developed this database and we focused only on getting a minimum number of occurrences for 

every phone. Table 4.11 shows the number of occurrences acquired for the 36 phones in 

Romanian. Note that for some phones (the least frequent, as shown in Table 4.3) we have not 

acquired any data. 

The BOOKS continuous speech database has been acquired by labeling several audio books. 

The total amount of phones in the selected audio clips is quite high: 384656 phones. Figure 4.3 

presents the occurrence distribution for these phones in comparison with the real occurrence 

distribution for Romanian (according to Section 4.1.1). 

The two phonemes occurrence distributions presented in Figure 4.3 are relatively similar. There 

are a few significant differences for the most frequent phones: the vowels ña1ò, ñeò, ñiò and ñoò 

and the consonant ñsò. The BOOKS database contains 61% more ña1ò, 13% less ñeò, 19% less 

ñiò, 31% less ñoò and 34% more ñsò. 
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Table 4.11 Phones occurrences in the PHONES database 

Phone Occur rences 

 

Phone Occur rences 

 

Phone Occur rences 

a 561 i1 0 o2 0 

a1 30 i2 26 p 7 

b 31 i3 22 r 38 

d 32 j 22 s 38 

e 52 k 26 s1 31 

e1 26 k1 33 t 23 

f 26 k2 0 t1 40 

g 25 l 38 u 21 

g1 38 m 35 v 32 

g2 0 n 48 w 31 

h 26 o 13 y 0 

i 27 o1 22 z 26 

The WORDS database was acquired by recording a list of 10k words which cover all the 

syllables in Romanian. The amount of phones in a set of recorded audio clips (10k audio files) is 

relatively small: 95805 phones. Figure 4.4 presents the occurrence distribution for these phones 

in comparison with the real occurrence distribution for Romanian (according to Section 4.1.1). 

Figure 4.4 shows that even for an isolated-words database of approximately 100k phones the 

relative occurrence of the phones is very similar to that of the Romanian language. Significant 

differences can be noted only for a couple of phones: the vowels ñaò and ñeò (the WORDS 

database contains 22% less ñaò and 20% less ñeò) and the consonants ñlò and ñsò (the WORDS 

database contains 42% more ñlò and 43% less ñsò). These differences are explicable: the 

database contains 10k different words with one occurrence each, while the relative distribution 

of the words in Romanian is highly unbalanced (see Section 4.3.5). 

 

Figure 4.3 The phonemes occurrence distribution in BOOKS database 
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Figure 4.4 The phonemes occurrence distribution in WORDS database 

The CS_01 continuous speech database was acquired by recording a set of 1000 phrases selected 

from Romanian newspapers. The amount of phones in one set of audio clips (1000 audio files) is 

13% smaller than the one reported for the WORDS database: 82873 phones. Figure 4.5 presents 

the occurrence distribution for these phones in comparison with the real occurrence distribution 

for Romanian (according to Section 4.1.1). 

Figure 4.5 shows a very similar occurrence distributions for the CS_01 database and for the 

Romanian phones. This allows us to assert that the acoustic models that will be trained with this 

database will be very well adapted to general-domain Romanian speech recognition. The only 

significant exception is with the phoneme ñsò: the CS_01 database contains 33% less ñsò than 

expected for the Romanian language. 

 

 

Figure 4.5 The phonemes occurrence distribution in CS_01 database 
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Figure 4.6 The phonemes occurrence distribution in CS_02 and CS_03 databases 

The CS_02 and CS_03 continuous speech databases are relatively small compared to the 

previous analyzed speech databases (9592 phones, respectively 8735 phones). They were 

created only for testing purposes therefore their phonemes occurrence distribution is not critical. 

Still, we present these distributions and compare them with the one expected for a general 

speech signal in Romanian in Figure 4.6. The figure shows that the testing continuous speech 

databases (CS_02 and CS_03) are also phonetically balanced according to the actual phonemes 

occurrence distribution in Romanian. Even though the differences are larger than those observed 

for the CS_01 database, the distribution follows the same main trend line. 

The goal of creating phonetically balanced speech databases was not among our objectives when 

we have started to acquire the databases, due to the lack of data regarding the real phonemes 

occurrence distribution for Romanian (these statistics were only available after the text corpora 

were acquired and the graphemes-to-phonemes tool was implemented). Regardless, the phonetic 

analysis of the speech databases shows that even when small databases such as CS_02 or CS_03 

are acquired they tend to be quite well phonetically balanced. The reason for this is that all our 

continuous speech databases (BOOKS, CS_01, CS_02 and CS_03) contain whole phrases. As 

the analysis showed, the most unbalanced database is the isolated words database (WORDS) and 

this is due to the artificial manner in which the words were selected. 

In conclusion, if a large-vocabulary continuous speech recognition system is the target, then the 

most proper training database should comprise free-speech phrases and not isolated words (such 

as our WORDS database) or artificially constrained phrases (such as in the RO-GRID corpus). 

Also, in order to have a better control over the phones occurrence distribution, the recommended 

acquisition method is direct recording of phonetically balanced phrases. 

Table 4.12 The speech acquisition tool - input file excerpt 

index  written form    phonetic form 

é 

0030 # c©nd pot gŁsi aceastŁ carte? #  kƯnd pot gᴅsi aǮastᴅ karte  

0031 # voi reveni sŁptŁm©na viitoare. #  voi reveni sᴅptᴅmƯna viitoare 

0032 # mulŞumesc. la revedere.  #  mulǭumesk la revedere 

é 
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4.2.4 Speech acquisition methodology and tools 

The previous two sections argue in favor of direct recording as being the best speech database 

acquisition method. Reasons such as efficiency and control over the spoken materials, speakers, 

etc. are invoked as being decisive. Consequently, the need for a personalized recording 

methodology and recording tool motivated us to implement a Java speech recorder application. 

The speech acquisition tool is a graphical user interface (GUI) application which reads in a 

simple text file comprising the phrases to be recorded, provides the user the means to record the 

phrases and eventually outputs .wav files. The input file is structured as shown in Table 4.12. It 

stores one phrase per line and, for each phrase, it lists its id (a 4 digit number), its written form 

and its phonetic form. The input file is created once for every new database. 

The recording methodology is very simple. The user starts the application, selects his speaker id 

(a two digits number which was previously provided by the database acquisition responsible), 

selects the database id (a two digits number, also provided by the database acquisition 

responsible) and the first phrase in the list of phrases is displayed in the GUI. He can now read 

the phrase and its phonetic form making sure he understands how to pronounce all the words 

(the phonetic form is displayed using the IPA symbols). Next, the user is able to press the 

ñRecordò button, he speaks the current phrase and eventually he presses the ñStopò button to 

finish the recording. The recorded phrase is automatically saved. The user has the possibility to 

listen to the previously recorded phrase and, if necessary, re-record it. Once the current phrase is 

saved (the ñStopò button was pressed by the user), the application displays the next phrase. The 

graphical user interface of the speech acquisition tool is presented in Figure 4.7. 

 

 

Figure 4.7 The Speech acquisition tool ï graphical user interface 
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The users were asked to speak as natural as possible and to repeat the recording if the phrase 

was wrongly read or if they stutter. The application provides an easy way to listen to the 

previously recorded phrases and re-record them, if necessary. Moreover the application provides 

an easy way to browse through all the phrases by writing their indexes in the ñPhrase indexò 

field. The same feature enables a user to break up the recording session into as many sub-

sessions as needed. The only thing he needs to remember is the last phrase that he recorded so he 

can continue with the next. 

The audio files are saved in the standard .wav format with a very intuitive and information-full 

name: xx_yy_zzzz.wav. The ñxxò part represents the speaker id and the ñyyò part stands for the 

database id, while ñzzzzò is a four digits number marking the phrase id. The audio is recorded 

with a sampling frequency of 16 kHz and a sample size of 16 bits (the usual figures employed in 

speech recognition). 

The recording sessions for the speech databases described in the previous sections have been 

mostly done in laboratory environment on the same type of workstations, but some speakers also 

recorded at home on their own desktop or laptop. The microphone used for the recordings was a 

high-quality Sennheiser microphone. 

Each speaker recorded the phrases in his own rhythm and repeated each phrase as many times as 

it was necessary. The average time it took a user to record the set of 10000 isolated words (one 

word per audio file) in the WORDS database was 15 hours. The average time needed by a user 

to record the 1000 phrases in the CS_01 database was approximately 6 hours. Thanks to the 

applicationôs ease of use and to the auto-save feature we estimate that the recording tool lowered 

the speech database acquisition time by 3 to 5 times. 

4.3 TEXT CORPORA AND NLP TOOLS 

The purpose of any automatic speech recognition (ASR) system is to transcribe a speech signal 

into a corresponding sequence of words. As described by the general architecture of an ASR 

system in Section 2.1, one of the indispensable components of such a system is a language 

model. Section 2.2 describes several types of possible language models and asserts, based on 

[Koehn, 2010], that n-gram language models represent the state-of-the-art in language modeling. 

N-gram language models are created using a single resource: text corpora. They are statistical, 

data-driven models and thus more training data always leads to higher performance. A decent 

general-purpose n-gram language model needs training corpora of hundreds of millions words. 

In conclusion, even if not initially obvious, the performance of a general-purpose automatic 

speech recognition system depends, indirectly, on the amount of general text available for the 

particular language. 

4.3.1 Text corpora review 

For Romanian, the target language of this thesis, the available text resources are sporadic and 

most of the time not publicly available. In [Cristea, 2006], the authors make an extensive review 

of all the language resources and tools created for Romanian as of 2006. Their review reports 

not only on plain text corpora, but also on annotated language resources. However, for building 

n-gram language models, plain text corpora are enough and, regarding this type of resources, the 

review reports that the largest corpus is RoCo - a news corpus created by AR-ICIA (Research 

Institute for Artificial Intelligence, Romanian Academy). This corpus (RoCo) is described by its 

authors in [Tufiĸ, 2006], where it is said to consist of about 35 million lexical tokens. 

In 2010, [Macoveiciuc, 2010] reports on the acquisition of RoWaC (Romanian Web-as-Corpus), 

a 50-million-word Romanian corpus, and its availability within Sketch Engine [Sketch]. The 

authors state that prior to their work in 2010, there were no large, publicly-accessible, general-

language corpora for Romanian. This is generally true as most of the developed corpora are 
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subsequently used only within the research group which authored them. Itôs the case for a 21-

million-words grammatically-annotated news corpus whose usage is reported in [Bick, 2010], 

for an 11-million-words corpus which is used for diacritics restoration in [Ungurean, 2008] and 

for a 9-million-words literary corpus which is subject to a letter-structure statistical analysis in 

[CiucŁ, 2010]. 

