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FROM THE PRESIDENT

A new double issue of thehoneticianis now ready. Our guest
editors, Géza Németh and Gébor Olaszy, have doresceilent
job! I am extremely grateful for their hard work putting this
issue together. They have brought together a fireum of
researchers, who have shared their expertise with tne area of
speech technology. This issue offers both tradiiaesearch
papers, as well as articles describing practicalliegtions of
speech technology research. There is even a semtidools that involve speech
technology. | particularly enjoyed reading abowt #ipplications involving medicine,
voice analysis, and pronunciation databases. Hsigei reminds the reader of the
importance of speech technology in our everydagslivn addition, it includes book
reviews and a listing of meetings, conferencesvemrkshops. These features are the
backbone of any issue of tihonetician | hope you enjoy reading it as much as |
did.

As usual, we are looking for members to take a macteve role in the production
of thePhonetician We need to know more abogdur area of specialization. | know
that you have colleagues and peers that are makidgference in the area of
phonetics. We want to hear about that. With so nRtmynetics programs struggling
to survive in the midst of academic budget woeseaechers in the phonetic
sciences need to stick together. We need each othermore than ever. The
officers in ISPhS do recognize that peer-reviewaadrrjals are essential for the
exchange of ideas and research findings. As sstentive value the feedback we
receive from our peers. It calls us higher and $ielp generate new thoughts and
ideas. But there is also a need for just shariegsdand learning about what other
researchers are doing. ISPhS strives to fill tiegidn We want to bring researchers in
the phonetic sciences together and support onéhe@not research projects. The
Phoneticianis a particularly good place for your studentptesent their work to an
international audience.

So, what have YOU contributed to tRhonetician?Have you sent in a report
describing your work or your laboratory? Have yeuiewed a book for us lately? |
know that Prof. Rosenhouse has a book for youwiewe if you just offer. Did you
write up a brief description of the last professilomeeting sponsored by your
institution? These types of contributions are eakefor the continuation of the
Phonetician We need YOU to take an active role. You can gaditan entire issue
(with our help) or you can submit an individual paplaboratory description or
book review to us to include in an upcoming isstighe Phonetician Please keep
the Phoneticianalive. Just let me know what you would like to tdute!




A FORMANT TRAJECTORY DATABASE
OF HUNGARIAN VOWELS

Gabor Olaszy*, Zsuzsanna Zso6fia Racz* and Kalman Adri**
*Department of Telecommunications and Media Informdics
Budapest University of Technology and Economics, Higary

**University of Debrecen, Hungary
e-mail: olaszy@tmit.ome.hu, zsuzska.racz@gmail.com, abari.kalman@gmail.com

Abstract

Previously, the investigation of the formant stawet of Hungarian vowels
involved individual measurements. However, the pgeg of speech science towards
statistical analysis makes public databases negedsahis paper, we report on the
creation of such a formant database of Hungariavels) based on a speech corpus
of isolated words read by both a male and a ferspkaker. The steps of its
development are explained, from the automation e&sarements to the manual
data correction phases.

Possibilities for querying the database includenfont maps, formant ranges and
trajectories based on three measurement pointsy@eel. The accuracy of our
formant measurement is also discussed.

This database can be used as a reference todelihguistic studies, classroom
measurements and individual research topics ineusity education.

1 Introduction

Formant measurement is one of the oldest aregseiech research. It is a matter
of great importance both in linguistics and in a&bic speech processing. Formant
trajectories aid human perception, as well as timeputer processing of speech.

In earlier Hungarian speech research, Tarn6czyl(1@4s the first to determine
the formant values of Hungarian vowels. He use@suilloscope and a camera to
analyse the wave forms and from these he calcuthteBourier coefficients and the
formant ranges. Scientists studying the subjeer d&fim, Magdics (1965), Szende
(21973), Bolla (1978), Olaszy (1989) and Gosy (2004ye able to utilize more
modern equipment for measurement.

Previously, research studying the formant structfréhe Hungarian language
was based on individual measurements. In other sydh# sound recordings used
were not accessible for other experiments. Onlydieclusions and not the raw
formant data were published. Since speech sci¢ends towards statistical
analysis, public data are needed. The creatiowmofidnt databases is quite unique
as a concept. We only know about one such datafiaseg Li et al. 2006),
containing formants of several speakers and del&dEnglish.



In this paper, we report on the creation of a Huiagareference formant
trajectory database. Measurements are based ordirg® of isolated words, as
opposed to fluent speech.

2 Corpus

The public corpus used in the project was create?DD6 (Abari & Olaszy, 2007,
http:/ffonetika.nytud.hu/cvve). It consists of 2912 recordings of approximat&§00
Hungarian words read in Standard Hungarian by & iauadl a female reader, ages 60
and 30 years respectively. The length of this naltex 49 minutes. The corpus was
recorded in an anechoic chamber at 16 bits anchplsay rate of 22 kHz.

The recordings were manually labelled and segmeattédte phonetic level. Their
phonetic transcription was completed by an autamagthod and then checked and
corrected by hand.

3 Development

From the several computerised formant estimatiotihoas available, we selected
the algorithm realised in Praat for our projectadris widely known and can be
programmed using a simple scripting language whielkes processing large data
sets possible. (There are alternative ways of fatrdatection.)

The raw measurements were carried out using a Fsed@pt capable of
automatically processing the input, which was aoc$darge file folders containing
waveforms with corresponding segmentation, label gimonetic transcription data.
The script uses the formant function in Praat tlrwate the first four formant
frequencies of every vowel at certain moments,eestof recording continuous
trajectories to represent the effect of the CVCngomant — vowel — consonant)
groups. The following measuring points have bedsected: the 25%, 50% and 75%
points of vowel duration to represent the centrahef vowel and both transient
phases when the vowel was in an intermediate pasithe 50% and 75% points;
when it was at the beginning of the word and 25884 %oints when it was at the
end of the word, as we have found the spectrunedplperic periods uncertain. The
parameters of calculation (e.g., a window lengti25fms) were the same as the
defaults in Praat with the exception of the maximianmant, where 5000 Hz and
5500 Hz were used for recordings of the male aaddmale speaker, respectively.

The script generates a file suitable for importingy a spreadsheet or database.
Each output file contains the following informatiothe sex of the reader; the
phonetic description of the word; the vowel alonghwthe neighbouring sounds
(usually consonants); the position of the measun¢meints and the ;A formant
frequencies in Hertz.

The output of the script was a raw formant databasetaining 29,926
measurement points and 119,704 total formant vallles raw data contained errors
because of uncertainties in pronunciation, inadeusegmentation and/or signal
processing faults. These errors had to be tracea énd corrected.



Therefore, we used a spreadsheet application atatistical analyser to filter out
measurement errors. Criteria taken into accourtded formant ranges, formant
distances and formant dependences (a/§, Bnd R/F, maps). The filtering could
only be partly automated, so a large part of it e@®pleted manually. Inaccuracies
were then corrected by visual observation of thecgpgrams which can be found
on the above mentioned website.

In the first step of data filtering, the measuredrfant frequencies were ordered
by value, for every gender-vowel pair separatehjisTade it possible to find crude
errors based on the difference between the measuterand the expected value.
We determined the expected values basedh @riori estimations and previous
findings for Hungarian (see above).

Afterwards, the inspection of formant distancessd®d further inaccuracies. For
example, the expected minimum of-F, is 2k (approximately 160 Hz for a male
voice), so a record with an-H lower than this was deemed incorrect. The most
extreme case in this respect was a 7 Hz differeletected betweensfand k, but
overall the number of records under 100 Hz waso?FfF;, 127 for —F, and 58
for F4-F3 (Olaszy et al., 2009). The fact that Praat distisiged these frequencies as
formants raises questions about the built-in datar its estimation algorithm.

In the next step, the data obtained for the threasuring points were examined
as a group. The reason for this was that thesetgpoepresent the formant
trajectories, which are typical of the CVC groupsr example, nasal consonants
next to the vowel smear the formants due to caddiory nasalisation (the
resonances of the nasal cavity smooth the fornadrite vowel).

The final step of correction included inspectiontleé R-F, and R-F, maps for
both speakers and for all vowels, which sped upfiltering of the previously
undetected inaccuracies.

After the correction phase, the reference formatalohse was complete, that is,
the number of erroneous data records in the dagaiEsbeen minimised.

4 Measurement results and options of use

Table 1 shows the structure of the reference dagabsing an example word. All
of the formant frequencies are given in Hz in thielé below. No data for the 25%
position for the very first vowelaf] is present due to weak spectral data. The
missing absolute word beginning (and ending pasjtie represented with a hash
mark (‘#") symbol.

The characteristic formant values for the first ebvare 838, 1418, 2743 and
3333 Hz. The transient phase to the dental-alveatticulatory position of the
neighbouring plosive is reflected by the data a #5% point. The formant
movements were:;Kdown), k (up), & (down), & (up). In the second vowel, [u]; F
and R do not show much movement in the transient phigsehows a continuous
rise when going towards the following dental-ahaedkill, while F; a continuous
decline across the sound. The third vowel [i] does show formant movements
between the dental-alveolar consonants.



Table 1.Data records in the reference formant databasendiely to the word
atgurit ([a:dguri:t], meaning ‘to roll something over’) read by thelenspeaker

Gender Word Previous V Next Position F F, F; F.
male a:dgurit a: d 50% 838 1418 2743 3333
male a:dgurit 75% 702 1514 2662 3466
male  a:dgurit 25% 335 849 2666 3618
male a:dgurit 50% 345 910 2629 3631
male a:dgurit 75% 336 1093 2472 3643
male a:dguriit 25% 326 2160 2685 3584
male a:dgurit 50% 313 2221 2706 3601
male a:dgurit 75% 326 2217 2646 3665

== e e R
= I I K=l =R K=

i R e T e N e A e

In short, the database gives the main formant fiatahe 50% points and the
formant movements inside the vowel as a functiomdjficent sounds. This way,
characteristic parameters can be compared thromgihdsenvironment, articulatory
place, or formant data.

For example, the distribution of formants can béaimied. Figure 1 shows the
range of formant frequencies for all vowels, withtaking the sound environment
into account.

Gender

@ male
@ fomale

F1, F2, F3, F4 (kHz)
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Vowels

Figure 1. F;-F, ranges of Hungarian vowels, based on the 50% mlztd in the
reference database (ranges on the right corredpahd female speaker)
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If we restrict our search by articulatory placeg tfistribution will be different.
For example, the result of an analysis of vowetsvben dental-alveolar consonants
is shown in Figure 2.

Gender

® male
® fermale

&

th

f

Fm— . -
b e —
P

F1, F2, F3, F4 (kHz)
w v-lk
o

————
F— . — — - & — —

——
e —
——t
———i

0,57 N RAEE

Vowels

Figure 2. F;-F, ranges of dental-alveolar — vowel — dental-alveclasters, based
on the 50% point data in the reference databasgé€saon the right correspond to
the female speaker)

A third option of use of the database is shown igufe 3, for which all the
formant data of the male speaker have been takermaatount, although by defining
thresholds, it is possible to filter out outliers.

Formant trajectory graphs may also be generatecexample of this is shown in
Figure 4. Palatal adjacent consonants raise thendeormant, but lower the third,
while F remains constant. These formant movements giwvariretion about the
locus (Delattre et al. 1955) of the palatal constmaHowever, a labiodental
consonant in the sound grouping would have an efiethe first formant as well.
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Figure 3.F;-F, map of the central measurement points of Hungaroavels for the
male speaker, based on the reference database

alatal + [u:] + palatal velar + [2] + labiodental
£ 4cHiz) | p [w]+p f(kHz) | [2]
3.5 - o
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Figure 4. Average interpolated formant trajectories of vawiel two clusters of the
male speaker (between two palatal consonants, atdebn a velar and a
labiodental consonant)

5 The efficiency of formant estimation

The correction process of the raw database revebkcerror ratios shown in
Figure 5. A total of 10,307 formant values wererected, 916 of which belong to
the male reader. A total of 25.1% of all vowels bade modified in at least one of
the measured formants. The higher the formantyrtbiee inaccurate the estimation

12



algorithm proved to be. A significant percentageeobrs were due to the fact that
Praat has placed formants too close to one anthegris, detected formants where
there were none) or it failed to detect an existorghant.

mMale

OFemale

10% +—
0o, AL
a 2 o o uwu o ow i Ly v e @ @ £

Figure 5.The rates of inaccurate formant measurementsdmt s a function of the
vowels, for both speakers

Inaccuracy in higher formant measurement was peatiy high in the case of the
female speaker, due to the higher fundamental éegyiof women. This means that
the spectral lines of the quasi-periodic voicednsisuare further from each other
than a male speaker’s. Furthermore, the intenditjormants decreases with the
frequency. Therefore, detecting the points of maximamplitude correctly is more
difficult for F5 or F, than for R.

The phenomena leading to these inaccuracies arspeaific to Praat, but are
typical of formant measurement in general.

Figure 6 shows the error rates as a function ofdheants. Inaccuracy forsfand
F, of the female speaker was 21% and 31%, respegtivel

30% -

23% L

:ll\-Iale

10%% | OFemale

0 —

0% . — —

F1 F2 F3 F4

Figure 6.The rates of inaccuracy as a function of the farisiafor both speakers
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6 Conclusion

The aim of this paper was to describe a high pi@atisiungarian formant
database which could be considered as a referévedhave explained the steps of
development and given some options for use. Apar fthe inspection of average
formant values and ranges, these options alsoda@xamination of how the sound
group affects formants frequencies (e.g., palatakonants raise the frequency of
the second formant). Measurements comparing gemdeti$ferent vowels can also
be carried out.

In addition, the database can be used for detemgiaind increasing the accuracy
of formant measuring algorithms, or for aiding sgeeesearch in other ways. It is
important to note that the error rates shown ia gaper have not been compared to
those of other formant detectors and most of thedaracies noted in this project do
not appear to be software-specific.

