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ABSTRACT 

In this paper we propose an alternative way of improving 

speech recognition accuracy by analyzing the relevance of 

voice feature dimensions. A new measure is defined in order 

to quantify the feature distribution overlapping. Based on this 

measure, weights for voice feature dimensions are calculated 

and then applied to the hypotheses resulted from an N-best 

recognition process. Experiments are made with an 

Automatic Speech Recognition (ASR) system for the 

Romanian language. A relative improvement of 22% is 

obtained in terms of Word Error Rate (WER). 

 

1. INTRODUCTION 

We propose a two-step speech recognition process with 

improved recognition accuracy. The first step is a classical 

Hidden Markov Model (HMM) recognition process with N-

best hypotheses. In the second step, the N-best hypotheses 

are compared frame-by-frame and the voice features are 

weighted based on a measure of uncertainty, defined as the 

overlapping of the trained feature distributions between the 

acoustic models. Feature dimensions with smaller 

uncertainties are given greater weights. 

Several previous research efforts have dealt with the 

uncertainty that derives from feature enhancement/noise 

removal, by using the missing data algorithms and 

uncertainty decoding, with the final goal of weighting the 

feature dimensions according to their reliability [1], [2]. 

Instead, here, the speech features are weighted based on the 

acoustic model uncertainty, i.e., the inherent overlapping of 

different state output probability density functions (pdfs). 

Hence, this can be used either as an alternative technique or 

incorporated in the data missing and uncertainty decoding 

algorithms, where acoustic model uncertainty gives an 

indication about the feature relevance. The uncertainty of the 

acoustic models is also used in [3] and [4] and Support 

Vector Machines are used to define hyperplanes (as model 

boundaries) that separate model classes. In a similar study 

[5], voice feature dimensions contribution to the final score is 

weighted in every speech frame based on the entropy that the 

feature dimension presents. This involves the calculation of 

the entropy at every frame, while in our approach the weights 

can be pre-computed since they are calculated using the 

trained models and they are independent from the speech 

observation.  

N-best speech recognition hypotheses are often used when 

there is supplementary information that helps to choose the 

best option, usually by applying language models as in [6] 

and [7], but also by using confusion rates as in [8]. In our 

approach the recognition accuracy is improved by applying 

weights to the voice feature dimensions according to their 

relevance.  

2. THE PROPOSED APPROACH 

The first step consists in a classical N-best ASR process 

based on HMMs. The recognition accuracy in terms of Word 

Error Rate (WER) for different values of N is shown in 

Figure 1. The characteristics of the ASR system and of the 

database which give these results are described in Section 3. 

In Figure 1, WER is calculated by considering as an error the 

case in which the correct word is not found in any of the N 

hypotheses. The performance of the system without any other 

improvement is given by the value of WER for N = 1 

(18.5%). This means that we can potentially decrease WER 

by finding a way of making better decisions among the N-

best hypotheses.  

In traditional ASR systems where a Gaussian Mixture Model 

(GMM) is used to model the HMM state output, the log-

likelihood for each state j is given by equation (1): 
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where Ot is the observation vector at time t, N(Ot,µ jg,Σjg) is 

the multivariate Gaussian, Cjg is the weight of the mixture-

component and G is the number of mixture components.  

In this case all the feature dimensions have the same weight 

in the final score. However, not all the feature dimensions 

discriminate models in the same way. Figure 2 shows an 

example of how feature distributions for two different 

models overlap: f(x) and g(x) are the Gaussian mixtures for 

model Mi and Mj respectively, pdf values are represented on 

the ordinate axis. The greyed area represents P(Dj|Mi), the 

probability of erroneously deciding  that model j is detected 

instead of model i. Similarly, P(Di|Mj) is the probability of 

erroneously deciding that model i is detected instead of 

model j. We define this overlapping (both P(Dj|Mi) and 

P(Di|Mj) areas) as model uncertainty and the notation used 

for it is u. The greater the model uncertainty, the greater the  



 
Figure 1 - The variation of WER with the number of hypotheses N. 

 

probability to make erroneous decisions and the lower the 

capacity of the dimension to discriminate the models, thus, 

the feature dimensions with lower model uncertainty are 

more reliable. 

Model uncertainty (u) can be calculated as the numeric 

integration of function h(x) defined as: 
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whereas the numeric integration is calculated with the 

trapezoid rule as shown in equation (3): 
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where n = (b-a)/d. 

 

(3) 

In our implementation we used: a = -100, b = 100, d = 0.01, 

which yield a calculation error lower than 10
-6

. This 

operation is made offline, hence, a, b and d can be chosen in 

order to minimise the calculation error. Eventually, model 

uncertainty is calculated for every combination of two 

different states. 