Table 4.13 summarizes the data regarding the Romanian corpora used by different research 

groups. The second column ñUsage/Acquisition reported byò lists articles which mention the 

usage of these corpora, not necessarily the corpora authors. The first conclusion which emerges 

from this table is that there are not enough available text corpora to develop a satisfactory 

general language model for Romanian. Second, the standardization and publication of such 

corpora, even if not for free, would be very beneficial for the research community. 

Table 4.13 Romanian text corpora summary 

Corpus 

name 

Usage/Acquisition 

reported by 
Domain Words Availability  

RoCo [Tufiĸ, 2006] news, literature, law 35M no 

- [Ungurean, 2008] journal, literature, other 11M no 

- [Bick, 2010] business news 21M no 

- [CiucŁ, 2010] literature 9.1M no 

RoWaC [Macoveiciuc, 2010] news, literature, other 50M yes (for a price) 

4.3.2 Text corpora acquisition 

Given the lack of availability of Romanian text corpora, as presented in the previous section, and 

the need of large corpora to create a language model suitable for LV-CSR, one of the goals of 

this thesis was to acquire this type of language resources. 

The process of corpora acquisition is at this moment dominated by the Web-as-resource or Web-

as-Corpus (WaC) approach. For the most common languages there are numerous web pages 

with large amounts of texts. These can be accessed, processed and used mainly by using the 

various search engines
1
 available. Several methods [Baroni, 2006; Sharoff, 2006] which work 

well for high-resourced languages were proposed in the last decade. For under-resourced 

languages, which are less present on the web, special approaches [Draxler, 2007; Scanell, 2007] 

must be considered and, even so, the size of the acquired corpora is generally much smaller. 

Even if for the Romanian language there are not many already-created text corpora, Romanian is 

very well represented on the web. For a rough estimate consider that a simple Google search for 

one of the most frequent Romanian words (ĸi) returns over 500 million entries. Given this, it is 

obvious that the acquisition of a Romanian corpus should be considering the Web-as-Corpus 

approach as the fir st option. In fact, the largest available Romanian corpus [Macoveiciuc, 2010] 

has been also acquired using this approach. 

The process of acquisition started with a freely available parallel corpus: the europarl corpus. 

This corpus is available online [Europarl] and comprises the discussions in the European 

Parliament, as recorded in all the European Unionôs (EU) languages. It was created mainly for 

the development of Statistical Machine Translation (SMT) systems and this is the reason why 

the corpora for the different languages are aligned. For our task, we do not need the foreign 

corpora and will use only the Romanian version of europarl. The English or French europarl 

corpora are larger as these countries were part of the EU from its birth, while the Romanian 

corpus consists of 225 thousand phrases summing up to a total of 5.3 million words with correct 

diacritics. More details about the europarl corpus are given by its authors in [Koehn, 2005]. 

                                                
1 Google (http://www.google.com), Yahoo (http://www.yahoo.com), Bing (http://www.bing.com)  

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/
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Secondly, several online newspapers were investigated and analyzed especially from the point of 

view of the ease of access. By ease of access, we mean the possibility of automatically 

downloading articles in a simple, batch-mode approach. For example, an online newspaper 

which publishes its articles using their full names in the URL (Uniform Resource Locator) is 

more difficult to crawl, then a newspaper which uses only numerical article ids in their URLs. 

We have exploited this advantage for two Romanian online newspapers [9am] and [Hotnews]. 

The application created to download the articles ran automatically through all possible article 

URLs (with all possible articles ids) and, consequently, we managed to create two huge corpora 

comprising of all the news which were published by these newspapers between November 2004 

and March 2011 (9am) and between November 2007 and March 2011 (hotnews). The corpora 

collected using this method are larger than any other text corpora available for Romanian. The 

9am corpus consists of 3.5 million phrases, summing up to a total of 63 million words and the 

hotnews corpus consists of 6 million phrases, summing up to a total of 100 million words. The 

credits for this idea go to Miruna Camara [Camara, 2007], who created a much smaller 9am 

corpus with all the articles available on the website in 2007. 

One of the most important problems, that is mandatory to be solved for the news corpora, is the 

absence of diacritics. This is a general issue with almost all the online newspaper articles and 

also with other WaC resources such as blog pages, personal pages, etc. The diacritics restoration 

will be regarded as a preprocessing operation and will be detailed in Section 4.3.4. 

Besides the corpora that were acquired as mentioned above, for the various studies and 

experiments performed for this thesis, we were also given access to a corpus which was created 

by our research group and was successfully utilized in [Ungurean, 2008] for diacritics 

restoration. This corpus was split, just as in [Ungurean, 2008], into a training corpus and an 

evaluation corpus and these parts are denoted, for future reference, misc1 (miscellaneous 1) and 

misc2 (miscellaneous 2). These two corpora consist of a total of about 11 million words with 

correct diacritics. 

Table 4.14 summarizes the data regarding the corpora that were collected and further used in the 

experiments. The numbers are computed on the clean corpora (after the processing operations 

described in the following section). 

Table 4.14 Created/Acquired Romanian text corpora 

Corpus name Domain Phrases Words Unique words 

europarl EU discussions 225k 5.3M 57k 

9am news 3.5M 63M 397k 

hotnews news 6.0M 100M 503k 

misc1 journal, literature, other 300k 9.8M 179k 

misc2 journal, literature, other 100k 1.2M 48k 

4.3.3 Text corpora processing 

N-gram language models are used in wide range of fields and, within these fields, by potentially 

different applications. For example, in statistical machine translation the language model has the 

role of estimating the next token probability, similarly to automatic speech recognition, where it 

has the role of estimating the next word probability. In [Ungurean, 2008], due to the lack of 

sufficient training data, a system based on word-suffixes n-grams is created and exploited to 

estimate the next suffix probability. In conclusion, it is very important to decide which are the 

actual tokens (the grams) we need to model and, based on this, to ñcleanò the text corpora 

accordingly. 
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According to [Huang, 2001; Jurafsky 2009; Renalds, 2010] an automatic speech recognition 

system is required to output plain text. Itôs out of its duties to capitalize proper names or to place 

punctuation marks or other special characters (round/square brackets, percent, etc). Also, 

numbers will be output in their full, written form, accordingly to what was uttered within the 

input speech signal. Keeping this in mind, the decision regarding which are the tokens whose 

occurrence probability we want to estimate is straightforward: the tokens are limited to the 

languageôs words, as they are being spoken. In order to create an n-gram language model with 

these tokens only, we need to adequately process the training corpora. 

Before going into cleaning a corpus we first need to obtain the actual data in plain text. This 

operation is closely linked to the corpora acquisition process and, consequently, is included in 

the corpora download tool. This tool is a Java command line application [Java], which also 

makes use of the lynx Unix utility [Lynx] . Its main role is to convert the downloaded html files 

to plain text files. Normally, the WaC approach of data acquisition produces a set of html files 

which have to be parsed in order to retrieve and save only the data of concern. For example, 

imagine the html file of an online article. Besides the actual news text, which we are interested 

in, the file will contain all sorts of html tags, URLs, the websiteôs menu items, many text 

advertisements, etc. All these parts have to be removed, because we are interested only in the 

actual news text. 

Another NLP tool created for the purpose of conditioning text corpora is the text cleaning 

application. This application is also written in the Java programming language and, 

consequently, can run on any operating system which has a Java Virtual Machine (JVM) 

installed. The cleaning application takes a corpus as an input and consequently applies several 

user-specified processing operations with the final goal of obtaining plain text, without any 

digits, punctuation marks or special characters. 

The first cleaning operation has the role of replacing all diacritics characters with a unique 

character per diacritic. In different corpora and even in different parts of the same corpus, 

different Unicode characters are used to express the same meaning (ñĸò cedilla vs. ñĸò comma, 

ñŞò cedilla vs. ñŞò comma, etc.). This inconsistency is approached by the first cleaning operation. 

In many news articles and especially in the European Parliament corpus numerous abbreviations 

are used. For example, dnŁ, dnŁ. and d-nŁ all stand for doamnŁ (misses, in English), dl and dl. 

stand for domnul (mister, in English), art. stands for articolul (article, in English), etc. Even if 

for other NLP tasks, such as machine translation for example, these words are categorized as 

ñnormal wordsò, they are not useful at all for an ASR language model. The reason is that when 

these words are spoken, the speaker utters the unabbreviated form. In conclusion, we cannot use 

a language model that predicts abbreviations and expect to accurately recognize unabbreviated 

word forms. Moreover, more abbreviation forms for the same word in the training data leads to 

inconsistent probability estimation for that particular word. The second cleaning operation 

replaces abbreviated word forms with full word forms based on a list of abbreviations. At this 

point only a list of about 30 entries has been created and used, but the cleaning operation will get 

more effective as the abbreviations list will be enlarged. 

Numbers written with digits instead of letters represent a similar problem, just as abbreviations. 

Think, for example, of the spoken representation of the number 1984. The speech signal has 

nothing in common with the actual digits 1, 9, 8 and 4, but is, in fact, the spoken representation 

of the word sequence o mie nouŁ sute opt zeci ĸi patru (one thousand nine hundred eighty four, 

in English). The ASR language model has the role of predicting the different words which 

compose this number and not the digits-written form. Moreover, the range of numbers is 

potentially infinite, but the range of words used to compose the numbers is limited. These words 

occurrence probability can be estimated with sufficient data, while for the digits-written form we 

would never have enough data. Besides simple numbers as the one previously exemplified, the 
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corpora are filled with all sorts of other numbers with different meanings and formats: 

01.02.2004 (dates), al 30-lea (ordinal numeral: the 30
th
, in English), 2.59% (fractional numbers), 

3 000 000, 3.000.000, 3,000,000 (large numbers with various formats), 10:20, 10h20, 10.20 

(time stamps with different formats), etc. Only the most frequent number formats have been 

converted to text, due to the high number of various formats. These issues were approached by 

the third corpus processing operation. 