We hope to make the database available online.
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A COMPARATIVE STUDY OF DIRECT AND ASR-BASED
MODULAR AUDIO TO VISUAL SPEECH SYSTEMS

Gergely Feldhoffer, Attila Tihanyi and Baladzs Orosz
Pazméany Péter Catholic University, Hungary
e-mail: flugi@itk.ppke.hu, tihanyia@digitus.itk.ppke.hu, oroba@digitus.itk.ppke.hu

Abstract

A comparative study of audio-to-visual speech cosiea is described in this
paper. A direct feature-based conversion systemompared to various indirect
ASR-based solutions. These methods have been tested same environment in
terms of audio pre-processing and facial motiomualigation. Subjective opinion
scores show that with respect to naturalness, tdiceaversion performs well.
Conversely, with respect to intelligibility, ASR-4$ed systems perform better.

1 Introduction

The goal of an audio-to-visual speech (ATVS) comwu®r system is to convert
acoustic speech into visual speech. Such systenalysre comprised of an audio
pre-processing component, audio-to-video (AV) magpia face model and a
rendering subsystem. This paper will focus on methosed for performing the
mapping from audio to visual speech.

There are different strategies for performing auttiovisual conversion. One
approach is to utilize automatic speech recognifid®R) to extract phonetic
information from the acoustic signal. This is thesed, in conjunction with a set of
coarticulation rules, to interpolate a visemic esgntation of the phonemes
(Beskow et al 2004, Moubayed et al. 2008). Altexady, a second approach is to
extract features from the acoustic signal and carkiese features directly to visual
speech (Takacs et al. 2006, Hofer et al. 2008).

A difficulty that arises in comparing the differempproaches is they usually are
developed and tested independently by the respectisearch groups. Different
metrics are used, e.g. intelligibility tests andéminion scores, and different data
and viewers are used (Theobald et al. 2008). Iis faper, we describe a
comparative evaluation of different AV mapping aggwhes within the same
workflow see (Figure 1). The performance of eachnisasured in terms of
intelligibility, where lip-readability is measuredand naturalness, where a
comparison with real visual speech is made.
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Figure 1.Multiple conversion methods were tested in theesanvironment

2 Related work

Our group started to work on speech audio visuatizan 2004 with the goal of
aiding deaf and hearing impaired people with mobievices. Soon, the
specification included audio-to-visual speech cosiem. Because of the limited
computational power of mobile devices, we focuseddimect conversion, thereby
avoiding phoneme or viseme classification taskse Tirst working system was
measured by word recognition test with deaf indrild, which resulted in a 48%
recognition rate when compared to a real face. Tésult was achieved with a
professional lip-speaker providing the trainingadad database using an everyday
speaker was not as good, with the recognition bateg substantially better than
chance.

Speaker dependency was then investigated. Thisbeanecreased by using
additional audio data in the database, which gnalil with the main recording. This
alignment can be automated using DTWnamic Time Warping). This is important
since professional lip-speakers are typically wojrserd we have to support male
voice as well (Feldhoffer 2007).

Direct conversion uses time window of audio as frfjpu the machine learning
subsystem. We investigated the required size o thindow using mutual
information estimation between the auditory andu@ismodalities. An additional
result was the temporal asymmetry of the connectianfound that the audio data
could be partly predicted using video data (Feltdradt al. 2007).

2.1 Data capture and processing

To train the synthesis systems, a corpus of ausliaVi speech spoken by a
professional lip-speaker was recorded. The materdduded keywords to use as
reference data, and 100 sentences, balanced foefih@ontent and recorded with
six speakers. The number of sentences varied betweeings. The database
described in this paper included one speaker alyd3osentences and the keywords.
The acoustic speech was recorded in quiet and avapled at 48 kHz, 16 bit mono.
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The accompanying video was captured at 25 framesqmond. The speakers was
instucted to have a neutral expression. The heathefspeaker was fixed by
adjustable pillows to eliminate basic head motiand a reference marker was
placed on the nose. Lighting was adjusted to thekendracking system and varied
from speaker to speaker.

The speaker wore face markers, which were tracke@D pixel space. Any
tracking errors were corrected manually, and thekerapositions were median
filtered to remove noise. In accordance with theB@4 standard, the facial units
(FAPU) of the model were calculated in this pixphse and the facial parameters
were coded in FAP forma(Facial Animation Parameters) using this FAPU.
Principal components analysis (PCA), was then tis@dmpress the resulting facial
motions, where 6 coefficients were retained.

The acoustic speech was parameterized as 16-16 BIBCiive windows.

3 Audio-to-visual conversion

The performance of five different approaches wié bvaluated. These are
summarized as follows:

* A reference based on natural facial motion.

* A direct conversion system.

* An ASR based system that linearly interpolatesngimic/visemic targets.

« An informed ASR-based approach that has access to the vocalufilthe test
material (IASR).

* An uninformedASR (UASR) that does not have access to the woalwlary.

These are described in more detail in the follovaagtions.

Training
Speech database FAP
A4 A
MFCC | NN [« PCA
T
|
Running 1

- Speech MFCCH NN HPCA

FAP »

\——
\ 4

Figure 2.Structure of direct conversion

3.1 Direct conversion

The direct approach for audio-to-visual speech ewmion was first presented in
(Takécs et al. 2006). A voice segment, from a dhffie speaker used in training, was
parameterized into MFCCs and a back-propagatiomahenetwork was used to
estimate the best facial parameters to accompasyrthvel) speech segment.
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3.2 ASR-based conversion

For the ASR-based approaches, a Weighted Finitte St@nsducer — Hidden
Markov-Model (WFST-HMM) decoder is used. Specifigala system known as
VOXerver (Mihajlik et al. 2007) is used, which cann in one of two modes:
informed, which exploits knowledge of the vocabulary of thestt data, and
uninformed,which does not. Incoming speech is converted to MI§;Gfter which
blind channel equalization is used to reduce lirtBstortion in the cepstral domain
(Mihajlik et al. 2005). Speaker independent crosseidecision-tree based triphone
acoustic models previously trained using the MRBAngarian speech database
(http://alpha.tmit.ome.hu/ speech/hdoMRBA.php) were applied.

The uninformed ASR system uses a phoneme-bigranmgthctic model to
constrain the decoding process. The phoneme-bigraimabilities were estimated
from the MRBA database. In the informed ASR systamerogram word language
model was used with a vocabulary size of 120 wovderd pronunciations were
determined automatically as described in the pageMihajlik, Révész and Tatai
(2002).

In both types of speech recognition approaches WST-HMM recognition
network was constructed offline using the AT&T FSdblkit (Mohri et al 2002). In
the case of the informed system, phoneme labels pr@jected on to the output of
the transducer instead of word labels. The pretisfadhe segmentation was 10 ms.

3.3 Parameter generation

3.3.1 Viseme interpolation

To compare the direct and indirect audio-to-vist@iversion systems, a standard
approach for generating visual parameters is t&t fionvert a phoneme to its
equivalent viseme via a look up table, then lineamterpolate the viseme targets.
This approach to synthesizing facial motion is edivthat coarticulation effects are
ignored, but it does provide a baseline on expepgtbrmance (i.e., the worst-case
scenario).

Speech Dominance
i class
database
ASR

y v

Phoneme - >
sequence = TTVS —> FAP

Figure 3.Modular ATVS consists of an ASR subsystem and aitexisual speech
subsystem

3.3.2 Modular ATVS

To account for coarticulation effects, a more ssfitited interpolation scheme is
required. In particular the relative dominance eighboring speech segments on the
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articulators must be taken into account. Speechmerty can be classified as
dominant, uncertain or mixed according to the leféhfluence exerted by the local
neighborhood. To learn the dominance functionslipsoid is fitted to the lips of a
speaker in a video sequence articulating Hungdrighones. To aid the fitting, the
speakers wore a distinctly colored lipstick. Donmica functions are estimated by
the variance of visual data in a given phonetigyiniedourhood set. The learned
dominance functions are used to interpolate betwlewisual targets derived from
the ASR output. We used the implementation of lG$2rap and Janos Matyas
(2005) here which produced Poser script. FAPs draated from this format by the
same workflow as from an original recording.

3.4 Rendering module

The visualization of the output of the ATVS methods common to all
approaches. The output from the ATVS modules ac@lfanimation parameters
(FAPs), which are applied to a common head modelafb approaches. Note,
although better facial descriptors than MPEG-4a@&@lable, MPEG-4 is used here
because our motion capture system does not prawinie detail than this. The
rendered video sequences are created from theses@dfilences using the Avisynth
(nttp://avisynth.org) 3D face renderer. As the main components foffrdn@ework are
common between the different approaches, any diffsgs are due to variations in
the AV mapping methods. Actual frames are showfigare 4.

4 Evaluation

Implementation specific noncritical behaviour (g.@rticulation amplitude)
should be normalized to ensure that the comparssbatween the essential qualities
of the methods. To discover these differencesebnpinary test was completed.

4.1 Preliminary test

To tune the parameters of the systems, seven videos generated by each of
the five mapping methods, and some sequences veesgnthesized from the
original facial motion data. All sequences stardedi ended with a closed mouth,
and each contained between 2-4 words. The speakdrin all of the tests was not
the same speaker used in training the audio-talAasiapping. The videos were
presented in a randomized order to 34 viewers whi@ wssked to rate the quality of
the systems using an opinion score (1-5). Thetseatd shown in Table 1.

Table 1.Results of preliminary tests used to tune theesygtarameters. Shown are
the average and standard deviation of scores

Method  Average score  STD

UASR 3.82 0.33
Original 3.79 0.24
Linear 3.17 0.4
Direct 3.02 0.41
IASR 2.85 0.72
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Figure 4. An example of the importance of correct timing. rhes of the word
“Oktober” show timing differences between metholste that direct conversion
received best score, even though it does not ¢hasdéips on bilabial but closes on
velar, and it has problems with lip rounding. Tl& r‘Original” is the face of the
actual talker, not the reference test material. rEfierence test material is articulated
by the professional lip-speaker who speaks inrdiaing database. This “Original”
row is to show the actual timing of the visual pafrthe speech input.

The results (Table 1) were unexpected, IASR, whisbs a more sophisticated
coarticulation model was expected to be one of lihst performing systems;
however, it came in last. Closer examination of sheres revealed that the lower
scores were related to poorer audiovisual synchafnfASR than for UASR. A
qualitative difference between the direct and exlirapproaches was the degree of
mouth opening — the direct approach tended to dpemmouth on average 30%
more than the indirect approaches. Consequentlying the systems into the same
dynamic range, the mouth opening for the direct pivap was damped by 30%.
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Subjective scores increased approximately 0.8 poimtich revealed an interesting
difference between the optimal articulation forelhigibility for hearing-impaired
and naturalness for hearing people. The synchrdriyreo ASR-based approaches
was checked for systemic errors (constant or ligeacreasing delays) using cross
correlation of locally time shifted windows, but ®systematic patterns of errors
were detected.

5 Results

5.1 ASR subsystem

The quality of the ASR-based approach was affebyethe recognised phoneme
string. This typically is 100% for the informed 3% as the test set consists only of
a small number of words (months of the year, ddybe@week, and numbers under
100), while the uninformed system has a typicabrerate of 25.21%. Despite this,
the ATVS using this input performs surprisingly Wélhe likely reason might be
the pattern of confusions — some of the phonemaswkre confused acoustically
appeared visually similar on the lips. The errgoressed as the difference between
the visemes (used in linear interpolation methddhe confused phonemes resulted
in 45% of randomly chosen confusion differences.

A second factor that affects the performance of AlSR-based approaches is
precision of segmentation. Generally the uninformmgstems are more precise on
the average than the informed systems. The precisfothe segmentation can
severely impact on the subjective opinion scordgrdfore we first attempted to
quantify these likely sources of error.

The informed recognition system is similar in natuo forced alignment in
standard ASR tasks. For each utterance, the rexgis run in forced alignment
mode for all of the vocabulary entries. The maifiedence between the informed
and the uninformed recognition process is the wiffe Markov state graphs for
recognition. The informed system is a zerogram ovthloopback, while the
uninformed graph is a bigram model graph, where phebabilities of the
connections depend on language statistics.

While matching the extracted features with the Mar&n states, differences were
noted in both scenarios. However, the uninformestesy allowed for different
phonemes outside of the vocabulary to minimize aheumulated error. For the
informed system only the most likely sequence wksvad, which can distort the
segmentation — see Figure 4 for an example wherespleaker mispronounces the
word “Hatvanharom” (hOtvOnha:rom, “63” in Hungar)aifhe (mis)segmentation
of OtvO means the IASR AVTS system opened the maifidr the onset of the
vowel. Human perception is very sensitive to tlyiget of error and this severely
impacted the perceived quality. Without forcing thecabulary, a system may
ignore one of the consonants, but open the moutiheatcorrect time. Note that
generalising this phenomena is beyond the scopethisf paper. We have
demonstrated that this is a problem with certaiplé&mentations of HMM-based
ASR. Alternative, more robust implementations migleviate these problems.
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Figure 5. Trajectory plot of different methods for the woftHatvanharom”
(hOtvOnha:rom). Jaw opening and lip opening widtehown. Note that the speaker
did not pronounce the utterance perfectly, andrifemed system attempts to force
a match with the correctly recognized word. Thaketo time alignment problems.

5.2 Subjective opinion scores
The test setup was similar to the previously déscripreliminary test used to
tune the system. This time, there were 58 viewansl there was no qualitative

opinion survey given.

The results of the opinion score test is in TableTRBe advantage of direct
conversion against UASR is approaching significaffice 0.0512), as well as the
difference between the original speech and thectdioenversion f = 0.06).
However, UASR was significantly worse than the ioréd) speech = 0.00029).
When compared to the preliminary test, these residio showed that with respect
to naturalness, excessive articulation was notifsignt. The advantage of correct
timing over correct phoneme string was also sigaitt.

Table 2.Results of opinion scores, average and standaseltaban

Method Average score  STD
Original facial motion 3.73 1.01
Direct conversion 3.58 0.97
UASR 3.43 1.08
Linear interpolation 2.73 1.12
IASR 2.67 1.29

Note that the linear interpolation system is reugrbetter quality ASR results,
but still performs significantly worse than the eage of other ASR-based
approaches. This demonstrates the importance ofeattyr handling viseme
dominance and viseme neighborhood sensitivity iRARsed ATVS systems.
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5.3 Intelligibility

Intelligibility was measured with a test of recagpm of video sequences without
sound (Table 3). This is not the popular modifigginne test but for our purposes
with hearing impaired viewers, it is deemed to lmerrelevant. The 58 test subjects
had to guess which word was said from a given &Btaiher words. The sets were
numbers, names of months and the days of the wdlekords were said twice. The
sets were presented as intervals to eliminate #maary test from the task. This task
models the situation of being hearing-impaired rorai very noisy environment,
where an ATVS system can be used. It is assumddlitbacontext is known, so
keyword spotting is the closest task to the problem

Table 3.Results of recognition tests, average and starmdiavihtion of success rate
in percent. Random pick would give 20%.