In the hypothesis that the decision is made only between two 

GMMs, the feature dimensions can be weighted according to 

their model uncertainty (equation (4)). Hence, the error 

deriving from the acoustic uncertainty is minimised. 

By applying the weights, the formula for the calculation of 

the log-likelihood per frame becomes: 
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where wi are the weights and Σ is the diagonal covariance 

matrix. 

Because feature dimensions with smaller model uncertainty 

must have greater weights, a monotonically decreasing 

function is needed in order to calculate weights from model 

uncertainty. In this paper, two such functions are used for 

this purpose, presented in equations (5) and (6):  

 
Figure 2 - Definition of model uncertainty as the overlapping 

between two distributions of different states. 
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where uit is the model uncertainty for feature dimension i at 

time frame t, whereas the denominator is used for 

normalization. 
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where a is a tuning parameter, and the denominator is used, 

here as well, for normalization. 

In equation (5), the weight is inversely proportional to the 

model uncertainty, whereas in equation (6), the weight varies 

exponentially with the model uncertainty. Experiments have 

shown that when weights are calculated with equation (5), 

there is big difference between them and very often the 

decision is made only by a few feature dimensions. This 

effect is smoothed by using the equation (6). The tuning 

parameter a helps controlling the range for the weights. 

When deciding among a great number of GMMs, the 

calculation of weights (as in equations (5) and (6)) is not 

straightforward, because one GMM can have different model 

uncertainties with different GMMs. According to the way 

model uncertainty is defined, it can be applied only when 

deciding between two hypotheses. For this reason, the 

weights are applied only to the N hypotheses resulted from 

the N-best ASR process. Hypotheses are grouped in pairs, 

and from each pair a winner is elected for the next round of 

comparisons until a final winner is elected. Hence, it would 

be best for N to be equal to a power of 2, but the method can 

work with any value of N. The first hypothesis is paired with 

the last one, the second is paired with the one before the last, 

and so on. 

From the N-best ASR process, the succession of states is 

provided, therefore, the GMMs which are going to be 

compared, are also known.  The hypotheses being compared 

within a pair are aligned, and the pre-calculated weights are 

applied for each frame. In Section 3, this method will be 

referred to as Method 1. 

As an alternative to the log-probability, another score is used 

in this paper. The scores (log-probability) per frame are 



calculated in the same way, while the final score for a 

hypothesis counts the number of frames in which it has a 

better score than the other hypothesis from the same pair. 

This method gives good results with degraded speech 

signals where the scores of some degraded frames can affect 

the overall score. In Section 3, this method will be referred 

to as Method 2 and it is shown that it gives good results 

even with clean speech signals.  

The added complexity is low because the model 

uncertainties are calculated offline, and during the decoding 

process, the terms of the summation in the log-likelihood 

formula (equation (4)) are only weighted. A table with the 

model uncertainties must be stored in the memory. Its 

dimensions are KxK, where K=(No. phones)x(No. HMM 

states). 

3. EXPERIMENTAL RESULTS 

Experiments are made with an ASR system using a database 

in the Romanian language. 5 speakers have pronounced the 

same 10000 distinct words for a total of 50000 words. 45000 

words are used for training and 5000 for testing. An 

important property of the database is that it contains all the 

syllables of the Romanian language. HMMs are used for 

modelling the phonemes. Each model has 12 states and state 

i can only transit to states i, i+1 or i+2. The output of the 

states is a linear combination of 3 Gaussian functions. Mel-

Frequency Cepstrum Coefficients (MFCC), including energy, 

are used as voice features (13 coefficients), along with their 

first-order derivatives, for a total of 26 dimensions.  

The HTK ToolKit [9] is used for both training and 

recognition. Embedded training with the Baum-Welch 

algorithm is used for obtaining the trained models, whereas 

the Token Passing [10] algorithm is used for decoding in the 

first step. The N-best hypotheses obtained in the first step are 

then grouped in pairs (as shown in Section 2) and compared 

by the log-probability calculated with Method 1. The results 

are presented in Table 1. More details about the database and 

the set-up used can be found in [11]. 