The fourth processing operation deals with punctuation marks and other special characters. In 

ASR we do not output punctuation marks, so we do not need to estimate their occurrence 

probability. Consequently, all punctuation marks have to be removed or properly replaced by a 

word sequence. For example, a) commas are removed, b) dots, question marks and exclamation 

marks are replaced with a new line character (this way weôll have one sentence per line in the 

output file), c) brackets are deleted and the text within them is placed on a new line, d) hyphens, 

except for the ones within words (such as într-o, dŁ-mi, etc.) are removed, e) percent characters 

are replaced with the phrase la sutŁ (percent, in English), etc. 

The fifth cleaning operation removes all lines (one line represents, in fact, one sentence) with 

less than tree words. These very short sentences are most of the time harmful, because they are 

abbreviations or numbers that the previous operations were unable to handle. 

In particular, for the europarl corpus, we had to employ a special sixth cleaning operation. The 

corpus is, for some unknown reason, not entirely in Romanian. Probably due to an acquisition 

error, some computer-generated sentences, which mark the time when the meetings began, were 

suspended, resumed, etc., are randomly written in another language (Spanish, German, English, 

Greek, etc.). Therefore we needed a method to remove these sentences. The sixth processing 

operation uses the list of words in the extensive phonetic dictionary (described in Section 4.1.2) 

to remove all the sentences which have an out of vocabulary words (OOV) percentage of more 

than 30%. The percentage was empirically chosen to balance the removed Romanian sentences 

and the not-removed foreign sentences. 

In the end all letters were lowercased and the empty lines were removed. 

4.3.4 A more demanding text processing operation: diacritics restoration 

Romanian is a language that makes intensive use of diacritics. Even though it uses only 5 

diacritical characters (Ł, ©, ´, ĸ, Ş), their occurrence frequency is vey high: about 30% to 40% of 

the words in a general text are written with diacritics. A text that lacks diacritics would generally 

have these characters substituted by their non-diacritical forms: a, a, i, s, t. Even though for a 

human reader the meaning of a text without diacritics is most of the times obvious (given the 

paragraph context), the diacritics restoration task is not trivial for a computer. 

The words in Romanian can be grouped into two categories, based on the ambiguity caused by 

lack of diacritics: 

a) non-ambiguous words (words that are either written without any diacritics or written 

with a fixed diacritics pattern): alb (white, in English), astfel (like this), pŁdure (forest), 

ĸtiinŞific (scientific), 

b) ambiguous words (words that can be written with several diacritics patterns): casa / casŁ 

(the house / a house), pana / panŁ / p©nŁ (the feather / a feather / until). 

The word-level context ambiguity is usually not bothering for a human reader if the phrase-level 

context is known. There are only a few cases in which, given the phrase-level context, a human 

would not be able to infer the correct meaning of the phrase. Such an example is Am vŁzut o fatŁ 

frumoasŁ (I saw a beautiful girl), versus Am vŁzut o faŞŁ frumoasŁ (I saw a beautiful face), 

where the text-level context is required in order to handle the ambiguity t / Ş in fatŁ / faŞŁ (girl  / 

face) [Ungurean, 2008]. 
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Most of the Romanian news corpora which are acquired using the WaC (Web-as-Corpus) 

approach come without diacritics. For a news article, the diacritics are not very important since 

any reader has access to the full text-level context and ambiguities appear seldom. On the 

contrary, the output of an ASR system could be very short and elliptical and the lack of 

diacritics could make it ambiguous or even incomprehensible. Therefore, an automatic diacritics 

restoration system is definitely needed. It can be used to restore the diacritics on the output of a 

diacritics-lacking ASR system or to restore the diacritics on all the corpora before language 

modeling and thus to create an ASR system which directly outputs texts with diacritics. 

4.3.4.1 Related Work 

Several, fundamentally different, diacritics restoration methods were developed for the 

Romanian language. Some of them are knowledge-based, while others use pure-statistical 

approaches. Some methods are only interested in the character-level context, while others 

perform better if the full word-level context is given. The amount of training resources is also an 

important factor, as this generally approximates the cost of developing a diacritics restoration 

system, given the method. 

A pure-statistical approach is described in [Mihalcea, 2002]. This method uses a character n-

gram model and experiments with a memory-based learning system (TiMBL) and a decision tree 

classifier (C4.5). A very important plus for the method is its language independency. Only a 

medium size text corpus is required to train the character n-gram model and no word-level 

assumptions are made. The method is applied for four different languages: Czech, Polish, 

Hungarian and Romanian and reports similar results (precision between 97.04% and 99.02%). 

For Romanian, the reported precision is 98.30%. 

A more elaborate, knowledge-based diacritics restoration method, using part-of-speech (POS) 

tagging to disambiguate the different diacritical words hypotheses, is introduced in [Tufiĸ, 1999] 

and refined in [Tufiĸ, 2008]. In the development phase, this system requires more NLP resources 

than the one presented in [Mihalcea, 2002], but also achieves a better performance: a word error 

rate (WER) of 2.25% and a character error rate (ChER) of 0.60%. The method was integrated 

into a standalone diacritics restoration system (Diac
+
), which is available online as a MS-Office 

add-on [Diac]. 

In [Ungurean, 2008] the diacritics restoration system is regarded as a sequential filtering process 

based on unigrams and bigrams of diacritical words and trigrams of diacritical word-suffixes. 

This method needs only a medium size text corpus to train the various language models and to 

create a map connecting the non-diacritical word forms to all their diacritical word forms. The 

authors insist on the fact that this method is adapted to Romanian thanks to the usage of word-

suffixes trigrams. The results reported for this method are similar to the ones reported by [Tufiĸ, 

2008]: a word error rate of 2.13% and an overall F-measure of 99.34%. The same research group 

has recently published updated diacritics restoration results. On a 2 million words part of the 

europarl corpus, [Ungurean, 2011] reports a word error rate of 1.4% and a character error rate of 

0.4%. These are the best diacritics restoration results reported so far for Romanian. 

4.3.4.2 Diacritics restoration method description 

A statistical language modeling method which has been successfully used for several 

disambiguation tasks (including true-casing [LiŞŁ, 2003]) is proposed in this thesis for diacritics 

restoration. The training and restoration methodologies are depicted in Figure 4.8. 
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Figure 4.8 Diacritics restoration system architecture 

The only resource needed by this method is a text corpus with correct diacritics. Based on this 

corpus, two higher-level structures are built: an n-gram language model and a probabilistic map 

(which links all non-diacritical word forms to all their possible diacritical word forms). An 

excerpt of a probabilistic map is shown in Table 4.15. 

Table 4.15 Probabilistic map excerpt 

é 

dacia: dacia 1.0 

fabricand: fabricând 1.0 

pana: pana 0.005, panŁ 0.008, p©nŁ 0.987 

sarmana: sŁrmana 0.847, sŁrmanŁ 0.153 

tari: tari 0.047, Şari 0.002, ŞŁri 0.942, t©r´ 0.008 

é 

Given a text corpus in which the diacritics are partly or entirely missing we estimate the 

diacritical form of every word in the corpus in a word-by-word manner. If the non-diacritical 

word form ndw is not found in the probabilistic map we leave it unchanged. Otherwise, we 

estimate the diacritical form dw
*
, given the preceding sequence of N diacritical words dws, by 

finding the diacritical word form dwi that maximizes this formula: 

 )|()|(maxarg* ndwdwpWdwpdw ii
dwi

 (4.1) 

The first factor in the equation is estimated by the n-gram language model, while the second one 

is estimated by the probabilistic map. 

4.3.4.3 Experimental setup 

For development and evaluation, several corpora were used, just as shown in Table 4.16. Details 

about these corpora were given in Section 4.3.2. Note that one of the training corpora (misc1) 

and one of the evaluation corpora (misc2) have also been used in [Ungurean, 2008] and were 

provided by the authors. The 9am30art corpus comprises the first 30 articles of the 9am corpus 

for which the diacritics were manually restored (in the reference text). 

Table 4.16 Diacritics restoration development and evaluation data 

Corpus name Size [words] Usage 

europarl 5.3M development 

misc1 9.8M development 

9am30art 13k evaluation 

misc2 1.2M evaluation 
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The n-gram language models were constructed using the SRI-LM Toolkit [Stolcke, 2002] and 

the probabilistic map was created using a Java command line application. The disambiguation 

method which uses these two resources is also provided by the SRI-LM Toolkit (the disambig 

tool). This tool actually translates a stream of tokens from a vocabulary V1 (in our case: words 

without diacritics) to a corresponding stream of tokens from a vocabulary V2 (in our case: words 

with diacritics), according to a probabilistic, 1-to-many mapping. Ambiguities in the mapping 

are resolved by finding the V2 sequence with the highest posterior probability given the V1 

sequence. This probability is computed from pair wise conditional probabilities p(V1|V2), as well 

as a language model for sequences over V2. 

Given that the Diac
+
 system is freely available online we were able to evaluate this system on 

our own data as well. The results are presented in the following section. 

For evaluation (words/characters alignment and word/character error rate computation) we have 

used the sclite tool provided in the NIST Scoring Toolkit. 

4.3.4.4 Comparative results 

The diacritics restoration systems were evaluated in terms of word error rate (WER), character 

error rate (ChER) and F-measure. The word error rate is calculated exactly as for an ASR task 

(see Section 2.5). The character error rate is computed similarly, but, instead of word insertions, 

deletions and substitutions, the character measures are evaluated. For these evaluation metrics 

(WER and ChER) the ideal score is 0. The F-measure is defined as the harmonic mean of 

precision and recall. Precision is the ratio between the number of correctly inserted diacritics and 

the number of diacritics in the hypothesis text, while recall is the ratio between the number of 

correctly inserted diacritics and the number of diacritics in the reference text. For these 

evaluation metrics (precision, recall and F-measure) the ideal score is 100%. Note that precision 

and recall values are different when the results are given individually per character (Table 4.18), 

but when the overall results are presented (as in Table 4.17 and last line of Table 4.18) they are 

equal, and consequently equal to the F-measure value. 

In order to find the best setup for the language model we have performed the following 

experiments (Table 4.17): 2-gram up to 5-gram language models with probabilistic maps 

(experiments 1 to 4). The conclusion was that the 3-gram language model performs best and it is 

also simpler than the 4-gram and 5-gram language models, which have similar results. In the end 

a plain map which assigns equal probabilities to all existing diacritics patterns for a word, was 

tested, but the results were significantly worse. Our conclusion was that, given the amount of 

training data, our method works best if it makes use of a 3-gram language model and a 

probabilistic map. 