Method Precision STD

IASR 61% 20%
UASR 57%  22%
Original motion 53% 18%
Cartoon 44% 11%

Direct conversion 36% 27%

The performance of the audio-to-visual speech amiwe methods were reversed
in this task compared to naturalness task. The nesult here was the dominance of
ASR-based approaches (see Table 2), and the ifisague of the difference
between informed and uninformed ATVS resulis=( 0.43), which may deserve
further investigation. Note, when synchrony is antissue without voice, the IASR
is the best.

Ohman and Salvi published a comparison study of AT¥S implementations
used in SYNFACE (Beskow et al. 2004) and internaltyKTH (Ohman-Salvi
1999). The compared methods are the HMM rule-bagsttm of SYNFACE and
an approximation of this method learned by a nenesork from audio speech.
Manually set articulation parameters were usedrafsence to achieve an ideal
result. The results from their paper are in Table 4

In comparison with Ohman and Salvi, where intetiiliy was tested similarly,
the manually tuned optimal rule based facial patarsewere close to our IASR
since there were no recognition errors, and witlvoige, the time alignment quality
was not important, and our TTVS is rule-based. Th¥MM test is similar to our
UASR, because both are without vocabulary, bothetaa time aligned phoneme
string to be converted to facial parameters, andA3R is HMM-based. Their ANN
system is very close to our direct conversion eidep the training set, it is a
standard speech database audio, and a rule-basethieal trajectory video data,
while our system is trained on actual recordingsnfra professional lip-speaker.
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Despite these differences, the results concermitglligibility were close to each
other (see Table 3). This is a validation of owutts.

Table 4.Comparison to the results of Ohman & Salvi, a HMMd rule based
systems intelligibility test. Intelligibility of cwesponding methods are similar.

Our results Ohman & Salvi
Methods Prec. Methods Prec.
IASR 61% Ideal 64%

UASR 57% HMM 54%
Direct 36% ANN 34%

6 Conclusion

This paper has presented a comparative study ofo-déondisual speech
conversion methods. We have presented a compadbaur direct conversion
system with conceptually different conversion sols. A subset of our results
correlate with already published results, validatine approach.

We observed that the synchrony over phoneme poecisian ASR based ATVS
system was a key component. There are publicatenmnstrating the importance
of correct timing in different aspects (Czap & Mady2005; Bailly et al. 2008;
Feldhoffer et al. 2007), but our results explicglyowed that more accurate timing
achieves much better subjective evaluation thamie mccurate phoneme sequence.
Also, we have shown that in the aspect of subjeatiaturalness evaluation, direct
conversion (trained on professional lip-speakeicadtion) is a method which
produced the highest opinion score (95.9%) of agiral facial motion recording
with lower computational complexity than ASR-basalutions. For tasks where
intelligibility is important (support for individda who are hearing impaired, visual
information in noisy environment) modular ATVS fetbest approach among those
presented. Our mission of aiding people who areimgampaired requires us to
consider using ASR-based components. For natusal(e@simation, entertaining
applications), direct conversion is a good choiéer both aspects, UASR gives
relatively good, but not outstanding results.

Since the topic of ATVS comparison is very divaesif we know that our results
are hard to reproduce. We have tried to facilithis process by including an
appendix of technical results. In addition we emage visual speech research
laboratories to test their systems with standaddizetput, which would make the
comparison not just easier, but reproducible.

7 Technical details

Marker tracking was done for MPEG-4 FP 8.8 8.483168.58.38.78.25.29.2 9.3
9.1 5.1 2.10 2.1. During synthesis, all FAPs cotewthese FPs were used except
depth information: open_jaw, lower_t_midlip, raibemidlip, stretch_I_cornerlip,
stretch_r_cornerlip, lower_t_lip_Im, lower_t lip_rmaise_b_lip_Im, raise_b_lip_rm,
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raise_|_cornerlip, raise_r_cornerlip, lower_t_nmdio, raise_b_midlip_o,
stretch_|_cornerlip_o, stretch_r_cornerlip_o, lowtelip_Im_o, lower_t lip_rm_o,
raise_b_lip_Im_o, raise_b_lip_rm_o, raise_|_coiiped, raise_r_cornerlip_o. Inner
lip contour is estimated from outer markers.

Yellow paint was used to mark the FP locations lo@ fiace of the recorded
lip-speaker. The video recording was 576i PAL (57620 pixels, 25 frame/sec,
24 bit/pixel). The audio recording was mono 48 Kizbit in a silent room. Further
conversions depended upon the actual method.

Marker tracking was based on color matching andnisity localization frame
and the location was identified by the region. irerapping regions, the closest
location on the previous frame was used to idertiy marker. A frame with a
neutral face was selected to use as the referamc&APU measurement. The
marker on the nose was used as reference to eterfiead motion.

Direct conversion used a modification of Davide Aig's Matrix
Backpropagation which enables real-time work aHwe neural network used 11
frame long window on the input side (5 frames te thast and 5 frames to the
future), and 4 principal component weights of FAPtioe output. Each frame on the
input was represented by a 16 band MFCC featurtoorethe training set of the
system contained stand-alone words and phoneticalgnced sentences.

In the ASR, the speech signal was converted teguéncy of 16 kHz. MFCC
(Mel Frequency Cepstral Coefficients)-based featugretors were computed with
delta and delta-delta components (39 dimensiontotial). The recognition was
performed on a batch of separated samples. Outmdtations and the samples
were joined, and the synchrony between labels dmd signal was checked
manually.

The visemes to the linear interpolation method vesiected manually for each
viseme in Hungarian from the training set of theech conversion. Visemes and
phonemes were assigned by a table. Each segmerd Wasar interpolation from
the actual viseme to the next one. Linear intetpmiawas calculated in the FAP
representation.

TTVS is a Visual Basic implemented system with seagsheet of timed phonetic
data. This spreadsheet was changed to ASR outpeighbbrhood dependent
dominance properties were calculated and viseniesratere extracted. Linear
interpolation, restrictions concerning biologicabumdaries and median filtering
were applied in this order. The output was a Pdag file which was applied to a
model. The texture of the model was modified tacklskin and differently colored
MPEG-4 FP location markers. The animation was rexttlen draft mode, with the
field of view and resolution of the original record. Marker tracking was
performed, as described above, with the exceptibrthe differently colored
markers. FAPU values were measured in the rengexedl space, and FAP values
were calculated from FAPU and tracked marker purssti

This was done for both ASR runs, uninformed andrimid.
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The test material was manually segmented to 2-4lwaits. The lengths of the
units were around 3 seconds. The segmentation boiesdvere listed and the video
cut was automatically done with an Avisynth script/e used an MPEG-4
compatible head model renderer plugin for Avisyntith the model “Alice” of
XFace project. The viewpoint and the field of viexas adjusted to have only the
mouth on the screen in frontal view.

During the test, the subjects watched the videltscheen and used headphones.
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Abstract

Facial animation has progressed significantly dlierpast few years and a variety
of algorithms and techniques now make it possildecteate highly realistic
characters. Based on the author's speechreadidyg and the development of 3D
modelling, a Hungarian talking head has been oded@er general approach is to
use both static and dynamic observations of natspalech to guide the facial
modelling. Evaluation of Hungarian consonants antels served the classification
of visemes - the smallest perceptible visual upiithe articulation process. A three
level dominance model has been introduced thatstakarticulation into account.
Each articulatory feature has been groupedddminani flexible or uncertain
classes. Analysis of the standard deviation andr#jectory of the features assisted
the evaluation process. The acoustic speech arattibalation are linked with each
other by a synchronising process. There are a eafpfeatures added to improve
the naturalness of articulation:

1. Pre-articulation. Prior to utterance a silenaziqu is inserted — imitating
breathing by opening the mouth — then the first idamt viseme is progressed from
the neutral starting position.

2. A filtering and smoothing algorithm has beeneleped for adaptation to the
tempo of either the synthesized or natural speech.

3. Eye blink, gaze, head movement, and eyebrowgisan be controlled semi-
randomly or through special commands.

4. Basic emotions defined by Ekman can be expraasedcalable manner.

1 Introduction

The intelligibility of speech can be improved byogling the articulation of the
speaker. This visual support is essential in ayneisrironment and for people with
hearing impairment. An artificial talking head cée a natural supplement to
sophisticated acoustic speech synthesis. The piogeeork of face animation for
modelling articulation started decades ago. Thesldgment of 3D body modelling,
the evolution of computers and advances in theyarsabf human utterances has
enabled the development of realistic models. Temchiearing impaired people to
speak can be aided by an accurately articulatirigatispeaker, which can make its
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face transparent and can show details of the movesmassociated with
pronunciation (Figure 1).

Figure 1.Photorealistic and transparent visualization

Since the last decade, the area of visual speechden developing dynamically,
with more and more applications being developedstiyy systems are focusing on
high quality modelling of articulation, but have eme restricted by number of
polygons issues, e.g. simulation of hair fallinggtl® more computation effort than
the articulation itself.

A visual feature database for speech-reading andhi® development of 3D
modelling has been developed and a Hungarian tplkisad has already been
created (Czap 2004). In this research, the gemgm@loach was to use both static
and dynamic observations of natural speech to daicial animation. A three-level
dominance model has been introduced that takesticodation into consideration.
Each articulatory feature has been grouped into athree classes: dominant,
flexible or uncertain. Analysis of the standard iddéen and the trajectory of
features guided the evaluation process. The acofesitures of speech and the
articulation are then linked to each other by achyonising process.

2 Research aim

This research is designed to model photorealigiearance and sophisticated
human-like articulation with close to natural moents of the speaker triggering
four additional research results:

1. Pre-articulation. Prior to an utterance, a sileariod is inserted — imitating
breathing by opening the mouth — then the first idamt viseme is moved from the
neutral starting position.

2. Realizing the temporal asynchrony effect. Aefihg and smoothing algorithm
has been developed for adaptation to the tempdtlarehe synthesized or natural
speech.

3. Head movement, gaze, eyebrow rising, and eyek.biAn algorithm was
developed to semi-randomly and manually controffdinener movements.

28



4. Emotion movements. Following the definitions Bkman, a scalable and
blended method was developed to express emotions.

3 Method and material

The first visual speech synthesizers were based 2D head model, accessing
previously stored images of a speaker. Phasingdegthese frames was sometimes
produced by image morphing (Cosatto et al. 199&wéVer, a 2D model is not
sufficient for providing head movements, gesturmed @motions, but 3D models can
simulate facial expressions by tensing muscles. DA m3odel produces realistic
results, but the replication of real muscular tensiby a person is difficult. Surface
models using textured polygons seem to be promisifidneir features can be
analysed by assessing human speakers (MassaroB&®8iein et al. 1996).

In this line of research, a 3D transformation ojemmetric surface model was
used. The deformation based articulation was tadedlinto a parametric model to
overcome the restrictions of the morphing technide&cial movements are not
carried out by deformations of the face, insteadtodlection of polygons is
manipulated using a set of parameters. This prgoessits control of a wide range
of motions using a set of features associated diffierent articulation functions.
These parameters can be directly matched to pkmticuovements of the lip,
tongue, chin, eyes, eyelids, eyebrows and the whok

The visual representation of the speech sound [yneegiresenting the phoneme)
is called aviseme A set of visemes has fewer elements than thahohemes. The
static positions of the speech organ for the prodn®f Hungarian phonemes can
be found in seminal works. Figure 2 shows the sinty of visemes using a
speaker’s photograph (Bolla 1995) compared to tposduced by a 3D model.

Figure 2.A photograph of a speaker and the 3D model of#mee viseme

The features of Hungarian visemes have been cresied the word models of
Molnar (1986). The main features of visemes hawntasopted from the published
sound maps and albums (Bolla 1980, 1995). Thesarésawere transformed using
the parameters of the articulation model by Mafg&03). Features controlling the
lips and tongue are crucial. Basic lip propertredude the opening and width, their
movement is related to lip rounding. The lip opgnand the visibility of teeth are
dependent upon jaw movement. The tongue is desciiyeits horizontal and
vertical position, its bending and the shape ofttimgue tip (Figure 3).
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Figure 3 lllustrative tongue positions for sounds [n] (Jefnd [k, g] (right).

Based upon the static features, the articulatiomrpaters characteristic to the
stationary section of the viseme can be set.

4 Modelling dynamic operation

The dynamic features of conversational Hungariare h#t been described yet.
The current research begins to provide this desmnipThe usefulness of motion
phases represented in presentations containingophant artculation of speech
sounds (albums) are limited, and can be relateg tonthe particular word given in
the album. Dynamic analysis are taken from the asthown studies in
speechreading (Czap 2004). Specifically, this wandvided the trajectories for the
width and height of the oral cavity and the visipibf teeth and tongue. These data
form the basis for movement between visemes.

Some features take on their characteristic valuglewothers do not reach their
target value during the pronunciation. All featudgdsthe visemes (e.g., lip shape,
tongue position) have been classified accordinght&r dominance, with every
articulation feature being assigned to a dominahass. This is different from the
general approach where the visemes are groupedhddly dominance only. For
instance, the Hungarian visemes of the sounds, {, n] are dominant on lip
opening and tongue position and are uncertain wepect to lip width. This
categorization is based on the ranges providedheyspeechreading data. The
features of the parametric model can be dividealtimtee grades:

» dominant- coarticulation has (almost) no effect on them,

* flexible— the neighbouring visemes affect them,

* uncertain— the neighbourhood determines the feature.

In addition to the range, the distribution of titiosal and stationary periods of
visible features helps to determine the grade afidance.