Experiments are made for different values of N. The 

Maximum Score column shows the potential improvement 

that can be made by using the N-Best technique. If the 

correct word is found in one of the N hypotheses, then the 

recognitions is considered correct. The rest of the columns 

show the WER for Method 1, where weights are calculated 

with equations (5) and (6) respectively and three different 

values for the tuning parameter a are used. The weights that 

are calculated as inversely proportional to the model 

uncertainties do not bring any improvement in terms of 

WER. However, not all the words recognized correctly in 

this case are the same with the words calculated correctly in 

the first step. For example, for N = 4, 2% of the words are 

correctly recognized in the first step and erroneously 

recognized in the second step. These results can be explained 

by the way weights are calculated, i.e. as inversely 

proportional to model uncertainties. This method can lead to 

high differences among weights and in some cases the 

decision is practically made only by a few feature  

 

Table 1 – The results obtained with Method 1 

N 
Maxi-

mum 

score 

WER [%] 

with 

inversely 

propor-

tional 

function 

WER [%] 

with ex-

ponential 

function, 

a = 1 

WER [%] 

with ex-

ponential 

function, 

a = 0.5 

WER [%] 

with ex-

ponential 

function, 

a = 0.1 

1 18.50 18.50 18.50 18.50 18.50 

2 15.71 18.63 17.46 16.52 17.61 

3 14.25 18.53 16.97 15.34 17.15 

4 13.49 18.57 16.56 15.03 16.94 

5 12.84 18.52 16.38 14.85 16.81 

6 12.50 18.51 16.32 14.65 16.72 

7 12.21 18.49 16.25 14.61 16.61 

8 11.97 18.48 16.14 14.56 16.56 

9 11.72 18.46 16.10 14.54 16.52 

10 11.52 18.47 16.08 14.48 16.48 

100 8.44 18.51 15.94 14.42 16.46 

 

Table 2 – The results obtained with Method 2 

N 

Maxi-

mum 

score 

WER [%] 

with 

inversely 

propor-

tional 

function 

WER [%] 

with ex-

ponential 

function, 

a = 1 

WER [%] 

with ex-

ponential 

function, 

a = 0.5 

WER [%] 

with ex-

ponential 

function, 

a = 0.1 

1 18.50 18.50 18.50 18.50 18.50 

2 15.71 18.63 17.21 16.26 17.45 

3 14.25 18.53 16.62 15.05 16.91 

4 13.49 18.53 16.26 14.71 16.71 

5 12.84 18.52 16.00 14.51 16.48 

6 12.50 18.53 15.91 14.29 16.41 

7 12.21 18.47 15.84 14.23 16.32 

8 11.97 18.47 15.78 14.18 16.24 

9 11.72 18.46 15.73 14.12 16.22 

10 11.52 18.47 15.72 14.09 16.19 

100 8.44 18.50 15.68 14.04 16.16 

 

dimensions. If the weights are calculated exponentially, the 

problem can be solved and, in this manner, better results are 

obtained. The tuning parameter a determines the sensitivity 

of weights to the model uncertainties. For greater values of a, 

the weights vary in a larger range, whereas for smaller values 

of a, the weights tend to be equal. Hence, an optimal value 

for a is expected. In this paper, the best values are obtained 

for a = 0.5.  

WER decreases when N increases, but for greater values of N 

the WER will be saturated. Greater values of N also imply 

more processing power and are time-consuming. So the 

appropriate value for N is chosen based on the system 

resources. A relative improvement of 22% is obtained in 

terms of reducing WER. 

The results obtained with Method 2 are presented in Table 2. 

They are similar to, yet slightly better than the results 

obtained with Method 1. This can be explained by taking 

into consideration that for some phonemes of the correct 

word the scores obtained in the respective frames are very 

low which is affecting the overall score, and may be in 



favour of another similar word. In the case of exponential 

function with a = 0.5, WER is reduced with a relative value 

of 2.7%.  

Compared to a similar study [5], where an average error 

reduction of 15.4% is obtained, our results seem promising. 

However, it must be mentioned that in [5], it is used a 

different database i.e. AURORA 2 testing environment [12] 

based on a corpus of English connected digit strings. The 

words of our database are chosen so that all the syllables of 

the Romanian language are covered. Each word in the 

database has only one occurrence. Consequently, the words 

of the testing database are totally different from the words of 

the training database. Moreover, there are some phonemes 

that have very few occurrences (less than 100).  

4. CONCLUSIONS 

In this paper, an improvement of ASR accuracy, for the 

Romanian language, in terms of WER is achieved by 

weighting the voice feature dimensions according to their 

relevance. Model uncertainty is defined as a measure of the 

distributions overlapping for two feature dimensions. Two 

functions are used to deduce weights from the model 

uncertainties. First, the weights are calculated according to a 

function that is inversely proportional to the model 

uncertainties. Secondly, an exponential function is used. 

Weights are applied during the comparison of the hypotheses 

resulted from a classical N-best ASR process. Two methods 

are used for the calculation of the log-likelihood, the overall 

score and the per frame score. 

The experimental results show that the application of weights 

yields a relative WER reduction of 22%. A comparison 

between calculation modes for weights has been made and 

the exponential function resulted to be better than the 

inversely proportional function which did not bring any 

improvement to the ASR accuracy. Also, the calculation of 

scores per frame gives better results than the calculation of an 

overall score, with a relative value of 2.7%.  
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