Table 4.17 Diacritics restoration parameter tuning results 

Exp LM  Prob Map 
Evaluation corpus: misc2 Evaluation corpus: 9am30art 

WER ChER F-measure WER ChER F-measure 

1 2-gram probabilistic 2.07% 0.50% 98.69% 1.55% 0.32% 99.15% 

2 3-gram probabilistic 1.99% 0.48% 98.73% 1.50% 0.31% 99.18% 

3 4-gram probabilistic 1.99% 0.48% 98.73% 1.48% 0.31% 99.19% 

4 5-gram probabilistic 2.00% 0.49% 98.71% 1.49% 0.31% 99.18% 

5 3-gram plain 2.24% 0.54% 98.58% 1.51% 0.33% 99.13% 
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Table 4.18 lists the various performance metrics for the individual characters that are subject to 

diacritics restoration. The first conclusion that can be drawn based on these results is that the 

method exhibits better performance metrics for the non-diacritical characters (a, i, s, t). Also, 

there are ambiguity classes (i / î; s / ĸ) which are almost perfectly solved, while others (a / Ł / â) 

pose serious problems. The a / Ł ambiguity is a specific and difficult problem for Romanian, 

because all the feminine nouns and adjectives whose singular, indefinite form ends in Ł have 

their singular, definite forms ending in a. Consequently, these word forms cannot be 

disambiguated easily and we would probably need higher order n-gram models or some 

linguistic, knowledge-based method to approach this ambiguity. 

The individual character results and the above conclusions are consistent with the ones presented 

in [Mihalcea, 2002] and [Ungurean, 2008]. 

Table 4.18 Diacritics restoration individual character evaluation 

Ambiguity  

class 
Char 

Evaluation corpus: misc2 Evaluation corpus: 9am30art 

Precision Recall F-measure Precision Recall F-measure 

a / Ł / © 

a 98.28% 97.71% 97.99% 99.32% 98.20% 98.75% 

Ł 94.42% 96.13% 95.27% 93.73% 97.54% 95.60% 

â 98.79% 97.55% 98.16% 97.00% 99.08% 98.03% 

i / î 
i 99.97% 99.88% 99.92% 100% 99.96% 99.98% 

î 99.26% 99.65% 99.45% 100% 100% 100% 

s / ĸ 
s 99.75% 99.62% 99.69% 99.21% 99.89% 99.55% 

ĸ 98.71% 99.14% 98.92% 99.66% 97.67% 98.65% 

t / Ş 
t 99.52% 99.62% 99.57% 99.78% 99.96% 99.87% 

Ş 97.74% 97.21% 97.47% 99.70% 98.51% 99.10% 

all all 98.73% 98.73% 98.73% 99.18% 99.18% 99.18% 

Table 4.19 presents comparative results between our method (Exp 1) and the methods proposed 

in [Tufiĸ, 2008] (Exp 2, 3) and [Ungurean, 2008] (Exp 4). 

The evaluation of the method presented in [Ungurean, 2008] on the misc2 corpus is already 

available in their article (this corpus was provided by the authors). The performance metrics 

obtained on the 9am30art corpus were also provided by the authors on our demand. 

The evaluation of the Diac
+

 system was somehow more complicated, because the freely-

available MS Office add-on is not a fully unsupervised system. The method can work in an 

unsupervised scenario, as the authors assert in [Tufiĸ, 2008] (ñthe S-words were automatically 

dealt withò), but the MS Office add-on does not; it deals with most of the unambiguous and 

ambiguous words and prompts the user to select the right word only for the POS ambiguous 

words. To evaluate this system we have selected POS ambiguous words alternatives in two 

different ways: 

 Exp 2: we have manually selected the first alternative provided by the system, 

 Exp 3: we have left the POS ambiguous words in their non-diacritical form (as if the 

system did not know how to deal with these words). 

For the 9am30art corpus we were needed to make 160 manual selections for Exp 2. 

Due to the fact that the Diac
+
 MS Office add-on was not able to restore the diacritics on the 

large, 1.2 million words evaluation corpus, we were not able to fill all the cells in this table 

(these cells were marked n/a). For the same reason we have also evaluated the three systems on 

a smaller corpus, namely 9am30art. 
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Table 4.19 Diacritics restoration comparative results 

Exp 
Diacritics restoration 

methods 

Evaluation corpus: misc2 Evaluation corpus: 9am30art 

WER ChER F-measure WER ChER F-measure 

1 this method 1.99% 0.48% 98.73% 1.50% 0.31% 99.18% 

2 Diac+ [Tufiĸ, 2008]* n/a n/a n/a 1.61% 0.34% 99.11% 

3 Diac+ [Tufiĸ, 2008]**  n/a n/a n/a 2.28% 0.51% 98.67% 

4 [Ungurean, 2008] 2.13% 0.25% 99.34% 2.37% 0.50% 98.95% 

The comparative results presented in Table 4.19 clearly show that for the larger evaluation 

corpus the method presented in [Ungurean, 2008] is the best in terms of character-level 

evaluation. Yet, the method we propose outperforms it in terms of word-level evaluation. This 

mismatch between the character-level and word-level evaluation metrics leads us to the 

conclusion that one method manages to correctly restore some diacritics, but fails to restore 

some other, which are correctly restorer by the second method. Consequently a combined 

method would probably output even better results. 

As regarding the Diac
+
 system, if the ambiguous words are left non-diacriticized, the results are 

a lot worse comparing to both the other diacritics restoration systems. If the first alternative, as 

provided by the system, is selected, then the results are comparable to the ones obtained by our 

diacritics restoration method. 

One important conclusion that can be drawn based on Table 4.19 is that the evaluation corpus is 

very important: experiments 1 and 4 exhibit significant differences in the diacritics restoration 

performance on different evaluation corpora. In Exp 1 we observe better performance on the 

9am30art corpus, while in Exp 4 we notice better figures for the misc2 corpus. The results 

obtained on the misc2 corpus are more trustful given the larger size of this corpus (see Table 

4.16), but the significantly different results obtained on the 9am30art corpus (which is also 

satisfactory large) underline the fact that different diacritics restoration systems cannot be 

directly compared when the experimental setups are different.  

4.3.4.5 Conclusion 

Romanian texts are filled with diacritical words: about 30% to 40% of the words in a general 

text are written with diacritics. Most of the corpora acquired via the web lack diacritics, because 

a human reader can infer the sense of the text even without diacritics. Even though the diacritics 

restoration task is an NLP task that could seem unrelated to the subject of this thesis, the 

restoration process is critical for automatic speech recognition systems which are required to 

output correct Romanian texts. These ASR systems benefit from LMs and their output is directly 

dependent on the language models which, in turn, must be trained with correct Romanian texts. 

This thesis proposes an easy-to-build statistical diacritics restoration system which is constructed 

using a single resource: a medium-size text corpus with correct diacritics. A brief review of all 

the other Romanian diacritics restoration systems is also made. The proposed method is 

evaluated and compared with the most recent systems and the conclusion that we reach is that 

our method is one of the best diacritics restoration methods available for Romanian.  

Moreover, we also conclude that statistical methods (this method and the one presented in 

[Ungurean, 2008]) are at the moment better than knowledge-based methods (the one presented 

in [Tufis, 2008]), and could perform even better if more training data would be available. 

However the statistical methods are limited when it comes to ambiguities that can only be solved 

using linguistic information (see the a / Ł ambiguity class). 

The diacritics restoration system was in the end used to restore the diacritics in the two large 

news corpora (9am and hotnews) which were acquired via the web. These two corpora were 
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critical resources (see Section 6.1.2) needed to create the large-vocabulary continuous speech 

recognition system. 

4.3.5 Text corpora analysis 

The corpora that will be further used for language modeling are europarl, 9am and hotnews. This 

section will focus on a short analysis of these corpora, discussing the most common words, the 

words occurrence distribution, the words length distribution, etc. Note that these are general 

Romanian texts, and the news corpora (9am and hotnews) are the largest reported for this 

language (see Section 4.3.1 for other corpora sizes). Their size (63M words and respectively 

100M words) makes them good candidates for characterizing written Romanian. 

Table 4.20 lists the most frequent words in the three corpora and their relative occurrence 

frequency. The table shows that the most frequent 4 words (de, ĸi, în, a) are the same for the 

three corpora. The smaller corpus (europarl) exhibits an inflated frequency for the word în, but, 

as regards the other three most frequent words, the occurrence percentage is very similar among 

the three corpora. The europarl corpus is probably too small to estimate real word occurrence 

percentages. As listed in Table 4.20, the most frequent 15 words ranking differs quite a lot for 

this corpus when compared to the other two. 

Table 4.20 The most frequent words in the corpora 

europarl (5.3M words)  9am (63M words)  hotnews (100M words) 

Rnk Word Occ. [%]  Rnk Word Occ. [%]  Rnk Word Occ. [%] 

1 de 4.66%  1 de 4.93%  1 de 5.01% 

2 în 3.46%  2 ĸi 2.95%  2 ĸi 3.13% 

3 ĸi 3.35%  3 în 2.55%  3 în 2.59% 

4 a 2.26%  4 a 2.33%  4 a 2.27% 

5 sŁ 2.13%  5 la 1.88%  5 la 1.93% 

6 la 1.42%  6 o 1.19%  6 o 1.07% 

7 care 1.39%  7 din 1.06%  7 din 1.04% 

8 pentru 1.38%  8 mii 1.01%  8 cu 1.00% 

9 cŁ 1.23%  9 cu 1.00%  9 sŁ 0.99% 

10 o 1.12%  10 care 0.97%  10 care 0.95% 

11 este 1.09%  11 sŁ 0.95%  11 cŁ 0.90% 

12 cu 1.04%  12 cŁ 0.93%  12 pe 0.89% 

13 din 0.96%  13 pe 0.88%  13 pentru 0.82% 

14 nu 0.95%  14 pentru 0.86%  14 mai 0.78% 

15 mai 0.78%  15 douŁ 0.81%  15 nu 0.77% 

As regarding the 9am and hotnews corpora we observe that the first 15 word ranking is almost 

the same. We noticed that the words douŁ (two) and mii (thousands) appear in the 9am corpus 

more times than usual due to the fact that every article in this news corpus is dated with dates 

between 2004 and 2011. These numerical dates are translated to plain text and thus the inflated 

frequency for the two words. Regardless, we see that, besides these two words, the top 13 most 

frequent words ranking is practically identical for the two corpora. Moreover, the occurrence 

percentages are very similar for these 13 words (the most significant difference is noticed for the 

word o which appears 10% more in the 9am corpus). Given this, we can conclude that these 

words are the most frequently used words in Romanian and that their occurrence percentage is 

very similar to the one presented in Table 4.21. 
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Table 4.21 The most frequent words in Romanian (all corpora ï 169M words) 

Rank Word Occ. [%] 

1 de 4.97% 

2 ĸi 3.07% 

3 în 2.60% 

4 a 2.29% 

5 la 1.89% 

6 o 1.12% 

7 din 1.04% 

8 sŁ 1.01% 

9 cu 1.00% 

10 care 0.97% 

11 cŁ 0.92% 

12 pe 0.88% 

13 pentru 0.85% 

14 mii 0.84% 

15 mai 0.79% 

Table 4.21 shows an interesting fact: the words occurrence percentage decreases very fast. If this 

trend continues through-out the rest of the top, then it means that a small number of unique 

words will make up a large percentage of the corpus. Table 4.22 tries to give us a glimpse on 

how important are the first most frequent words in the three corpora. The table shows the 

coverage of the most frequent 100 words, 1k words, 10k words and 64k words. 