The trajectory of viseme features can also be ésséor determining dominance
classes. Figure 4a shows the trajectory of inewidth (horizontal axis) and lip
opening (vertical axis) of the viseme][ These curves cannot be traced one by one
but they go through a dense area regardless o$tréng and final states. The
dominant nature of the vowels’ lip shape is obvidascontrast, uncertain features
do not provide a consistent pattern. The trajectdrfh] can be seen in Figure 4b.
(To be able to track them, only a few curves apeasented.)
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Figure 4.Trajectory of lip sizes in pixels of viseme][(left) and h] (right)

The dominance grade of the previously arrangedufeat which considers the
deformability and context dependence of the visetoafrols the interpolation of
features. Forward and backward co-articulation srudee applied in a way that
articulation parameters are influenced by lesdielpsoperties.

5 Pre-articulation

Prior to an utterance, there is an approximatey 188 silence period is inserted —
designed to imitate breathing through the mouthen tthe first dominant viseme is
moved from the neutral starting position. Becaudhie pre-articulatory movement,
the sound is produced as in natural speech. [lasiesound of the sentence was
bilabial, then the mouth would be slightly opendterathe sound fade (post-
articulation).

6 Adapting to the tempo of speech and filtering

During the synchronization to human or synthesseekbch, we have encountered
different speech tempos. When speech is slow, \d@séatures approach their
nominal value, while fast speech is articulatechvéiss precision in natural speech.
For flexible features, the round off is strongerfast speech. A median filter is
applied for interpolation of flexible features: thalues of neighbouring frames are
sorted and the median is chosen. A feature is fotoyethe following steps:

« linear interpolation among values of dominant fledible features, neglecting
uncertain ones,

» median filtering is performed when flexible fes are juxtaposed,

« values are then filtered by the weighted sumhef two previous frames, the
actual and the next one.

The weights of the filter are fixed, so knowleddespeech tempo is not needed.
The smoothing filter refines the movements and ceduthe peaks during fast
speech. By considering the two previous frames, tineng asymmetry of
articulation is approximated. Feldhoffer et al. 2P have shown that the mouth
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starts to form a viseme before the correspondirumeme is audible. Filtering takes
this phenomenon into account. Other improvements-inserting a permanent
phase into long vowels and synchronising phasea wiseme to a phoneme at
several points — refine the articulation.

Figure 5. depicts the effect of median filteringlamoothing. In this example, the
slow speech has twice as many frames as the fasfToie horizontal axis shows the
number of frames, while vertical values represeatamplitude of the feature.
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Figure 5. The interpolation of dominant (first peak) andxflde (second peak)
features for slow (left) and fast (right) speecteafinear interpolation (...), median
filtering (___) and smoothing (---)

7 Improving naturalness

Visible features (e.g., nodding, eyebrow risingnkihg) are meaningful gestures,
especially for people who are hard of hearing. ildogues, gestures can support
turn taking. For instance, the lift of eyebrows ¢adicate paying attention, while
nodding can show acknowledgement. An algorithm f@ad movement and
mimicry cannot easily be created using prosodyabse the communicative context
of the utterance needs to be taken into accountinkahe automatically generated
movements with the intent of the utterance, featee be managed manually using
a graphical editor (e.g., lifting eyebrows or noudgiat sentence accent, or
controlling the eyes to imitate a glance into agrap

By studying the head movements of professional kgyea moderate nodding,
tilting and blinking were introduced. We have sadlimore than 15 minutes of
speech from different announcers delivering thesew television. For each video
frame, the eyes can be easily identified and trastg a conventional method for
obtaining motion vectors for video compressione IMPEG standards. Horizontal
movement reveals panning; while vertical movememriams tilting. Unbalanced
movement of left and right eyes indicates headrnatibn. When the difference of
the absolute value of the region of interest orceading image frames is greater
than a definite threshold, blinking is noted. Thesatistics form the basis for
probability modelling of head movements. A seriesubjective tests served to fine
tune these parameters.
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8 Facial gestures

Head movement, gaze, eyebrow rising, and eye ldark be controlled semi-
randomly or manually. Automatic generation of fhgestures is organized in a
semi-random manner. A rigid rule-based system weoesdlt in mechanical, boring
and unnatural movements. Tilting and-nodding heawements are related to a
short time (200 ms) average energy of the acosfital. For sentence accents, a
downward head movement is observed. The biggeatBeage sound energy is, the
higher the probability there is of downward hedting. Moderate and slow head
turning (or pan) and side inclination are contmliandomly. The amplitude of these
head movements is not more than 2-@aze is controlled by monitoring head
movements so as to keep the face looking into @neeca (i.e., the observer’s eyes).
Vertical and horizontal head movements are prodiigechoving both eyes in the
opposite direction. The following equations show ttontrol rule of vertical and
horizontal direction of the left eye respectively:

D D D

leyeh == pan leyev ==

Dtilt

(The horizontal position of left eye is the oppesitf the direction of pan head
movement. The vertical position of left eye is camgating the tilt head
movement.) Head movement is related to emotionwedls e.g., when expressing
sadness, the head moves downward.

Based on observation of professional announcers thadexisting literature,
eyebrow movement is controlled by taking the prddastrength relationship
between the potential prosodic and visual cuesantmunt. The interaction between
acoustic intonation (FO) gestures and eyebrow mewésnhas been studied in
production, as in Cavé et al. (1996), for exampl@reliminary hypothesis is that a
direct coupling is very unnatural, but that prommioe and eyebrow movement may
co-occur. In our experiment, the brows were notedse subtly at the beginning of
declarative sentences and then it approaches tlteah@osition. A larger raising
movement is likely to be interpreted as surprieeet and outer eyebrows are to be
risen independently when emotions are expresseshrBys can be used to express
anger, disgust and sadness (Figure 6).

Figure 6.Eyebrows of displaying surprise and worry
According to our observations, blinking occurredatbevery 1.5 to 3 seconds.

Blinking is controlled semi-randomly. Higher aveeagnergy makes blinking more
frequent. The probability of blinking is increasedhen long vowels or the first
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vowel of the word is produced, as in Hungarian wstrdss, which is always put on
the first syllable of the word.

9 Expressing emotions

An entire industry has grown up around the studfaofal expressions. Much of
the research has followed the lead of Ekman (2@@d) focuses on Darwin’s first
argument that facial expressions have evolved. Vxpnessions are evolved, then
humans must share a common, universal set. Manial faxpressions are
involuntary in animals, and probably in humans ad.wAs a consequence, much of
the research has turned toward understanding vele#l fexpressions show about
the emotional state of the speaker. Emotional edrgbould be obvious to others
because everyone shares the same universal assorwheexpressions. In
multimodal speech, we can confirm or disprove tlegbal message by using
gestures and body language.

Researchers have found that subjects label ceziguressions of emotion in the
same way regardless of culture. This research hesvared possibly six distinct
emotions that are read with ease across cultudessel emotions include anger,
disgust, happiness, sadness, fear, and surprisil Eapressions signal a particular
emotional state held by the speaker. This perspedtiads to the conclusion that
there are identifiable states that are easily pexde

After Ekman (2001), in the presented system, thevabmentioned basic
emotions can be selected in a scalable manner gergrise causes inner and outer
eyebrows raised, mouth open, eyes open, lips mhetiuchin down and head
upward). Figure 7 depicts four examples.

Figure 7.Expression of sadness, disgust, happiness are) @ucprise

During the utterance of a sentence, facial expmassare progressing from a
neutral look to the target display of emotion. Eimoican be controlled in a scalable
and blended manner (Busso et al. 2008). E.g. 20&+86ans 20% fear and 30%
surprise, while 20*+30$ evolves 20% happiness &% Surprise.

34



10 Conclusions

This paper describes the latest results of a laegarch project that — in general
— aims to create a Hungarian audio-visual textpesh system. Fine tuning of the
probabilities for natural animation and avoidingamanical, rule based repetition of
gestures resulted from careful study of speechymtimh. Pre- and post-articulation,
median filtering for adaptation to the speech temgad filtering for temporal
asymmetry of speech production have been introdasedirections for continued
refinement of human-like articulation. In this pbadurther manipulation of co-
articulation is performed. Improving the naturakesd expressing the emotions
will make the simulated performance more attractive

Sample videos can be fourtdtp://mazsola.iit.uni-miskolc.hu/~czap/mintak
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Abstract

Early detection of obstructive sleep apnoea syndr¢g@SA syndrome) using
automatic speech processing techniques has becbigeat interest because the
current diagnostic methods are expensive and tomewming. Pioneering research
in this field has recently yielded some promisiegults based on differences noted
when comparing voices recorded from patients suffefrom apnoea and those
from healthy people. However, the relationshipwaen this condition and the
noted vocal abnormalities is still unclear, becathsespeech signals have not been
systematically described. Most of the informatieed to describe the vocal effects
of apnoea comes from a perceptual study where pic@res were asked to compare
voices from apnoea patients with a control grouese results revealed
abnormalities in articulation, phonation and resmea

This work is part of an on-going collaborative djbetween the medical and
signal processing communities to promote new rebeeiforts on automatic OSA
diagnosis. In this paper, we explore the differenoeted in phonetic classes (inter-
phoneme) across groups (control/apnoea) and andlyeie utility for OSA
detection. Using statistical models, inter-phonem@res were evaluated to quantify
the predictive capability associated with each pgionclass for identifying this
pathology. A global predictive power of 72% was aibed by combining inter-
phoneme scores from four phonetic classes. We @sapared these scores to
identify the most discriminative phonetic classBsis process will help us improve
our overall understanding of the effects of OSA speech. Finally, using the
Kullback-Leibler distance, significant differencesre found for vowel production
in nasal vs. non-nasal contexts. This was probanty result of the abnormal
coupling of the oral and nasal cavities observe@pnoea patients. This finding
represents a relevant result for future research.
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1 Introduction

Obstructive sleep apnoea (OSA) is a highly prevatisease (Fox & Monoson
1989), and it is estimated that in middle-age adwlany as 9% of women and 24%
of men are affected, undiagnosed and untreated éL.e¢ 2008). This disorder is
characterized by recurring episodes of sleep-rlatdapse of the upper airway at
the level of the pharynx and it is usually assedawith loud snoring and increased
daytime sleepiness. OSA is a serious threat tondividual's health if not treated.
This condition is a risk factor for hypertensiordapossibly, cardiovascular diseases
(Coccagna et al. 2006). It is usually a factoraific accidents caused by somnolent
drivers (Lee et al. 2008; Coccagna et al. 2006bétes et al. 2000), and it can lead
to a poor quality of life and impaired work perfante. Current diagnostic
procedures require a full overnight sleep studycomfirm the presence of the
disorder. This procedure involves recording newatebphisiological and
cardiorespiratory variables (ECG), which then rssih a 90% accuracy rate in
detecting OSA. Nevertheless, this is an expensnge tame-consuming diagnostic
protocol, and, in some countries such as Spairergathave to remain on a waiting
list for several years before the test can be cetegl This is because the demand
for consultations and diagnostic studies for OSA $ignificantly increased (Lee et
al. 2008). There is, therefore, a strong need ®&thods of early diagnosis of apnoea
patients in order to alleviate these considerablays and inconveniences.

In over 25 years of research, a number of factake tbeen related to the upper
airway (UA) collapse during sleep-time. Essentialpjharyngeal collapse occurs
when the normal reduction in pharyngeal dilator cheisone at the onset of sleep is
superimposed on a narrowed and/or highly complpnarynx. This suggests that
OSA may be a heterogeneous disorder rather thangke disease, involving the
interaction of anatomic and neural state-relatectofa resulting in pharyngeal
collapse. However, it is interesting to considext tBSA is an anatomic illness that
might have been favoured by evolutionary adaptation the human’s upper
respiratory tract (Davidson 2003). Anatomic changedude shortening of the
maxillary, ethmoid, palatal and mandibular bonesuta oral cavity-skull base
angulation, pharyngeal collapse with anterior ntigra of the foramen magnum,
posterior migration of the tongue into the pharyviih descent of the larynx, and
shortening of the soft palate with loss of the biig—soft palate lock-up.

Phoneticians have also taken a look into OSA froeirtown perspective (for
instance Fox & Monoson 1989) and concluded thhabalgh articulatory, physiologic
and acoustic anomalies are somewhat unclear, seswblving combinations of
factors have some explanatory power. Neverthetegd) an anomaly should result
not only in respiratory, but also in speech dysfiomc Consequently, the occurrence
of speech disorder in the OSA population shouldeXxeected, and it would likely
involve anomalies in articulation, phonation ansorgance. The most representative
of these abnormalities are described in Section 2.

In this paper, we investigate the acoustic charaties of speech in patients
suffering from OSA by using techniques taken framoanatic speech and speaker
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recognition. Using generative statistical modelsiéscribe the acoustic space, we
explore the differences between phonetic classdstlzir possible application to
automatic detection of OSA. These phonetic clabse® offered a good trade-off
between data complexity and recognition rate inakpe verification scenarios
(Hébert & Heck 2003), especially when sparse dadaawailable. The differences in
the variability observed between and within a grofifnealthy speakers and those
suffering from OSA are significant enough to motevéurther research and reflect
what phoneticians had observed in their previogegments.

The remainder of this paper is organized as followSection 2 the physiological
and acoustic characteristics described in the puaviterature on speakers suffering
from severe apnoea syndrome are reviewed. On #is bfathe limited information
available about the side-effects of this condimnspeech, a specific speech corpus
was designed to test differences between both mal@and patient population. The
design of this corpus, i.e., a brief analysis @&f skentences it contains, is presented in
Section 3; while Section 4 briefly describes therebteristics of the recorded
speech database and provides several physicalcté@stcs of the speakers in both
groups. In Section 5, our approach, based on nindethe acoustic space using
statistical models is presented. Once the expetamhdramework has been set,
Section 6 describes the actual phonetic classesifidd and provides details on
their representation using statistical models. btt®n 7, experimental results
exploring differences between OSA and healthy spesalire presented using inter-
phoneme and intra-phoneme scores. Finally, someusians and a brief outline on
the future work are provided in Section 8.