Table 4.22 Most frequent words corpora coverage 

 Occurrence in corpus [%] 

Word groups europarl 9am hotnews all 

most frequent 100 45.8% 46.7% 43.0% 43.6% 

most frequent 1000 72.6% 67.7% 64.7% 65.6% 

most frequent 10k 95.5% 89.2% 87.6% 88.1% 

most frequent 64k 100% 98.3% 97.9% 98.0% 

Given the data in the Table 4.22 we can conclude that only a small fraction of the words in a 

corpus covers a large part of that corpus. The number of unique words for the three corpora was 

shown before in Table 4.14. This unbalanced word distribution is discussed also in [Koehn, 

2005] and a famous formula (the Zipfôs law) is emphasized. According to this, the product of the 

rank r of each word (sorted by occurrence percentage) and its number of occurrences (frequency 

f) is roughly a constant. Table 4.23 makes an attempt to verify this formula and displays a 

comparison to results presented in [Koehn, 2005]. Just as in the experiments done in [Koehn, 

2005], we conclude that the Zipfôs law is mostly verified. The product of rank r and frequency f 

is roughly constant for most words, but drops off for the lowest ranked words. 
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Table 4.23 Zipfôs law verification attempt 

All Romanian corpora (169M words)  English europarl corpus (29M words) 

Rank Word Frequency r*f   Rank Frequency r*f  

1 de 8375953 8375953  1 1929379 1929379 

10 care 1630568 16305680  10 424552 4245520 

100 minus 170814 17081400  100 30384 3038400 

1000 americanŁ 16171 16171000  1000 2793 2793000 

10000 biletul 1398 13980000  10000 70 700000 

100000 restrictivi 24 2400000  86999 1 86999 

Another interesting fact we observe in Table 4.21 is the short length of the most frequent words. 

Although this observation could seem trivial and not important, the statistics regarding the 

frequency of short vs. long words is very important for speech recognition. One of the tuning 

factors of an ASR system is the word insertion penalty ï a parameter which controls the word 

insertion errors by assigning a lower or higher probability penalty to word splitting. If this 

penalty is larger than required for the language, then the ASR system will output longer, wrong 

words instead of two or three correct, short words. On the other hand, if the penalty is smaller 

than required for the language, the ASR system will assign higher probabilities to two-three 

wrong short words instead of a single, longer correct word. 

The word length distribution is different for different languages and, therefore, it needs to be 

estimated for the target language. The estimation can only be done using large enough text 

corpora, such as the ones analyzed in this section. 

Figure 4.9 displays a word length distribution analysis made on the three corpora. The analyzed 

word lengths are from 1 to 15. Although there are a few words longer than 15 characters, their 

number is not significant. 

 

Figure 4.9 Words length distribution for the corpora  

Several important conclusions can be drawn from the words length statistics. First, we observe 

that the three distributions are very similar. The 9am and hotnews distributions are almost 

identical, while the europarl distribution presents a higher peak for 2-character words and lower 
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values for 3-character and 4-character words. In the end we conclude that even a small corpus, 

such as europarl (5.3M words), is enough to create a satisfactory estimate of the words length 

distribution. 

The second observation regards the strange shape of the words length distribution. The 

extremely high number of 2-character words is unexpected. Also unexpected is the small 

number of 3-character words (the 3-character words are fewer than 2-character words and also 

fewer than 4-character words). We could assume that this strange shape is caused by specific 

text corpora or data sparseness, but, as previously observed, the distribution is similar for the 

three corpora and, to argument even more, tests on other corpora show similar words length 

distributions. 

The average word length calculated based on the data in Figure 4.9 is 5.42 characters per word 

for europarl, 5.12 characters per word for 9am and 5.11 characters per word for hotnews. 

As the words length distributions for the three different corpora are very similar we assume that 

this is the general case for the Romanian language and show a unified Romanian words length 

distribution in Figure 4.10. 

 

Figure 4.10 Words length distribution in Romanian 

4.4 SUMMARY  

This chapter has presented the various resources acquired with the purpose of building a 

speaker-independent large-vocabulary speech recognition system. These resources are 

indispensable and generally unavailable, thus we invested a lot of time in creating them. 

Acquisition tools and processing tools were also developed given the need for phonetic, speech 

and text resources. 

The phonetic resources and tools were discussed at the beginning of this chapter. We benefited 

from an already existing, extensive phonetic dictionary with about 600k phonetically transcribed 

word forms. Consequently, a huge amount of time that would have been invested in manually 

creating a phonetic dictionary was saved. However, after the text corpora have been acquired, 

we reached the conclusion that the existing phonetic dictionary was not enough. Tens of 

thousands of words, for which the dictionary did not provide any phonetic transcription, were 

encountered in the texts. This motivated the development of an automatic graphemes-to-
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phonemes conversion tool. This tool, which was evaluated to be the best among the graphemes-

to-phonemes tools available for Romanian, is one of the main contributions of the author of this 

thesis. 

The speech resources and acquisition tool were presented in the second section of this chapter. 

The section begins with a review of the existing speech databases and, based on the CMU 

Sphinx suggestions regarding database sizes, concludes that neither of the existing speech 

materials are enough to create a speaker-independent large-vocabulary CSR system. 

Consequently, the tedious task of speech database acquisition was approached. A speech 

acquisition tool, fully designed and implemented by the author of this thesis, was used to acquire 

most of the databases. To the best of our knowledge the isolated words database (WORDS) and 

the continuous speech databases (CS_01, CS_02, CS_03 and CS_04) form the largest group of 

speech materials available for Romanian. In the speech databases acquisition process several 

people were involved as coordinators and/or speakers. The author of this thesis was one of the 

main coordinators and speakers. 

The chapter ended with the section that presents the text corpora acquired and the processing 

tools implemented with the final goal of creating a general language model for Romanian. The 

section begins with a review of the existing text corpora for Romanian and concludes that only 

the combination of all the corpora could be enough to build a decent, general language model for 

Romanian. Still, most of the corpora reported to be used by different research groups are not 

available (neither for research, not for commercial purposes). Consequently, the need of large 

amounts of written data motivated us to approach the task of collecting several text corpora. 

After the acquisition process, a text cleaning tool, fully designed and implemented by the author 

of this thesis, was employed to address several important ñcleaningò operations, such as html-to-

text conversion, numbers-to-text conversion, special characters handling, etc. A very important 

and more demanding processing operation was diacritics restoration. This was mandatory for the 

news corpora which lacked diacritics and required the construction of a diacritics restoration 

tool. The tool, which is also one of the main contributions of the author, was evaluated and 

compared to other existing diacritics restoration systems for Romanian and turned out to be one 

of the best. 

Every section in this chapter ends with a statistical analysis of the resources, yielding interesting 

conclusions regarding phonemes distribution, words distribution, words length distribution, etc. 

all for the Romanian language. 

 



 

 

CHAPTER 5  

 

ACOUSTIC MODELS 

CONSTRUCTION AND OPTIMIZATION  

This chapter presents the various experiments and acoustic models optimizations made during a 

period of two years, consequently revealing the evolution of our ASR system. The experiments 

were started when the speech databases acquisition process was still in progress, therefore the 

reader will note that the earlier experiments refer only to some parts of the WORDS database 

and some parts of the CS_01 database. Secondly, the language models employed in the 

experiments presented in this section are basic word-loop language models because, at that time, 

we had no text corpora to build n-gram language models. Nevertheless, the usage of basic 

language models was also beneficial because the acoustic models improvement could have been 

emphasized. Finally, the evolution revealed in this chapter was also caused by the knowledge 

and the experience the author has gained during this period of time. 

In conclusion, this chapter starts with some general, introductory issues regarding speech units 

(selection, context-dependency and clustering), development strategy and database 

homogeneity. The chapter continues by presenting the optimization experiments made on the 

WORDS database, including model topology optimizations and decoding speed optimizations. 

The chapter concludes with continuous speech recognition experiments made on the CS_01 and 

CS_02 databases. These experiments show the evolution and improvement of our acoustic 

models. 
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5.1 INTRODUCTORY ISSUES 

The main theoretical issues regarding acoustic modeling for automatic speech recognition were 

presented in Section 2.4. In the end, the section concluded that state-of-the-art large-vocabulary 

speech recognition systems use Bakis-type Hidden Markov Models (HMMs) with Gaussian 

Mixture Models (GMMs) as output pdfs to model sub-words speech units such as context-

dependent phones (triphones) or senones. The HMMs model these speech units using perceptual 

acoustic features (MFCCs or PLP coefficients) extracted out of the original time-domain speech 

signal. 

In our attempt to create a continuous speech recognition system for Romanian we have decided 

to use the state-of-the-art mathematical tool: HMMs with GMMs, as shown above, and to tackle 

all the other issues regarding the design of the models, acoustic features selection, speech units 

selection, etc. in an empirical  manner. 

5.1.1 Speech units selection 

The selection of the speech units was the first issue that we approached. It is obvious, as argued 

in Section 2.4.3, that for a large-vocabulary continuous speech recognition system we cannot use 

words as basic speech units. They are neither trainable (there are not enough occurrences for 

every word to robustly train a model), nor generalizable (for every new ASR task, with a new 

vocabulary, a new set of models needs to be constructed). Consequently, sub-words speech units 

such as context-independent phones (simply called phones), context-dependent phones 

(triphones) or syllables have to be employed. The trainable attribute (there should be enough 

data to estimate the parameters of the unit) of a properly chosen speech unit, as discussed in 

Section 2.4.3, limited our possibilities to phones and triphones. The reason: we do not have 

enough occurrences to train syllable models neither in the WORDS database, nor in the CS_01 

database (Table 5.1). 

Table 5.1 Speech units in the WORDS and CS_01 speech databases 

 WORDS database CS_01 database 

 phones triphones syllables phones triphones syllables 

number of 

different models 
36 models 7359 models 

8321 

models 
34 models 4524 models n/a 

total number of 

occurrences 
95801 95801 37078 82873 82873 n/a 

less than 10 

occur rences 
1 type 5235 models 

8076 

models 
0 models 2670 models n/a 

10 ï 20 

occur rences 
0 models 980 models 82 models 1 models 685 models n/a 

20 ï 50 

occur rences 
1 models 832 models 64 models 0 models 710 models n/a 

50 ï 100 

occurrences 
0 models 210 models 42 models 1 models 269 models n/a 

more than 100 

occur rences 
34 models 103 models 58 models 32 models 191 models n/a 

As Table 5.1 shows, the isolated words database (WORDS) is large enough to suitably train 

phone models, and could be used to train triphone models if some efficient parameter-sharing 

techniques are adopted in order to overcome the data sparseness problem (a very small number 

of occurrences for over 5000 models). Nevertheless, syllable models have no chance of being 

suitably trained on this isolated words database as over 6000 models have less than two 
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occurrences. Although this could be regarded as a disadvantage for the isolated words database, 

we have to remember that its development purpose was to cover all the syllables in Romanian 

and not to create sufficiently numerous occurrences for syllable modeling. 

Regarding the continuous speech database CS_01, one can clearly see that, as it was built from a 

relatively small number of phrases (which contain only common words), it does not include all 

the speech unitsô types that the isolated words database contains. Two of the least frequent 

phones in Romanian (o2 and y), which had only a few occurrences in the WORDS database, do 

not appear in the CS_01 speech database at all. As for the triphones, about 2600 types that had 

less than 10 occurrences in the isolated words database do not appear in the continuous speech 

database at all. 

Another important issue to point out in Table 5.1 is that the total number of phones (and 

triphones) occurrences is similar between the two databases; from this point of view the isolated 

words database is only 13.5% larger. 

In conclusion, the purpose of the above argumentation was to demonstrate that, given these 

speech database, only phones or triphones could be employed as basic speech units. Even if 

most of the studies and books [Huang, 2001] vote in favor of triphones, we have decided to 

experiment with both types of speech units (context-independent and context-dependent). 

Moreover, one of our isolated words recognition studies [Cucu, 2011a] investigates the 

possibility of using a mixed phones-triphones system. 

Even though triphones are shown to yield better results [Huang, 2001] thanks to their more 

suitable context adaptation, their usage has to overcome an important caveat: due to their 

constructive nature, the number of different triphones is a lot larger than the number of different 

phones. This is a drawback because it affects trainability on small databases (the same speech 

database could be large enough to train phone HMMs, but could be insufficient to properly train 

triphone HMMs). Triphone modeling assumes that every triphone context is different. Actually, 

many phones have similar effects on the neighboring phones. All the triphones that share the 

central phone are acoustically very similar; hence their models central states have similar 

parameter values, as shown in [Beulean, 1997; Liu, 1999; Steward, 2002]. Taking these into 

account we have decided to use the tied-states technique: triphones that share the central phone 

are to be modeled with HMMs that share the central states. This approach reduces the number of 

parameters that have to be trained for the triphones ASR system and thus reduces the risk of 

ending up with undertrained HMMs. 

The tied-states technique has been used in all the isolated words recognition experiments which 

were made using the HTK Toolkit. After the migration to CMU Sphinx, which implicitly uses 

senones (state-dependent output pdfs across different phonetic models), we have used only 

context-dependent triphone models with clustered states for all the continuous speech 

recognition experiments. 

Regardless of the chosen speech units, the speech pauses have to be modeled in a similar manner 

using HMMs. We need to differentiate two types of pauses: the long pause at the beginning of 

the phrase or between phrases, and the short pause that one usually makes between two words. 

The short pause has been modeled by cloning one of the central states of the long pause model 

and using the previously-mentioned tied-states technique, resulting in a one-emitting-state 

HMM. 

5.1.2 The hierarchical training strategy 

The previous section presented the issues that have to be taken into consideration when 

designing an HMM-based ASR system. The output of this process is an initial set of HMMs that 

have to be trained using the training speech database (the HMMs enclose model parameters 

which now have to be estimated). 
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In order to design the training strategy for the ASR system several matters have to be 

considered. First of all, the isolated speech unit training would definitely work well if there were 

a large enough database of isolated speech units. In the case discussed here (phones are being 

used as basic speech units), the isolated phones database (PHONES) has been acquired for 

initialization purposes only and is not large enough to be used on its own for training the system. 

Moreover, building a large isolated phones database is a tedious and time-consuming process. 

These being said, the isolated speech unit training will only be used for initialization, while the 

embedded-training technique will be employed for the system training. This technique 

(embedded-training) uses the Baum-Welch re-estimation algorithm and only requires 

information about the order (the sequence) of the speech units in a given utterance to perform 

the HMM training. Every basic speech unit is typically modeled with one HMM and all these 

basic HMMs can be concatenated to form words HMMs, which can be further concatenated to 

form word sequences HMMs. This is the mechanism which allows us to eventually estimate the 

probability of a sequence of words given the initial speech data. Moreover, this mechanism is 

the basis for the embedded-training process: the estimation of parameters for multiple, 

concatenated HMMs, given a speech signal composed of a sequence of speech units. 

Although embedded-training is quite comfortable from the database point of view, it is very 

vulnerable to wrong speech unitsô alignments. The estimation process stops once the probability 

that the estimated models generate the given speech utterance reaches a maximum. If, for some 

reason, this maximum is a local and not the global one, then the training will not be optimal. In 

order to have the best alignment, we have proposed a hierarchical system development strategy 

that involves several steps, which will be presented further on. 

First step: HMM system design. This step involves choosing the speech units to be modeled, the 

voice features to be used as modeling parameters, the HMM topology and the number of 

Gaussian mixtures per state. The output will be a set of ñprototypesò ï all the models parameters 

are given default values. 

Second step: System initialization. The set of ñprototypesò resulted from the previous step is 

initialized using the isolated speech unit training technique. The small isolated phones database 

(PHONES) is utilized for this purpose. The alternative to this type of system initialization would 

be ñflat startingò, which consists in computing the voice features for each frame of each speech 

utterance, and using the statistical results as initial model parameters. The output of this step will 

be a set of roughly initialized HMMs. 

Third step: Embedded phone HMM training. At this point the initialized models are trained 

using the isolated words database (WORDS). The training method employed is obviously 

embedded-training, because the WORDS database provides only information on the order of the 

phones and not on their temporal borders. In the end, the output of this step is a robustly trained 

HMM set. Its quality can be assessed and then, based on this evaluation, several design 

parameters can be adjusted. Of course, any design adjustment would mean restarting the 

development from step 1 and ending with evaluating the performance again. Several step-by-

step design adjustments have been made (as shown in Section 0) in order to reach the best 

performance. 

Fourth step: Embedded triphones HMM training. This step consists of two parts: the first one is 

a design adjustment that aims to create triphone models and the second one is another training 

session. Given the best set of phone HMMs trained at the previous step, we can build triphone 

HMMs by cloning the phone models (a triphone HMM is created by cloning the phone HMM 

for the central state). The tied-states parameter-sharing technique is also used as explained in the 

previous section. The newly created triphone HMM set is retrained (through embedded-training) 

by using the WORDS database. After this training session the performance of the system is 

reevaluated. 
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Fifth step: Embedded triphone HMMs training. This step uses the models obtained at step four 

and retrains them using the WORDS database and the CS_01 database. Finally, the continuous 

speech ASR system performance is evaluated. 

In conclusion, this hierarchical training strategy is designed to initialize and train the HMMs 

with small, but finer-grained annotated databases at first and large, but coarser-grained 

annotated databases as we go further. In this way we try to minimize the possibility of wrongly 

aligning the speech units while applying the embedded-training method. 

5.2 ACOUSTIC MODELS FOR ISOLATED WORDS RECOGNITION 

This section presents the isolated words recognition experiments we have employed in order to 

find the best acoustic models. The experiments follow closely the hierarchical training strategy 

presented in the previous section. 

5.2.1 Experimental setup 

For all the experiments in this section we have used two speech databases: the WORDS database 

and the PHONES database. The PHONES database contains single-phone audio files and will be 

used only for the initialization step (as specified in the hierarchical training strategy). This 

database was complete at the time these experiments were performed. A more detailed 

description and analysis of this database were made in Section 4.2.2 and Section 4.2.3. 

The WORDS database is an isolated words database. At the time these experiments were 

performed, only 5 speakers (2 males and 3 females) had recorded the list of 10000 different 

words. Most of the experiments in the following sections were made using the whole database, 

but some of them (will be outlined at the right time) were made only for a certain speaker. A 

more detailed description and analysis of this database were made in made in Section 4.2.2 and 

Section 4.2.3. 

These two databases had to be split into a training part and an evaluation part. Due to the small 

size of the PHONES database we have decided to use it all for training. With no separate 

evaluation part left, the phones recognition experiment made after the initialization is not very 

ñfairò. Regardless, we will present these results also and outline their moderate importance. 

The WORDS database consisted of 50000 audio files (10000 per speaker) which were split into 

a training part comprising 45000 files (9000 per speaker) and an evaluation part comprising 

5000 files (1000 per speaker). The split was made based on the files ids as follows: the files with 

ids between 5000 and 5999 were used for evaluation and all the other files were used for 

training. This split was made without any theoretical basis and could influence the recognition 

results if the database is not homogeneous. Consequently, we were required to make some 

experiments and validate the homogeneity of the WORDS database (Section 5.2.2 presents these 

results), just to make sure all the other results will be conclusive. 

All the experiments in the following sections employ basic word-loop language models. This 

means all possible phones (for the phones recognition experiment) or all possible words (for all 

the other experiments) are equally probable to be outputted at all times, regardless of the output 

history. Of course, the size of the phones/words vocabulary is a key factor here: we used 36 

possible phones (for the phones recognition experiment), respectively 10000 possible words (for 

all the other experiments). 