2 Physiological and acoustic characteristics of OSgpeakers

Currently, the articulatory/physiological settinggss well as the acoustic
characteristics of speech in speakers suffering pnoea syndrome (for simplicity
we will refer them as apnoea speakers), are stidlaar. Most of the more valuable
information in this field can be found in Fox andison’s work (1989), where a
perceptual study with skilled judges was presegmuparing voices from apnoea
patients and a control group (hereafter referreastthealthy” speakers). This study
revealed differences between both groups of speakewever acoustic cues for
these differences were somewhat contradictory aradear. What did seem to be
clear was that speakers in the apnoea group eadlilsibnormal resonances that
might appear due to the altered structure or fonctof the upper airway.
Theoretically this anomaly should result not onty d respiratory but also in a
speech dysfunction, which is our primary hypotheBse abnormalities previously
identified are the following:

Articulatory anomalies: Fox and Monoson (1989) pointed out that neuromotor
dysfunctions could be found in a sleep apnoea pdipul as a “lack of regulated
innervations to the breathing musculature or ugievay muscle hypotonus”. This
type of dysfunction is normally related to speedsodiers, especially dysarthria.
There are several types of dysarthria, each incating different acoustic features.
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However, all types of dysarthria affect the artitidn of consonants and vowels
causing the slurring of speech. Another common gifeatures in apnoea patients
is hyper- and hypo-nasality, as well as a numb@ralblems related to respiration.

Phonation anomalies: Phonation anomalies may appear due to the fact that
heavy snhoring in sleep apnoea patients can caukEmmation in the upper
respiratory system and affect the vocal cords.

Resonance anomaliesThe analysis of resonance characteristics for theps
apnoea group in Fox and Monoson’s work (1989) didyreld a clear conclusion. It
was only recently that resonance disorders affgcipeech quality have been
associated with vocal tract damping features, rdistifrom airflow imbalance
between the oral and nasal cavities. The term eghio this particular speech
disorder is “cul-de-sac” resonance, and refers gpecific type of hyponasality.
However, researches could only conclude that resenabnormalities in apnoea
patients could be perceived both as hyponasaliyn@salization is produced when
the sound should be nasal) or hypernasality (remsain is observed during
production of non-nasal —voiced oral- sounds). Haurhore, and perhaps more
importantly, speakers with apnoea seemed to exhibiialler intra-speaker
differences between non-nasal and nasal vowelstduiis dysfunction, when
vowels ordinarily require either a nasal or a nasai quality. Additionally, due to
pharyngeal anomalies, differences in formant valcas be expected. This was
confirmed by Robb’s work (Robb et al. 1997), in @hivocal tract acoustic
resonance was evaluated in a group of OSA maleatistally significant
differences were found in formant frequencies amohdwidth values between
apnoea and healthy groups. In particular, the tesoll the formant frequency
analysis showed that F1 and F2 values among the gd@4p were generally lower
than for the non-OSA group.

Finally, these anomalies can occur either in ismhadr in combination. However,
none of them was found to be sufficient on its damallow accurate assessment of
the OSA condition. In fact, all three descriptorsr&vnecessary to differentiate and
predict whether the subject belonged either tdhdadthy or the OSA groups.

3 Speech corpus

The speech corpus was specifically designed todiffstrences between healthy
people and those suffering from OSA. It containg feentences in Spanish that are
repeated three times by each speaker (Fernandaz 2008). Keeping Fox and
Monoson’s work in mind, the sentences were desigodthat they include instances
of the following specific phonetic contexts:

« In relation toarticulatory anomalies we collected voiced sounds affected by
preceding phonemes that have their primary locuartiéulation near the back of
the oral cavity, specifically, velar phonemes, sastthe Spanish velar approximant
/g/. This anatomical region has been known to dispbhysical anomalies in
speakers suffering from apnoea (Davidson 2003)sThus reasonable to suspect
that different coarticulatory effects may occurtwihese phonemes in speakers with
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and without apnoea. In particular, in our corpus,osllected instances of transitions
from the Spanish voiced velar plosive /g/ to vow@lisorder to analyse the specific
impact of articulatory dysfunctions in the pharyalgegion.

* With regard tophonation anomalies we included continuous use of voiced
sounds to measure possible irregular phonatioenpattrelated to muscular fatigue
noted in apnoea patients.

* Finally, to look atresonance anomalieswe designed sentences that allowed
intra-speaker variation measurements; that is, uneasdifferential voice features
for each speaker, for instance to compare the degfreyowel nasalization within
and without nasal contexts.

Moreover, all sentences were designed to exhibitmilar melodic structure, and
speakers were asked to try reading them with a ifgpediythm under the
supervision of an expert. We followed this con&dlrhythmic recording procedure
hoping to minimise non-relevant inter-speaker lisgja variability. The sentences
chosen were the following, with the different metogroups underlined separately:

(1) Francia, Suiza y Hungria ya hicieron causa comun.
‘fraNdja 'sujfa i uy 'gria  yaibje roy 'kaw sa ko 'mun

(2) Julian no vio la manga roja _gue ellos buscan,en ningdn almaceén.
xu 'ljlan no Bjo la 'may ga 'ro xa ke 'doz pus kan en pi'gun al maden

(3) Juan no puso la taza rota gue tanto le gustaen el aljibe.
Xxwan no 'pu so la'tda 7o ta ke 'taN to leus ta en el al 'xpe

(4) Miguel y Manu llamaréan entre ocho y nueve y iaed
mi ‘el i 'ma nuia ma 'ran 'eN tre 'do i ‘nwefe i 'me dja

The first phrase was taken from the Albayzin dadaba standard phonetically
balanced database for Spanish (Moreno et al. 1983yas selected because it
contains an interesting sequence of successiaadali/ vowel sounds.

The second and third phrases, both negative, hasienidar grammatical and
intonation structure. They are potentially useful ¢ontrastive studies of vowels in
different linguistic contexts. Some examples ofstheontrastive pairs arise from
comparing a nasal context, &mga roja’ (‘may ga 7o xa, with a neutral context,
“taza rota” ('ta #a ‘7o ta). These contrastive analyses could be very helgful
confirm whether the voices of speakers with aprioga an altered overall nasal
quality and displayed smaller intra-speaker diffiers between non-nasal and nasal
vowels due to velopharyngeal dysfunction.

The fourth phrase has a single and relatively lamgodic group, containing
largely voiced sounds. The rationale for this fbugentence was that apnoea
speakers usually show fatigue in the upper airwagates. Therefore, this sentence
might help us discover anomalies during the gemeradf voiced sounds. This
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sentence also contains several vowel sounds emthédd®sal contexts that could
be useful to study phonation and articulation o$atized vowels. Finally, with

regard to the resonance anomalies found in theatitee and previously described,
one of the possible traits of apnoea speakedgsarthria. This last sentence could
also be used to analyse dysarthric voices thatajlgi show differences in vowel

space when compared to healthy (control) speakersé¢r et al. 1995).

4 OSA database collection

The database, which in the rest of the paper wiltdferred to as OSA database,
was recorded in the Respiratory Department at Halsgilinico Universitario de
Malaga, Spain. It contains the readings of 80 rsalgects; half of them suffering
from severe sleep apnoea (high Apnoea — Hipoapimolex values, AHI > 30), and
the other half were either healthy subjects orm#dd OSA (AHI < 10). Subjects in
both groups had similar physical characteristioshsas age and Body Mass Index
(BM, i.e. weight divided by the square of heightee Table 1.

Table 1.Distribution of healthy and pathological speakarthe OSA database

Number | Mean Age | Std. dev. Age| Mean BMI | Std. dev. BMI

Control 40 42.2 8.8 26.2 3.9
Apnoea 40 495 10.8 32.8 54

Our selection of speakers for each group attemjatexioid the influence of the
external predisposing factors associated with tbedition. Such an approach
ensures that the results are most likely relatedgrimup factors and can be
generalized to a homogeneous population.

Moreover, speech was recorded using a samplingfdté kHz in an acoustically
isolated booth. The recording equipment consisfed standard laptop computer
with a conventional sound card equipped with a ®PHlantronics headset
microphone with A/D conversion and digital datalexege accomplished through a
USB-port.

5 Statistical modelling of the acoustic space

The discrimination of normal and pathological vaeiagsing automatic acoustic
analysis and speech recognition technology is bawpman alternative method of
diagnosis for researchers in laryngological andespepathologies, because of its
nonintrusive nature and its potential for providiggantitative data relatively
quickly. State-of-the-art speech recognition tedbgyw can be briefly described as
the use of machine learning techniques to traimatisical model from acoustic
features representing a known acoustic space fhesnfy et al. 2001] for a complete
introduction to speech technology). These acousttures are extracted from a
training speech database where the speech fronifispgueakers is recorded and
properly annotated. So, 8peaker recognition,these acoustic features come from a
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known speaker’s voice, while Bpeech recognitionthe acoustic space is generally
covered by a set of phoneme-like units represemigiyen language. After training,

the acoustic features coming from an unknown speakespoken sentence are
recognized based on the likelihood scores obtaswggposing that the unknown
acoustic features were generated by a statisticaleimrepresenting a particular
speaker (speaker recognition) or linguistic unipegch recognition). So, for

example, in speaker recognition, a certain speskercognized when values from
the acoustic features being tested are more likedy higher likelihood score) for

the speaker’s own statistical model, rather thanadiher model in the system.

Given this brief overview of speech recognition atite expected speech
abnormalities in patients with apnoea syndromeait be seen that the use of this
technology to explore differences between apnoeh camtrol speaker could be
utilized in two complementary ways: 1) statisticabdels trained on control (or
healthy) speech, when used to test acoustic featioming from apnoea speakers
should provide lower likelihood scores (i.e., cohtmodels will be “less likely” to
generate apnoea speech due to OSA-related ano)ridléas when testing control
speakers (regarded that a consistent cross-validaicheme is used); and 2)
apnoea/control classification can be considere@d apeaker recognition problem
using only two different statistical models, ongred for the apnoea group and the
other for the control population. In this reseanahwill explore the first way, as the
second one has been considered in our previous (Werkdndez et al. 2009).

5.1 Acoustic features

The front-end in any speech recognition system is the processlvied in
extracting a set of acoustic features from the dpesgnal, so that it provides an
efficient representation of speech without losifgcdminative information. These
acoustic features should also correspond to thengdsons made by the actual
modelling techniques (generally statistical indefmrce between features).
Selecting a proper parameterization is therefomevant task, and one that depends
significantly on the specific problem we are deglinith. According to Fox and
Monoson’s (1989) perceptual experiments, some ahalities can be directly
identified by listening to the recordings. Therefoiconventional MFCC (Mel-
Frequency Cepstral Coefficients) parameterizatias applied in this research as it
provides both, relative independent coefficients] &igh discrimination between
sounds based on its similarity with human perceptiwocessing (Huang et al.
2001). We acknowledge that an optimized representasimilar to that of Godino
et al. (2006) for laryngeal pathology detectionjldgproduce better results in terms
of classification efficiency, but for the presenork, we are not focusing on
maximizing the accuracy rate, but in exploring @iéinces within the acoustic space
according to the sanpincipia described in the preceding perceptual experiments.

5.2 Speech segmentation

To train different statistical models for differemtoustic or linguistic units, the
acoustic feature vectors resulting from the framd-epre-processing must be
segmented or grouped into different training séisce we are interested in studying
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specific phonetic classes, all of the utteranceun OSA database had to be
segmented into phonetic units. This phonetic segmtien allowed us to group
acoustic feature vectors with specific phoneticssés, and then to train a specific
statistical model for each phonetic class.

All sentences in our apnoea database (both foralcemid apnoea speakers) were
automatically segmented into phonemes through fbreeognition. That is, each
sentence was forced to be recognized using theeseqwf phonemes corresponding
to its known transcription (optional silences begwewords were allowed). This
forced alignment provided the start and ending tboandaries for each sound in
the sentence. Automatic forced alignment avoidsnihed for time-consuming and
costly manual annotation, but, as will be discusaegection 6, it must guarantee an
appropriate level of segmentation precision. In @ase automatic phonetic
segmentation was carried out with the open-soui¢ tdol (Young 2002). We use
24 left-to-right, 3-state, context-independétidlden Markov Models (HMMs) to
represent the basic set of 24 Spanish phonemese Tdmntext-independent HMM
phoneme models were trained from an available minsegmented, phonetically-
balanced speech subcorpus of Albayzin, a referémge speech database for
Spanish (Moreno et al. 1993).

5.3 Statistical modelling

After phonetic segmentation, due to the fact tha¢l-Mrequency Cepstral
Coefficients may follow any statistical distribution different phonetic classes, the
Gaussian Mixture Model (GMM) approach, broadly applied in speaker recagmit
systems (Reynolds et al. 2000), was chosen to aippate the actual statistical
distribution of the selected acoustic space. Ineyrerimental setup we started by
training GMM maodels for different phonetic classesng a large speech database:
the Albayzin database (Moreno et al. 1993). By gaa we provide a set of stable
initial models from which, using adaptation teclhugg, more specific GMMs were
derived (tuned to particular characteristics of Hpeakers’ population, recording
conditions, etc.). A MAP Nlaximum A Posteriofi adaptation algorithm, also
commonly used in speaker verification (Reynoldale000), was applied to derive
those specific GMMs representing our OSA databasrilfrities: limited in the
amount of speech and more specific in their phonatid population coverage.
Additionally, MAP adaptation is known to increa$e trobustness of the models,
especially when sparse speech material is availBglgides, as it is also a common
practice in speaker verification systems, onlyrtteans of the gaussian components
in the GMMs were adapted. For our experiments, M@Bptation to GMM models
was estimated with the BECARS open source tooly@& et al. 2004).

6 Modelling phonetic classes for OSA analysis

The basic unit to convey linguistic meaning is gimneme. Each phoneme can
be considered to be a code that consists of a ersetl of articulatory gestures,
which includes the type and location of sound eticih, as well as the position of
the vocal tract articulators. Additionally, otheacfors, such as the resonances
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produced within the vocal tract and the respongh@f/ocal folds decisively affect
the way in which those phonemes are pronouncedeMenyin this work we are not
interested in the meaning, but in exploring theuatio information embedded
within speech signals. Consequently, we are nofestddl to the traditional
approach followed in speech recognition and mayseany other unit.