5.2.2 Isolated words database enlargement and homogeneity experiments 

The isolated words database (WORDS) was subject to a set of experiments that aimed to 

determine whether the database is large enough and whether the phonemes that make up the 

words in the database are uniformly distributed over the whole set of files. 
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Figure 5.1 Database enlargement experiment 

Section 0 will approach the ASR system design and will conclude with a ñmost suitable acoustic 

models designò for the phones ASR system. This design setup is used in this section to perform 

nine tests that aim to decide whether a smaller training database (of less than 9000 words) is 

enough to obtain the same ASR performance as in the case when the whole training database (all 

9000 words) is utilized. The tests were performed only for speaker 1 because the other audio 

files for the other speakers were not available at the time. Figure 5.1 presents the experimental 

results. The figure shows, the ASR system performance significantly grows when the training 

database size increases from 100 up to 6000-7000 words, but starts to saturate at about 8000-

9000 words. Consequently, the first few hundred audio files are very important, while the last 

few thousands audio files do not bring to much performance gain.  

All the experiments in Section 5.2 were performed by splitting the database into an evaluation 

part (the audio files with ids in the range 5000 ï 5999) and a training part (all the other files). 

The next experiment aimed to guarantee that splitting the database into two parts (a training 

database and an evaluation database) can be done in a random manner without artificially 

increasing or decreasing the ASR system performance. This experiment has also been performed 

only for speaker 1. Table 5.2 summarizes the results for the different database splitting 

experiments. 

Table 5.2 Database homogeneity experiments 

Speaker HMM configur ation 
Database 

WER 
training files testing files 

1 

ñmost suitable 

acoustic models designò 

for phones 

(see Section 0) 

all except testing files 

0000 ï 0999 5.94% 

1000 ï 1999 5.92% 

2000 ï 2999 5.81% 

3000 ï 3999 5.22% 

4000 ï 4999 5.51% 

5000 ï 5999 6.74% 

6000 ï 6999 6.73% 

7000 ï 7999 7.72% 

8000 ï 8999 6.71% 

9000 ï 9999 9.44% 
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The results presented in Table 5.2 show some important aspects regarding the WORDS database 

and uncover a method that can be used to detect database inconsistencies possibly caused by 

acquisition errors. For example the ASR system presented on the last row has a 50% higher 

word error rate when compared to almost all of the other ASR systems in the table. One of the 

reasons for the inconsistency could be the fact that the speaker was anxious to finish the 

database acquisition task (this ASR uses the last recorded 1000 files in the database for testing 

purposes). This assertion is also sustained by Figure 5.1 which exhibits an increase in the 

descending trend of the word error rate when these last 1000 files are appended to the training 

database. This means that these last 1000 files do not help, but actually harm the training 

process. 

5.2.3 ASR design experiments 

The first step in the hierarchical training strategy presented in Section 5.1.2 consists in choosing 

the HMM system design. The first configuration we have experimented with was based on 

Bakis-type context-independent phone (simply called phones) HMMs and Mel-Frequency 

Cepstral Coefficients (MFCCs). In the initial configuration, which was supposed to be optimal 

for speech recognition ([Jurafsky, 2009]), every HMM had 6 states (among which 4 were 

emissive) with 2 Gaussian mixtures per state.  

The phone recognition results (obtained after the second step in the hierarchical training 

strategy) were computed, as mentioned in the experimental setup section, on the same PHONES 

training database. Due to the small amount of data the same database was used for training and 

evaluation. Nevertheless, this experiment is only intended to roughly evaluate the phones 

classification power of the ASR system after initialization. The performance figures (in terms of 

phones error rates) are presented individually, per model type (phones) in Table 5.3. 

Table 5.3 Individual PER for the phones in the PHONES database 

Symbol PER [%]  

 

Symbol PER [%]  

 

Symbol PER [%]  

 

Symbol PER [%]  

a1 20 g 12 k 0 s1 16 

a 22 h 8 l 26 s 11 

b 13 i1 - m 20 t1 10 

d 22 i2 13 n 29 t 13 

e1 8 i3 5 o1 0 u 19 

e 23 i 11 o2 - v 22 

f 15 j 9 o 0 w 13 

g1 8 k2 - p 0 y - 

g2 - k1 3 r 8 z 23 

Going further to the third step in the training strategy, we have used the training part of the 

WORDS database to train the 6-states HMM system. A speaker-independent system was trained 

and evaluated using training and evaluation files from all the 5 speakers and, for comparison, 5 

speaker-dependent systems were also developed and evaluated using training and evaluation 

files in a ñper speakerò manner. The performance figures (in terms of word error rates) are 

presented in Table 5.4. This table shows that, as expected, the word error rate for the speaker-

independent ASR is higher than the word error rate for the speaker-dependent ASR. This issue 

will be overcome by enlarging the database. 
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Table 5.4 Speaker-dependent vs. speaker-independent ASR systems 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 

models for phones 

6-state HMMs 

2 GMs per state 

12 MFCCs + energy + 1st order derivatives 

51.07% 

1 22.33% 

2 21.93% 

3 30.58% 

4 25.55% 

5 28.57% 

The results presented in Table 5.4 will be regarded as a baseline for further experiments. As 

mentioned in Section 5.1.2, the third step in our development strategy involves numerous ASR 

design experiments that aim to find the best HMM configuration for the phone models. The tests 

for finding the best HMM configuration involved modifying the number of states in the HMMs, 

modifying the number of Gaussian mixtures per state and using the first and second order 

temporal derivatives for the voice features. 

Table 5.5 presents the word error rates for ASR systems that differ by the number of voice 

feature coefficients. The results clearly show that the most powerful ASR system is the one that 

takes into account only the MFCC coefficients and their first order temporal derivatives. These 

results are closely related to the size of the database: a small database can be used to suitably 

train only a few parameters, while a large database can be used to train more voice features. 

Table 5.5 Varying the number of voice features 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 
models for phones 

6-state HMMs 

2 GMs per state 

12 MFCCs + energy 80.34% 

12 MFCCs + energy + 1st order derivatives 51.07% 

12 MFCCs + energy + 1st and 2nd order derivatives 65.03% 

The HMMôs number of states and the number of Gaussian components per state are important 

parameters which might influence the performance of an ASR system. We experimented starting 

from the classical Bakis model (6 states HMMs with 2 GMs per state) and we varied the number 

of states per HMM as well as the number of GMs per HMM state, in order to find the optimal 

model with respect to the performance of the ASR system. The number of states in an HMM is a 

design parameter that has also a physical interpretation: an HMM with more states models 

longer phonemes better than an HMM with fewer states, and vice-versa for shorter phonemes. 

Having this in mind, after reaching an optimal performance for an ASR system with a fixed 

number of states for the HMMs, we tried to vary the number of states in a ñper modelò manner. 

Table 5.6 Varying the number of GMs per HMM state 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 

models for phones 

6-state HMMs 

12 MFCCs + energy + 1st order derivatives 

2 GMs per state 51.07% 

3 GMs per state 43.96% 

4 GMs per state 64.77% 

2 

1 GM per state 21.93% 

2 GMs per state 21.93% 

3 GMs per state 23.64% 
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A lot of experiments were performed in order to determine the optimal numbers for these two 

parameters. Table 5.6 and Table 5.7 summarize some results of these design experiments. 

Several conclusions can be drawn from the results in Table 5.6. It is obvious that the optimum 

number of Gaussian mixtures for the speaker-independent ASR system and for the given 

database is three. Also, it is clear that for a speaker-dependent ASR system this parameter is less 

important and could be set to one in order to optimize the computation time. The results are not 

surprising at all: 

 For a speaker-dependent system one Gaussian mixture is enough to model the variability 

of a single voice. Even though the phones are not uttered exactly the same, they are very 

similar and so are the cepstral coefficients for every state in the model. 

 For a speaker-dependent system (and in our case only five speakers in the training 

database) three Gaussian models are needed to best model the variability of these five 

voices. The phones are uttered in a particular manner by every speaker and thus the 

cepstral coefficients are also quite different. We expect that for a database with more 

than five speakers the optimum number of Gaussian mixtures to be larger. 

 As the HMMs better model the training database, the recognition rate difference between 

the speaker-independent and speaker-dependent ASR systems gets smaller. 

Table 5.7 Varying the number of states per HMM 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 

models for phones 

2 GMs per state 

12 MFCCs + energy + 1st order derivatives 

6-state HMMs 51.07% 

7-state HMMs 52.48% 

8-state HMMs 43.60% 

9-state HMMs 36.23% 

10-state HMMs 32.21% 

11-state HMMs 30.33% 

12-state HMMs 26.95% 

13-state HMMs 30.12% 

14-state HMMs 28.72% 

The results presented in Table 5.7 show that the ASR system performance grows with the 

increase of the number of states for the HMMs and reaches an optimum when the number of 

states is 12. The results are somehow surprising because 12 states is quite a large number 

compared to the Bakis model (with only six states), about which the literature says to have the 

smallest word error rate for small vocabularies. 

Up to this point the number of states has been kept constant over all the phone models which is 

not necessarily right. Some phones (such as consonants, for example) are clearly shorter that 

other phones (such as vowels, for example). The optimum number of states obtained so far (12) 

is in fact a weighted average of all the phones optimum number of states. This idea led to our 

next experiment: modifying the number of states in a ñper modelò manner. In order to decide 

which would be the optimum number of states for a particular model, we have used the average 

length for that phone, as given by the 12 states ASR system. This average length (expressed in 

number of states) is summarized for some phones in Table 5.8. 
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Table 5.8 Average length for some phonemes 

Phoneme k1 l m p r s u 

Average length [no. states] 17 8 10 9 6 15 9 

This data has been used to re-design the 12-state HMMs ASR system in order to have different 

HMM models for the seven phones listed in Table 5.8. Seven different ASR systems have been 

generated and trained using the same development strategy and their performance was 

evaluated. The results are presented in Table 5.9. 

Table 5.9 Varying the number of states in a ñper phoneò manner 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 

models for phones 
12-state HMMs 

3 GMs per state 

12 MFCCs + energy + 1st order derivatives 

all HMMs ï 12 states 15.11% 

HMM for k1 ï 17 states 15.53% 

HMM for l ï 8 states 16.46% 

HMM for m ï 10 states 15.31% 

HMM for p ï 9 states 15.92% 

HMM for r ï 6 states 17.08% 

HMM for s ï 15 states 16.34% 

HMM for u ï 9 states 15.39% 

Although the preliminary observations seemed right, the performance of the ASR system did not 

increase when we modified the number of states for one of the HMMs, to take into account the 

most appropriate length for that particular phone. In conclusion, the model size and topology 

should be kept identical over all the models. 