While specific instances of the individual phonerages quite limited within short
segments of direct speech, phonetic classes aier ¢agecognise than phonemes
and occur much more frequently. Therefore modedseasier to train with sparse
data, as long as their internal complexity can beommodated. Consequently a
limited number of models can be trained when opbrse data are available. On the
other hand, according to the previous literaturalidg with the effects of OSA in
speech signals, only a few phonetic classes sedm televant for our experiments.
Bearing this in mind, four different groups of bdgahonetic classes were defined:

Vowel sounds,VOW: vowel sounds represent one of the most rekeaaaustic
groups in speech processing applications, and begg intensively analyzed in the
detection of pathological voices. Sustained voweinsls typically are considered to
be the best source of information. However, restindies have pointed out that, at
least for certain pathologies, vowel segments etdrh from continuous speech
might be as informative as those from sustaineddpe

Nasal sounds,NAS: nasal sounds are especially relevant when idemnsg
resonance effects in speech signals involving ble¢horal and nasal cavities. The
coupling and de-coupling of the nasal cavity, byarmseof the opening/closing of the
velopharyngeal port, causes the most familiar r@soa effect in speech. Nasal
phonemes appear in conjunction with at least omeeljand cause a singular unique
transition from the vowel to the nasal (and vicesag known agasalization. This
seems to be a particularly relevant situation (Bsen 2003), which we will be
looking thoroughly at this paper.

Plosive sounds,PLO: in contrast to the two previous classes, psounds
represent non-stationary, fast transitions in fheesh signal. Therefore, instead of
cepstral coefficients, more specific acoustic messmainly voice-onset-time) are
generally used for their study. Consequently, im statistical models, built on
cepstral coefficients information, plosive soundsild present lower variability
rates. This is in contrast to vowel and nasal seundhich are expected to exhibit
variability when healthy and apnoea speakers angpaced. However, due to co-
articulation, and the flawed boundaries provideddoy automatic segmentation
process, the GMM model for plosive sounds coulduihe acoustic information
from transitions from adjacent phonetic classess Thuld cause some differences
in this class, when used as phonetic classifiets thns become relevant to our
research on apnoea speech.

Fricative sounds,FRI: an extra phonetic class is introduced in otdegroup all
sounds which were not assigned to the previousetagonsidering our designed
apnoea corpus, most of these sounds are fricalttegugh others, such as liquid
sounds, will also be included in this fourth claBg.grouping all of these sounds,
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we complete our classification of sounds, introdgch quite artificial group which
includes sounds with rather different charactedstithough, as we just said,
fricatives form the most significant subset.

Using these four phonetic classes, our purpose maglv be to explore any
differences that could be found between OSA andttheapeakers using speech
recognition technology. But before that, we havgit@ some details on how GMM
models, as described in Section 5, were trained lamd differences between
phonetic classes were measured.

6.1 Training data and GMM characteristics

Considering the previous description of the fouompdtic classes, it is important
to note that as we are modelling them using GMMeg, linguistic differences
between phonetic classes will not generate nonusafile or non-overlapping
models. Besides the overlapping of the acousticespa particular realizations of
each phonetic class, the discriminative power of N6M depends on different
factors, such as the size of the model (i.e., nurabgaussians), amount of training
data and the acoustic front-end parameterization.olr case, the automatic
segmentation of phonetic units can also be a souregrors that, as we discussed
before, could lead to some overlap between the siicogpaces modelled by
different phonetic-class GMMs. Being aware of dlitteese differences from ideal
acoustic models, the use of broad phonetic clest®mss us to ensure that, as long
as our segmentation of the utterances is preciesagén the number of spurious
frames will be negligible compared to the amountetitible data, so little distortion
IS expected in the estimation of acoustic pararsefes we will see in Section 7, the
trained GMM models deliver a classification rataettts accurate enough not only to
discriminate between phonetic classes, but alsanéasure differences in the
acoustic realizations between OSA and control sgrsak

In summary, the full acoustic space in our speeathlzhse was divided, through
automatic phonetic segmentation, into the four phiorclasses previously described
(see top of Figure 1). Consequently, the amounatd available to train each of the
four phonetic classes was different as well as itlternal complexity of their
statistical distributions. However, as the speeolpus was designed to have a
homogeneous coverage of main phonetic contextsamido OSA pathology, we
decided to model each phonetic class using GMM tsodé&h equal number of
gaussian components. So, based on the amount dbkdeatraining data, 64
gaussians were considered enough to properly mmprake different acoustic
complexities of the different phonetic classes.
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Figure 1.Brief description of the segmentation and adaptapimcesses (Section 6),
as well as of the classification tests performezt(ign 7)

Phonetic
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6.2 Training reference GMMs for each phonetic class

As it was stated in Section 5, our aim is to explacoustic differences between
apnoea and control speakers using a set of GMNtsettdrom control or healthy
voices. These voices served as reference GMMs &sune possible deviations of
the pathological voicesof apnoea speakers. As a result, these refereidiel G
models had to be trained from a control populatior, due to the limited amount of
speech obtained from the control speakers in ouh O&abase, the first set of
GMM models were trained using Albayzin database révio et al. 1993). After
that, as Figure 1 illustrates, these initial modeése adapted to the control speaker
population of our OSA database to generate thé¢ fiboa reference GMMs.

The whole training process can be described aswisll utterances from the
Albayzin corpus, already manually segmented intmngimes, were labelled
according to the four phonetic classes we defi@gtte grouped, the feature vectors
were used to estimate a GMM model for each phortigs separately, resulting in
four different models, namely: VOW, NAS, PLO andIFR the second step, as
Figure 1 illustrates, a MAP algorithm (Reynoldsakt 2000; incorporating these
initial GMM models) was used to adapt these modelsthe OSA database;
specifically to its acoustic conditions (microphom@d recording room) and
population characteristics. To complete this adaptaprocess, speech utterances
from the control speakers were automatically segetermnd labelled using the
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process described in Section 5. Note that, asstsa#d before, only control speakers
were used in the adaptation process to generatfintdieset of reference (healthy)
GMM models for each phonetic class.

6.3 Measuring differences between phonetic classes

Once reference GMM models were trained, we tested tbility to classify
different speech segments as belonging to diffgghohetic classes. Our hypothesis
was that their discriminative power will be lowesr fapnoea speakers than for
control speakers, as the pathological charactesisii apnoea voice make them
more confusable. These differences in phoneticsaliscrimination then could be
exploited to detect apnoea cases.

Thus, given a set of acoustic features correspgniira particular phonetic class
produced by a particular speaker, the discrimieatmeasure used will be the
difference between the logarithm of two likelihosecbres (i.e. log-likelihood ratio,
LLR, Reynolds et al. 2000): one score was the ilkglihood of generating the set of
acoustic features using the true GMM model (ilee, torrect phonetic class), and
the other score was the log-likelihood obtainedh@is different phonetic class. As
can be seen in the bottom of the diagram in Figurae explored the differences
between every pair of GMM phonetic classes (V-NPW-F, N-P...).

We should bare in mind that the difference betwéatihood scores are closely
related to the Kullback-Leibler divergence (KLD)ls@ known asdiscrimination
information- [17]. KLD is the most common approach to meagiifeerences
between the statistical distributions of two clasaed to decide which of the two
models most likely generated a certain sample. Tie®retical measure can be
estimated either by calculating the average likathratio between two models over
a set of feature vectors, or by considering anydisahpproximation to it. This
analytic approach will only be used in subsectiof, While likelihood averaging
will be used in subsections 7.1 to 7.3.

7 Experimental results

Several experiments were developed to explore rdiffees between the four
phonetic classes, and all of them were based ondiffierences between log-
likelihood ratios (LLRs) for control and apnoea alers. To provide a fair test, both
the adaptation of the reference GMM models and LlaRse estimated using the
leave-one-out cross-validation test protocol. Adawg to it, for all tests involving a
particular speaker in the control group, the foeference GMMs were trained
through MAP adaption using our OSA database, butuding (leaving-out) this
particular speaker's records. Z-score normalizatioas used to fairly compare
results for the different phonetic classes andotwsier their posterior fusion at the
score level.

To quantify the acoustic mismatch between apnoeh @mtrol speech, two
different approaches were considered, both of wiiehe evaluated over a given
sequence of acoustic features belonging to a p&tiphonetic class:
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« First, our reference GMM models were used assiflass of phonetic classes.
We explored whether different performance ratedassification could be found for
the control and apnoea populations. Note that ia tase, we were not really
classifying control/apnoea speakers but only expdorwhether significant
differences in phoneme classification exists actosth groups. This result will
provide some insights into the effects of apnoetherspeech of OSA patients.

* In a second set of experiments, control/apnaessiflcation was evaluated using
average LLR from the reference GMM model correspundo the true phonetic
class, and the GMM of a different or competing p#tan class. Due to voice
anomalies in apnoea patients, this average LLRfowawd to be different for control
and apnoea speakers (i.e. higher for control spealend lower —greater
confusability— for apnoea speakers).

Finally we will conclude this Section by discussimgv GMM models trained for
vowel sounds in nasal and non-nasal contexts showtaresting distinctive pattern
for apnoea speakers that should be explored ingugsearch.

7.1 Differences in classifying phonetic classes

In this initial experiment, the discriminative powa the reference GMM models
were evaluated using them for classification anchgaring them across both the
apnoea and control populations.

For each speaker in our database all the speechestg corresponding to the
different phonetic classes were used to obtaimattezage LLR scores. Those were
calculated as the mean difference of the log-liadid values estimated for each
speech sample by considering two reference GMM Isodeach of them
corresponding to a phonetic class model). Thuseémh pair of phonetic classes,
two different errors were possible: missed recognition,when a speech sample
belonging to the first class was more likely todemerated by the second one, and
b) afalse alarm,when a speech sample belonging to the second phaless was
more likely to have been generated by the firstngio class model being
evaluated. Depending on the decision threshold aseoks LLR scores, these two
types of errors should hmpposite(i.e. lower false alarm rates lead to higher missed
recognitions, and vice versa) and can providingedeht operational points.
Detection error trade-off (DET) curves have beewnleli used to represent the
evolution for both types of errors (Reynolds et28l00), but also the discriminative
power of a classifier can be described using aeiBgual Error Rate value (EER).
The EER corresponds to the operational point ohbmissed recognition and false
alarm errors. In Table 2, EER values representivg gair-wise phoneme class
classification errors using the reference GMM medek presented. Different EER
values are presented for both control and apnasd {falues) populations.

From these results, we can see that classificatites are significantly different
from one class to the other, though the resultseasonably good for all of them
(the worst case being an EER of 11.7% classifyilugipes vs. fricatives in the
apnoea population). For vowels, results were adily good when compared to
those for nasals and plosives, as almost no eampeared when testing over the
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whole data set for both groups of speakers. Otladrs pdo exhibit small, but

meaningful, error values with quite different resulHowever, they all reflect a
common trend: performance for the apnoea groupoisevthan the control group.
This result suggest a systematic deviation from riéference acoustic phonetic
classes in apnoea speakers which can be relatetietgphysiological factors

associated with OSA. For instance, the increagEiR value when comparing nasal
sounds (NAS) to fricatives (FRI) and plosives (PL&ah be explained by the fact
that patients suffering from the OSA syndrome eihabnormal velopharyngeal

function, so this could alter the production ofalesounds, introducing a slight oral
plosive and fricative articulation due to partialatal paralysis.

Table 2.EER values resulting from phonetic classificatadrall pairs for the four
phonetic classes. Bold values correspond to theesppopulation, while the normal
ones were estimated for the control group.

NAS PLO FRI
0.0% 0.0% 0.0% 3.3% | 1.7% 3.3%

NAS 0.0% 4.2% | 1.7% 6.7%
PLO — 3.3% 11.7%
FRI — —

7.2 Phonetic classes for OSA detection

Based on the different classification results fonteol and apnoea populations
previously described, we will now analyze whethee tinderlying differences in
LLR scores could be used to classify a speakeektjing to the control or apnoea
population. LLR was evaluated in the same way axrilged in subsection 7.1:
using two competing GMM models, but in this cas&ds only averaged for speech
segments corresponding to a single phonetic cldsst is, in this experiment the
phonetic class of the speech segment was knowmr(sded by the automatic
phonetic segmentation process), but whether thekepdelonged to control/apnoea
group was unknown.

Therefore, for a given speaker to be tested, 4cdpsegments, one for each
phonetic class, were used, and, for each segmediffe8ent average LLRs were
obtained. For example, for the speech segmentssmonding to the vowel phonetic
class, three different LLR scores were obtainedguidiie V-N, V-P and V-F pairs of
reference GMM models. Consequently, using eachafrtbese three LLRs, three
different control/apnoea classification results eveonsidered. So far, when speech
segments for all phonetic classes were used, afs$ lfor all possible combinations
of reference GMMs were used, a total of 12 coramibea classifiers were
evaluated.

As in the previous experiment, evaluation for ttest of control/apnoea
classification systems was based on ities recognition andfalse alarm errors,
but in this case missed recognition meant that@moea speaker was incorrectly
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classified as a control speaker, and a false atagmalled a control speaker being
classified as having apnoea. Control/apnoea cleatdn results, in terms of EER
values for each one of the 12 classifiers, aregmtesl in Table 3.

Table 3.EER values for control/apnoea classification usipgech segments of the
four phonetic classes and LLR scores for all pafinreference GMM models

VOW NAS PLO FRI
VOW-NAS 46.7% 38.3% - —
VOW-PLO 42.5% - 47.5% -
VOW-FRI 47.5% - - 40.8%
NAS-PLO - 37.5% 50.0% -
NAS-FRI - 39.2% - 44.2%
PLO-FRI - - 46.7% 33.3%

From these results we can see that apnoea coudtbeted with an accuracy as
high as 33% EER, which is rather surprising as last classification result was
obtained when considering fricative samples evellatsing LLR scores from
fricative vs. plosive reference GMMs. In contrastyery poor discrimination rate
was attained when plosives were compared to fueatiA possible explanation for
this apparently odd result could be that in thipezinent what we consider is not
just the deviation from a perfect fit to the refeze phonetic class models, but also
the deviation towards a certain phonetic classnSbis case, fricative sounds in the
apnoea group show a deviation towards plosive eater sounds. The same idea
explains the results obtained when we comparedsasa vowels or nasals and
plosives. Looking at other results in the Tableer¢h are cases where both
comparisons provided rather similar results for gias from both classes. This
finding indicates that the distortion in one direntis about the same in the opposite
one, just as it happens for vowels and plosivesel® and fricatives or nasals and
fricatives.

The results from nasal speech segments (NAS colnriable 3) require a more
extensive explanation. According to the reviewgetditure, abnormal resonances in
speech are characteristic of OSA patients, pasityulwhen considering the
nasalization of connected vowels. Therefore, it wapected that nasal sounds
would be useful cues in the design of an autom@tstem for OSA detection. In
fact, Table 3 shows lower global EER values for M#S column when compared
to other phonetic classes. Consequently, the sffeicivowel nasalization required
from a specific analysis, which we describe in Bect7.4 by considering two
different phonetic class subsets for vowels: thims@asal or non-nasal phonetic
contexts.

7.3 Improving detection by the combination of pairs

From Table 3, it seems clear that classificaticsulte are poor for each of the
individual classifiers. In this section, we willytto improve those results by
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combining all 12 classifiers into a single one.sTisia complex task which generally
requires a large amount of data to guarantee tigabptimal combination is found.
Since the current dataset is small, we could npteament an optimal approach, but
used a suboptimal one, which was designed to iNeigt improve binary
classification.

The combination process used was based on theathlgatescribed by Al-Ani et
al. (2003), though conditional mutual informatioalaulations were substituted by
EER estimations, which are in fact the posteriooreprobabilities discussed in that
article. The idea was to improve classificationesatby linearly weighting
normalized scores and adding them up; but onligéfdverall results were noted to
improve. In order to avoid any redundancies andrigps effects which could
detrimentally affect the results, all combinatigeaccessive pairs, triplets, quartets,
etc.) were tested in order to identify the optiroaé. However, as suggested by Al-
Ani et al. (2003), good results (though suboptint@h be obtained by iteratively
combining the weighted classifier with the best amdst uncorrelated spare
classifier, reducing the computational complexity.

The results from all these combinations are preseimt Figure 2 using DET
curves. The final DET curve, corresponding to tlmnbined system, returns a
28.33% EER. This final DET curve is presented alosiiy a different set of DET
curves in Figures 2a and 2b. In Figure 2b (rigbt)pthe different successive DET
curves illustrate how successive classificationrimpments are obtained during the
iterative algorithm.

a) b)

Fused ¥3 single classifiers Fusion process

T T PO OOS FOUOREPORP-NUPURPPTRPPL TS | NURPPOIOY 40 bt B

Miss probability (in %)
Miss probability (in %)

1 é E‘ Wiﬂ Z‘D 4‘0 1 é E: 1iD ZID 4‘0

False Alanm probability (in %) False Alanm probability (in %)
Figure 2.DET curve resulting from the combination of the difonetic classifiers:
the left one (a) compares the resulting DET curith the ones estimated for each
single classifier; the right one (b) compares tlesults from the iterative
improvement algorithm.
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As can be seen in this Figure, most of the impranis achieved during the
first iterations, while only marginal improvementscur later in the process. When
comparing the final combination result to eachhaf twelve prior classifiers (the 12
upper right DET curves shown in Figure 2a), it bees clear that there is a strong
correlation among classifiers, although there i®@asiderable gap between the best
prior classifier and the one resulting from theidasprocess, improving the overall
classification by 5%.

7.4 Exploring vowel nasalization

With the previous results estimated for control ad8A speakers in mind,
nasalization effects (affecting both nasal and ected vowel sounds) seem to be a
relevant phenomenon in apnoea detection. In ocdenprove our understanding of
the side effects of the abnormal coupling and delbog of the nasal and oral
cavities, as well as to continue to rework Fox &nideon’s (1989) experiments by
means of automatic speech processing, an additexgbratory experiment was
carried out. The abnormal resonances describenaRd Monoson’s work could
be perceived as a form of either hyponasality grelngasality (no nasalization is
produced when the sound should be nasal, or nasatizis produced during the
pronunciation of non-nasal —voiced oral- sounds)other words, OSA speakers
will nasalize when they are not expected to, andf® versa. As a consequence, we
will expect statistical models (GMMs) trained wigluch data to exhibit smaller
differences when comparing models for vowel souimdshasal and non-nasal
contexts. This idea could be tested by measurieglistances between both models
in each group of speakers.

Acoustic feature vectors for vowel sounds were peolinto two different
subsets, based on whether their phonetic context m&sal or non-nasal, i.e.
depending on whether they should be nasalized toiThe amount of available data
for the original VOW phonetic class was enough tidbthe class model for the
previous experiments, and is even big enough fortests once we redistribute
samples among these two nasal sub-classes. Howsinee, we have reduced the
size of the data set in this experiment, the KLRlgic approximation (Do 2003)
was chosen. Therefore, four different models weameéd by adapting the original
VOW GMM: two GMMs adapted to vowels in non-nasahiaxt (one for control
and the other for apnoea speakers), and two GMMwdwels in nasal contexts
(also for control and apnoea voices).

As a test of the stability or consistency of ourXlapproximation, these four
GMM models were trained and the corresponding Kiiddaghces were evaluated 40
times, each time using a different subset of 39roband apnoea speakers extracted
from our database. Figure 3 represents the regu#idh KLD distance values
obtained for GMM models for vowels in nasal and nesal contexts (speaker
index in the Figure corresponds to the excludedalsgrein the 39 speakers’
subgroup). As it can be seen in Figure 3, significdifferences in the nasal/non-
nasal GMM distances were found for the control apdoea speakers. This result
suggests that acoustic differences between oralnaisdl vowels are smaller in
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apnoea speakers and confirms the trend to an ouJa@gher nasality level, as
revealed in previous research.
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Figure 3.KLD approximation values between Gaussian Mixtdi@els for vowels
in nasal and non-nasal contexts

8 Conclusions and future research

In this paper, some of the characteristic speetterpa that can be observed in
speakers suffering from severe obstructive sleepe (OSA) syndrome have been
analyzed by comparing phonetic classes using af&adly designed speech corpus.
This study offers an innovative perspective on tgwanetic information can be
used in pathological voices analysis using coneeati automatic speech processing
techniques.

Regarding Fox & Monoson's research as a refererece;perceptual”
representation of the speech signal using Mel-ieaqy cepstral coefficients was
used. From this acoustic representation, experaheasults were obtained using
Gaussian Mixture Models (GMMs), which were inityatrained on a large Spanish
speech database and adapted to a control populati@se GMMs were generated
for the four broad phonetic classes and then usegfarence patterns to explore
possible acoustic mismatches in the voices of speakith apnoea.

Differences in phonetic classification for cont@md apnoea populations were
observed for the four phonetic classes. Thesetsesubgest that certain phonetic
groups are more likely to be misclassified when gspeaker suffers from apnoea.
Using all different pair-wise reference GMM modeatentrol/apnoea classification
was also evaluated using log-likelihood ratio ssoaeeraged over segments of
speech corresponding to different phonetic clas3é® minimum 33% EER
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obtained when using single classifiers, was impdaee28.3% when combining all
of them through an iterative linear weighting algon.

Finally, various effects addressed in the previdesature were identified in our
experiments, supporting the interpretation of theomatic speech recognition
results. Reworking Fox and Monoson’s (1989) expernita has allowed us to come
to the same conclusions they did. Though furthealymis is needed, apnoea
speakers certainly exhibit smaller intra-classedldhces during vowel nasalization.
This side-effect is probably related to an abnorooaipling of the nasal cavity.

Our results are intended to shed some light onptuliarities that phonetic
classes exhibit when comparing healthy speakerthdse suffering from OSA.
Results obtained in control/apnoea classificati@renalso promising, though still
much work needs to be done. Besides, there isastileed for a larger speech
database to continue study in this area. We shalud on this need, while
encouraging research to improve our understanditigeceffects of OSA on speech
signals.
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LABORATORIES OF SPEECH RESEARCH & TECHNOLOGY
AT THE DEPARTMENT OF TELECOMMUNICATIONS AND
MEDIA INFORMATICS (TMIT),
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
(BME)
http://www.tmit.ome.hu

History of the Laboratories

Prof. Géza Gordos, founding Head of the Departmsatted to build a speech
research and technology laboratory at the Buddpmestersity of Technology and
Economics in 1969. Since then, this laboratory bhaer since been active in
practically every aspect of speech processing.

BME TMIT has been represented at all biennial Eoeesh conferences since
1987. In recognition of our achievements, the ESkifard (European Speech
Communication Association, which today is knownthe International Speech
Communication Association, ISCA) selected thisiing to host Eurospeech ‘99
with Prof. Géza Gordos as General Chairman, PréfiaMGosy as Co-Chairman
and Dr. Géza Németh as the Scientific Secretarg. (dB0 papers were presented,
with 1100 participants from 51 countries).

Members of BME TMIT maintain both strong acadena andustrial contacts
including national and international projects (i@OST, ACCORD, Copernicus and
EU R&D Framework). Our various results have beelzatl in the industry since
1982. The MULTIVOX multilingual text-to-speech (TTSystem — developed in
our department — was one of the Hungarian winnére Software for Europe
competition. Also in 1996, a measuring instrumenevedoped in our
Telecommunications and Signal Processing Laborategeived the European
Innovation Award and the Innovation Award of the ngarian Ministry of
Telecommunications and Transportation. Five currédahd one previous)
researchers from BME TMIT (Géza Gordos, Géza Ném@tbor Olaszy, Péter
Tatai, Gyorgy Takacs and Klara Vicsi) received shared Award of the Hungarian
Academy of Sciences for outstanding results in @peeommunication and
technology in 1999. R&D results are taken into ttlassroom coursework,
laboratory work, diploma theses and PhD trainirtge Bpeech Information Systems
aspect of the department attracted 95 students iiirst year of operation in 2001,
which then increased to 311 in 2006.

The present

Speech research and technology-related activitep@sently conducted within
the Section of Telecommunications and Speech Sgst#fnBME TMIT, which is
headed by Prof. Géza Gordos. The team has appr@lymd0 researchers and
students. In 2004, a spinoff company for researal wreatedhftp://www.aitia.ai).
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Laboratories of the Section contributing to thigivaky and their major fields of
interest are:

Speech Technology Laboratoryt{ttp://speechlab.tmit.ome.hu)

Contact: Dr. Géza Némethefmeth@tmit.ome.hu)

Multilingual text-to-speech synthesis

* MULTIVOX text-to-speech system (multilingual gtagme-sound conversion,
prosody modelling, formant synthesis, supportingab@uages, 1986-1996).

* PROFIVOX waveform based TTS development enviramnggnplemented for
Hungarian, German, Polish and Spanish, with clgemt«er architecture, TTS high-
level control mark-up language MVML, description détailed data and rule
systems for Hungarian TTS and automatic prosodyemgdion (timing rules,
amplitude structures and multilevel FO rules) arailable ) (1994-).

« High quality humber-to-speech generation (impletad in Hungarian, German
and English, starting in 1996 to the present).

Computer telephony integration (CTI), dialogue systms

« Hungarian person, company hame and address r&@R0-04, operated by T-
Mobile Hungary as a reverse directory application).

» World’s 1* Symbian mobile phone-based SMSreader product (p6&sent,
together with M.I.T. Systems Ltd., marketed in Hangby T-Mobile Hungary,
English product name: SMSrapper).

« 1 Hungarian VoiceXML browser (2002-03, based on Qpéi

» Development of the first multi-line, network bdsdungarian e-mail and SMS
reading system with automatic diacritic regeneraftt®98-present).

« Development of commercially used audiotext/voimsponse applications,
including the first Hungarian Speaking Bill oveetiielephone (1995) and the first
Hungarian residential voice-mail system (1996).

» Development of the speech interface of an auticnaanouncement system for
the Hungarian Telecommunications Company used pn&@).000 lines, based on
formant synthesis (1992).

* Human factors, use ability issues (COST219, Ebjeut Mobile Rescue Phone,
1990-).

Applications of the synthesis engine for the disabt and the elderly

« Speaking systems included in screen readersiéoblind (e.g., Hungarian Jaws
for Windows) and the speech impaired (1984-).

Laboratory of Speech AcousticsHttp://alpha.tmit.ome.hu/speech/)

Contact: Dr. Klara Vicsivicsi@tmit.bme.hu)

Database collection

» SpeechDat(E): telephone speech database, aticeapsech base, both for the
realistic training and testing of present-day teteices and for the training of real
speaker independent speech recognizers, Europej@ctil999-present).
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* BABEL - a multilingual speech database collectitear read speech for general
speech processing purposes of (1995-99) INCO - GREUS project.

* CHILDREN SPEECH data-base collection (1999-prgsdtart of the SPECO
Copernicus program.

« MTBA, BESZTEL-Speech database collection througlkephone lines and
mobil telephones (2000-2003).

Annotation and segmentation

* Automatic speech segmentation on phonetic, sungic level of continuous
speech, automatic labelling (1997-present).

« Language independent automatic segmentationad@dlihg technique has been
developed for training speech recognizers, spetlyicto collect base (1990-
present).

Speech recognition

» Speaker independent, isolated word robust (n@Bphone) speech recogniser
(1989-present).

» Neural network based speech recogniser, suppbytgthoneme, diphone, half-
syllable based recognition on phonetic and phoncéddevel (1995-present).

«HMM based middle sized, speaker independent, cootis speech
recognition for fixed topics (2004-present).

Speech processing for speech-pronunciation teachingystems for speech
handicapped and for language learning

« Audio-visual speech-pronunciation teaching sysfemndividuals with speech
impairments and for pronunciation training in laaga learning.

¢ A Multilingual pronunciation teaching and traigirmethod within the EU
Copernicus program, entitled SPECO.

Statistical examination of the Hungarian language

» Search of optimal units of CSR systems.

» Construction of optimally sized teaching and itestmaterial, based on the
nature of the language concerned.

« Language modelling.

Telecommunications and Signal Processing Laboratorghttp://ds.aitia.ai)

Contact: Péter Tataiatai@tmit.ome.hu)

Automatic Speech Recognition

» Basic research: exploring and solving problemkted to the Hungarian
language, which is highly agglutinative, and therefmost words have hundreds or
even more different forms, making word based reizega generally impractical.