While all these design experiments were in progress, the WORDS database was also being 

extended and, in the end, we were able to evaluate the ASR systems with an 8-speaker database. 

Of course, for the 8-speaker ASR we had to redo the number of Gaussian mixtures per state 

optimization process. It was no surprise to see that better results were obtained with more than 3 

GMs per state. 

Table 5.10 Best isolated words recognition results 

Speaker HMM configur ation WER 

1 ï 5 

models for phones 

12-state HMMs 

12 MFCCs + energy + 1st order derivatives 

3 GMs per state 

15.11% 

1 6.74% 

2 5.53% 

3 8.25% 

4 6.74% 

5 4.83% 

9 11.67% 

12 3.22% 

15 29.38% 

1 ï 5, 9, 12, 15 3 GMs per state 23.64% 

1 ï 5, 9, 12, 15 6 GMs per state 15.47% 
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The best results for the phone models that have been obtained for the eight speakers are 

presented in Table 5.10. As the table shows, the results are really good for most of the speaker-

dependent systems. The poorer results for speaker 9 and 15 are probably due to inconsistent 

recordings and they are probably also responsible for the relatively large WER for the 8-

speakers ASR system. 

The embedded-training technique does not issue the best results after the first training iteration 

of the Baum Welch algorithm. Consequently, several training iterations have to be employed 

until the word error rate for the ASR system reaches an optimum. Figure 5.2 presents the 

performance variation over several training iterations for the optimal speaker-independent (5-

speaker) ASR system. 

 

Figure 5.2 WER variation over the training iterations  

Going further, we have continued with the development steps (step 4 in the hierarchical training 

strategy), and created context-dependent phone (triphone) models out of the context-independent 

phone models. Table 5.11 compares the performance of the phones ASR system and the 

triphones ASR system. 

Table 5.11 Varying the type of models: phones vs. triphones 

Speaker HMM configuration  WER 

1, 2, 3, 4, 5 

12-state HMMs 

3 GMs per state 

12 MFCCs + energy + 1st order derivatives 

models for phones 15.11% 

models for triphones 11.41% 

Although the results presented in Table 5.11 show that the triphones ASR system performs 

better than the phones ASR system, a more in-depth analysis proved that the gain in recognition 

rate is not purely incremental. In other words, the triphones ASR system fails to recognize some 

of the words that are recognized by the phones ASR system and vice-versa. Namely, the set of 

words recognized by the triphones ASR system (88.59% of the total words) does not include all 

the words recognized by the phones ASR system (84.89%). Figure 5.3 illustrates the actual 

intersection of the word sets. Figure 5.3 shows that if the triphones ASR system would also be 

able to recognize the words recognized by the phones ASR system or vice-versa we would 

obtain a system with a recognition rate of 95% (or a word error rate of 5%). 
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Figure 5.3 Recognized and unrecognized word sets for the ASR systems presented in Table 5.11 

The previous result supports the idea of creating a mixed ASR system that could make use of 

both phones and triphones as basic speech units. The two sets of models trained and evaluated so 

far can be utilized to perform a double recognition. In the end, the two recognition results are 

compared and the better recognized word is selected. The selection of the better recognized 

word is in this case very simple, because the two recognition probabilities outputted by the two 

systems can be directly compared. 

The experiments showed a significant performance improvement for the mixed phone-triphone 

ASR system: word error rate of only 7.28% (two times lower than the phones ASR word error 

rate). The downside of this system is that its recognition time is the sum of the recognition times 

for the composing systems plus a phones/triphones decision time. 

5.2.4 Language restrictions experiments 

All the experiments presented in the previous section were done using a basic word-loop 

language model with no restrictions. The ASR systems were required to recognize among the 

words in the extended 10k words vocabulary, although the testing audio files contained only a 

subset of 1000 words. Moreover, the ASR systems were allowed to output any combination of 

any words for every audio file, although every audio file contained only one word. Thanks to the 

fact that we know that we are dealing with single-word audio files and that the words uttered in 

these evaluation files are all part of a 1000-words vocabulary, we can create more restrictive 

language models. Obviously, these restrictions can be imposed only in an isolated words 

recognition scenario (continuous speech recognition will be dealt with separately). 

Table 5.12 presents the word error rates for the phones-based ASR system, for the triphones-

based ASR system and for the mixed-models ASR system, given three types of language 

restrictions. The first experiment (lines 1, 4 and 7 in the table) uses an unrestricted word-loop 

language model (the same as in the experiments presented in the previous section). The second 

experiment (lines 2, 5 and 8) uses a language model which ñknowsò that every audio file 

contains one single word, while the third experiment (lines 3, 6 and 9) employs a word loop 

language model with a reduced vocabulary (1000 words). 

Several conclusions can be drawn from Table 5.12. First, for the phones-based ASR system the 

language restrictions have a significant impact, decreasing the word error rate about four times. 

Second, for the triphones-based ASR system these language restrictions seem to be less 

significant. Third, a conclusion that is, in fact, an outcome of the first two: the triphones-based 

ASR system performs better that the phones-based ASR system only when loose language 

restrictions are being applied. Consequently, triphones-based systems should be even better in 

large-vocabulary continuous speech recognition, but in the case of isolated words recognition, 

when strict language restrictions are imposed, phone-based systems are better. And finally, 

regardless of the language restrictions, the mixed-models ASR system is the best.  
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Table 5.12 Imposing a set of language restrictions 

Speaker HMM configuration  
Word-loop language model restrictions 

WER 
Vocabulary size Words sequence restrictions 

1, 2, 3, 4, 5 

models for phones 
12-state HMMs 

3 GMs per state 

12 MFCCs + energy + 1st order 

derivatives 

10000 words any combination of any words 15.11% 

10000 words only one word 8.47% 

1000 words any combination of any words 3.76% 

1, 2, 3, 4, 5 

models for triphones 

12-state HMMs 

3 GMs per state 

12 MFCCs + energy + 1st order 
derivatives 

10000 words any combination of any words 11.41% 

10000 words only one word 10.99% 

1000 words any combination of any words 7.08% 

1, 2, 3, 4, 5 

mixed phone-tripho ne models 

12-state HMMs 

3 GMs per state 

12 MFCCs + energy + 1st order 

derivatives 

10000 words any combination of any words 7.28% 

10000 words only one word 5.61% 

1000 words any combination of any words 2.27% 

5.3 TIME OPTIMIZATIONS FOR ISOLATED WORDS RECOGNITION 

All the experiments presented in Section 5.2 aimed to find the best models from the recognition 

accuracy perspective and did not raise the real-time question. In some speech recognition 

applications real-time might not be a must, but in most of the cases it is. In speech recognition, 

the real-time factor is defined as the ratio between the processing (recognition) duration and the 

audio file length or duration. A lower-than-1 real-time factor is desirable for most common 

speech recognition applications such as dictation, human-computer dialogue systems, etc. 

This section introduces an innovative three-step recognition method that helps achieve the real-

time desiderate for the HTK-developed isolated words recognition systems. The baseline to 

compare our method with is presented in Table 5.13. These are, in fact, the ASR systems 

presented in Table 5.11 for which the real-time factor was also computed. The real-time factor 

(RTF) was computed as follows: the durations of all the audio files in the evaluation database 

were summed up (we obtained approximately 2 hours of speech) and the duration of the 

recognition process is divided by this number. For example, for the two experiments presented 

in Table 5.13, the recognition process took approximately 6.5 hours, respectively 3.5 hours. 

Two important things should be noted about the results presented in Table 5.13. First, the 

triphones ASR system is more accurate and also twice as faster as the phones ASR system. And 

second, both ASR systems are still far from achieving the real-time recognition goal. 

In order to better understand these results and try to get closer to the real-time recognition goal, 

the recognition process algorithm has to be analyzed and tuned. 

Table 5.13 Best recognition results using the usual recognition method 

HMM  

models 

Language information Recognition algorithm 

WER RTF 
Vocabulary 

size 

Words sequence 

restrictions 
Type 

Steps 

description 

phones 

10000 words 
any combination 

of any words 

one step 

recognition 

recognize 

words 

15.11% 3.24 

triphones 11.41% 1.77 
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5.3.1 Token passing algorithm analysis 

The process of speech recognition is to find the best possible sequence of words (or units) that 

will fit the given input speech. It is a search problem, and in the case of HMM-based 

recognizers, a graph search problem. To solve this problem, the well known Token Passing 

algorithm [Young, 1989] (a specific version of the Viterbi algorithm) is used. 

Before the actual recognition starts, a search graph is constructed based on the set of acoustic 

models and the language model (or language restrictions). The nodes in this search graph are 

HMM states, while the transitions are of several types: a) intra-HMM transitions, b) inter-HMM 

transitions and c) inter-words transitions. The search graph is meant to represents all possible 

sequences of phonemes in the entire language of the task under consideration. For example, the 

search graph in Figure 5.4 is designed for a digit recognition task. It can decode any speech 

input which contains the words zero (zero), unu (one), doi (two), ..., nouŁ (nine). As you can see 

the search graph is composed of HMMs for basic speech units, such as the phones u, n, d, o, i3, 

w, a1, etc., which are concatenated to form the words in the task vocabulary: unu, doi, nouŁ, etc. 

All the transitions in the search graph are probabilistic: the intra-HMM transition likelihoods 

have been computed during the acoustic model training (Baum-Welch algorithm), the inter-

HMM transitions are straight forward and finally, the inter-word transitions likelihoods are 

given by the language model (or language restrictions). For example, a basic word-loop 

language model would generate a search graph in which all inter-word transitions are as 

probable (all words are as probable and any word can follow any other word with the same 

probability). On the contrary, an n-gram language model would have specific probabilities for 

every word and specific probabilities for sequences of three words and would generate a search 

graph in which the inter-word transitions will not be as probable. 

Constructing the above search graph requires knowledge from various sources. It requires a 

dictionary, which maps the word unu to the phonemes u, n and u, the word doi to d, o and i1, 

etc., it requires the acoustic model to obtain the HMMs for the phonemes and finally, it requires 

the language model to obtain the inter-word transition likelihoods. 

 

Figure 5.4 A simple search graph example 
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