« Speaker-independent open vocabulary speech riticogbased telephone
information services (open vocabulary: vocabulaggesion by text input).

* Realization of voice controlled call centers aveb based voice portals.

« Automatic speech recognition based call centéoxéenter”.

« Finite state grammar- constrained, connected-wembgnition, using HMM
technology.
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« Development of a system for automatic predictiball possible pronunciations
of Hungarian words.

* Development of a morpheme-based grammar-modethmrecognition of all
inflected forms of Hungarian words.

Speech quality measurement

Speech quality measurement system including

* subjective testing tools - absolute and compartsets,

* objective testing - calibrated to the subjectesults,

« S detection and other special signals in the mhian

* on line observation of the transmission for aalilon.

Front-end development

* Enhanced line spectrum estimation, cepstraldtajg approximation with FFT
for automatically segmented subword units, stanftart-ends are also available.

« Automatic subword (demi-syllable) segmentation.

Language modelling

* FSA grammar descriptions for specific applicasion

« Written text to phoneme sentence conversion.

« Triphone set creation, taking coarticulation effe into account (manual -
automatic).

* Pronunciation training database - transcriptiéorl.®é million Hungarian word
forms.

Géza Németh
Budapest University of Technology and Economics
Budapest, Hungary
e-mail: nemeth@tmit.bme.hu
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INTEGRATING PROSODY INTO AUTOMATIC SPEECH
RECOGNITION

Gyorgy Szaszak
Department of Telecommunications and Media Informaics
Budapest University of Technology and Economics, Higary
e-mail: szaszak@tmit.ome.hu

Abstract

This paper is a short overview of the author'settssion titled “The role and
usage of supra-segmental features in automaticckpescognition”. Generally
prosody is neglected in speech recognition, althoagpart of the information
transmitted by speech is encoded in form of praséetures. This paper presents
the possibilities of acoustic-prosodic preprocassind some methods which allow
for the integration of prosodic information intoetautomatic speech recognition
process. Prosody based speech segmentation andnatigtosentence type
recognition are presented and evaluated.

1 Introduction

In the age of electronic information and artificiattelligence, machines are
increasingly expected to implement or extend husiaapabilities. The same is true
for automatic speech recognition: humans would like communicate with
computers using a hatural language. Since the biegjnof speech recognition
research, several revolutionary innovations haverituted to the improvement of
automatic speech recognition, however, thereliswtich to do.

Standard speech recognition focuses on the trgtiseriof the speech. This is a
pure phone-to-grapheme conversion based on spdetfres extracted in the
segmental domain. Any additional information sourice discarded and not
processed by standard automatic speech recogr(A8R), like the prosody of
speech which is important in decoding sentence, typeality or emotions. ASR
systems interpret the speech as a sequence of phenand speech processing is
carried out strictly in the segmental domain (Jiri998): the acoustic-phonetic
level in speech recognition is modelled by the aited acoustic phoneme models,
and the acoustic speech signal is used only taropteoneme sequence hypotheses.
Phoneme sequences then are grouped into wordshwdrie managed by the
language model in order to statistically specifywh@ords can form the word chains
that are the output of most recognizers. The au#iigues that supra-segmentals
acoustically support the word chain level mentioabdve and can help to develop
more robust speech recognition systems. In additeorspeech utterance with
improper prosodic structure (improper accents,ssti@ intonation; too monotone
speech) degrades the performance of human spedehstanding.
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As far as the author knows, applications in whidtospdic modules are
implemented are rarely used in automatic speechepging; an exception is the
prosodically rich, but not tonal Japanese languafyere the fundamental frequency
contours of words or parts of words have been nedieind recognized (Hirose
2001). Unfortunately, these results are presemédfor a test set composed of only
two speakers, however, the results were impresgiith an improved mora
recognition rate noted. For American English, aislen tree-based system was
published (Veilleux & Ostendorf 1993), which usesxdamental frequencies and
speech breaks to reorder the N-best hypotheseimethtiiom the speech recognizer.
In this case, a syntactic and semantic analyser weasl to create a reference
prosodic structure for each hypothesis. Hypothegsm® then rescored based on a
coincidence evaluation between the generated aseredd prosodic structure. The
primary prosodic feature utilized was durationjtgdays a major role in American
English speech prosody, including stress. A sindlgroach also was published for
the German language (Kompe 1997; Kompe et al. 199%) Standard Colloquial
Bengali, a language spoken in India, a word bouyndatector has been developed
using prosodic features (Mandal et al. 2007). Ditecof prosodic phrase
boundaries and sentences, or speaker segmentatiorelatively often-published
applications of speech prosody (Cristophe et &042&ompe 1997; Shriberg et al.
2000; Waibel 1988).

In the present article, which provides an overviginthe authors’ dissertation
(Szaszak 2009) the role of prosody is addressddaniipecial focus on fixed-stress
languages. The goal was to perform automatic speegimentation for units shorter
than prosodic phrases. It will be shown that suefgnmsentation can improve
automatic speech recognition performance. Findlig, automatic detection of the
sentence type based on prosody also will be predent

2 Subjects, material and method

The speech resources used were the Hungarian BAREdbase (Vicsi & Vig
1998: the part used contained about 1600 sentdrm®s32 speakers), Hungarian
Children Database (approx. 18000 utterances), ithedh Speech Database (Vainio
et al. 1999: 250 sentences from 4 speakers) aodiarpof the German Kiel Corpus
(tales “Nordwind und Sonne” and several individpatasesKIEL Corpus of read
Speechl994). These databases were manually pre-segmiemtegrosodic phrases
and clauses/sentences.

Two main tasks were conductespeech segmentatiorbased on prosody (for
Hungarian and Finnish), andentence type recognition(for Hungarian and
German). The prosodic attributes used were fundtahéequency and energy, as
they can be easily extracted from the speech sigmnabmatically. Duration
measures were not used, because the author fouridgdhis preliminary
experiments (Vicsi & Szaszak 2005) that they weoe aonsistently used in the
Hungarian speech database, and because their t@xtragould be too time-
consuming (i.e., phone-level segmentation wouldrduuired). The fundamental
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frequency and energy contours were extracted ugiagSnack toolkit and then
processed and smoothed to correspond to the segnaesital domain.

The segmentation of speech was based on the pesséstress in the FO and/or
energy contours, which were automatically detectsd either peak-detection
algorithms or by hidden Markov-model (HMM) basedjament. Both approaches
assume that the stress in the language is fixeml HMM-based alignment is used,
the prosodic contours of phonological phrases (lddny®002; Varga 2000) are
modelled based on their FO and energy contours. eFdixed-stress language
(Hungarian and Finnish are fixed-stress), the stréithin the phonological phrase
has also a relatively fixed position. Six differgarbsodic contours were modelled,
including silence. Experiments were carried outHoingarian and Finnish in order
to investigate word-boundary detection based omelogical phrase alignment (a
phonological phrase was presumed to correspondstinat words or word-chains
and hence, phonological phrase boundaries werededjalso as word boundaries).
The HMM models utilized were 11-state left-to-rigittes with 1 or 2 Gaussians per
state.

The performance of the algorithms was evaluatedgusivo measuregrecision

(p):

tp
= [100%

P tp+ fp (1)
where tp (true positive) stands for the number ofrectly detected word-
boundaries, fp (false positive) is the number tdfaletections. The measuezall
(r) refers to the ratio of detected word boundafries all word-boundaries:

_ 1p
r= i+ fn 1004 )

where fn (false negative) stands for missed (ntetaded) word-boundaries.

The detected word-boundaries were then used toomperfN-best rescoring
(Veilleux & Ostendorf 1993) in ASR in order to irst@yate whether word-boundary
information improves speech recognition performafiee, reduces the error rate at
the output of the ASR). This was investigated dohthe Hungarian language.

For automatic sentence type recognition, the samM&Hramework was used as
for phonological phrase alignment and derived wwmwdndary detection: HMM
models were trained to match the specific prosodittour of clauses depending on
the type of the sentence. A silence and a non-teingontour model was also used
in addition to the sentence type-specific termic@htour models. Hungarian and
German languages were utilized during these exeetinFor Hungarian, seven
different contours were modelled and for Germare foontours were developed
(because less data was available). To evaluatenihlemented system, the ratio of
correctly recognized clause units/sentence typassmeasured:

Corr = % [100% (3)
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whereH is the number of correctly recognized clausesésmm® types anll is the
total number of clauses/sentence types in referanscription.

3 Results

3.1 Automatic classification of phonological phrase and word-boundary
detection

The modelled phonological phrase contours weres&#a2009): falling (FA),
descending (DE), floating (FL), rise-fall (RF), aading/rise (RI), and silence (SIL).
All phonological phrases except floating and sieoontours were expected to start
with a stressed syllable and continue with a djgetiitonation contour (i.e., the
phonological phrase is interpreted as a prosodit with distinct stress). The
boundaries of phonological phrases always coincwigl word-boundaries (but the
reverse was not always true). In this case, thegeiian and Finnish languages were
involved in several training-testing conditions,sa®wn in Table 1. Word-boundary
detection results were recorded and the resultstanen in Figure 1.

Table 1.Training and testing configurations of phonologigiarase alignment based
word-boundary detection

Training Testing Code
Hungarian Hungarian HH
Hungarian Finnish HF
Finnish Hungarian FH
Finnish Finnish FF
both Mixed  Hungarian MH
both Mixed  Finnish MF

8% & HH
76%1 * MH
S 74% -
8 72%
& ¢ FH
0,
- T LAt
° ® HF
66% T T T T
40% 50% 60% 70% 80% 90%
Recall

Figure 1. Precision and recall of word-boundary detection Hoingarian, Finnish
and mixed systems

3.2 Improvement of ASR
To analyze the effect of word-boundary informatimm ASR performance, the
Hungarian HMM-based phonological phrase alignmegstesn was used for word-
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boundary detection, and the detected word bourslarégze used to rescore N-best
lattices in a Hungarian medical ASR applicatiore(Szaszak 2009 for details). The
N-best rescoring algorithm augments the scoreadwhain candidates if the word
boundaries match well the detected ones. In caserdfiderably mismatch between
the detected (phonological phrase alignment) anubtmesized (speech recognition
procedure) word-boundaries, the score is redudee speech recognition procedure
was split into two parts: in the first part, the st lattice was obtained, which is
then rescored based on the prosodic segmentatien dby word-boundaries.
Finally, in the second part of the recognition g, the lattice was parsed to obtain
the recognition result.

The experimental testing set was composed of 2Gaaeckports (approx. 300
sentences in all). Speech recognition was perforbwt in the “classical” way,
without using word-boundary information and resegriand with the joined word-
boundary detector module and rescoring. With titerdane, the ratio of correctly
recognized words was higher by approximately 3.8%mcompared to the baseline
system. In general, the recognition rate for eagbont (of the 20 reports used)
increased in accuracy, however, recognition perdmee with the extended ASR
system decreased for two reports. A deeper er@aysin revealed that this was due
to improper prosodic segmentation related to ermesle by the fundamental
frequency extraction tool (pitch tracker).

3.3 Sentence type recognition and clause boundargtéction

In classical statistical speech recognition, tlenidication of the sentence type or
modality is not possible. To determine them, syinta&@nd semantic analyser tools
can be used (see Shriberg et al. 2000). Thesensysilso use ASR output, so all
recognition errors are passed into the modalitgsifeer module. Moreover, it is
possible that prosody is the solitary feature idfi@ng the sentence type (Kompe
1997). In written language, punctuation marks Hhelpdentify the sentence type.
However, commas do not always coincide with thespdacally marked grouping of
clauses (Olaszy 2005).

Sentence type recognition is also a semantic l@asl, which is based on the
classification of the intonation of the sentence. $yntactic requirements are
sentence and/or clause level speech segmentatitar. tAis, the sentence type can
be recognized.

The sentence type models for Hungarian used werelagtive (S), explicit
guestion (K), yes/no question (E), imperative/exatory (X), optative (O), andfor
German: declarative (S), interrogative (E), impegedexclamatory (X). As their
intonation is different, yes/no questions and daestrequiring an explicit answer
were separated in Hungarian. Exclamatory and intiperaentences are merged in
both languages, as they were not found to be signifly different in intonation.
This merging did not influence the correspondinghgtuation mark (i.e., an
exclamation mark was used for both sentence typ&s)-terminal clauses (T) and
silence (U) were also modelled to allow an aligntrfem speech parts containing
several clauses and sentences.
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The iteratively optimized sentence type recogniyexlded the results for

Hungarian (in Figure 2) and German (in Figure 3)rr€ctness was evaluated for
each sentence type separately.

100

80 - —

60 ] — —

40 - =

Correctness (%)

20 A —

0 I I I I I I

Figure 2.Correctness (in %) evaluated separately with ated4iMMs using a time
window of 40 frames (400 ms) on the Hungarian GhildDatabase
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Figure 3.Correctness (in %) evaluated separately with ated4iMMs using a time
window of 40 frames (400 ms) on the Kiel Corpueri@an)

4 Discussion and conclusions

The article addressed the role of prosody in auticnspeech recognition, with a
special attention paid to fixed-stress languagesno&el prosodic segmentation
method was briefly overviewed, which is based oignahent of phonological
phrases. Since the boundaries of the phonologicedsps coincided with word-
boundaries in the languages tested, partial wotohtbary detection could be
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performed. This process can help to improve théopeance of automatic speech
recognizers (ASR). The segmentation into phonoldgitirases is believed to help
automatic syntactic and semantic processing of huspeech (Cristophe 2004).
HMM-based phonological phrase alignment was implaes for Hungarian and
Finnish (both fixed-stress languages). The perfoceaof the phonological phrase
alignment was analysed using precision and recatésr for word-boundary
detection, although not all word boundaries werenptogical phrase boundaries.
The reason for speaking about word-boundariesaisithcurrent ASR applications,
phonological phrase boundaries cannot be used vaong-boundaries are taken into
consideration. However, prosodic segmentation inmgulothe performance of a
Hungarian ASR application by 3.8%. Like phonologiparase alignment, larger
units, such as clauses, can be also aligned basedosodic modelling. After this
alignment, clauses can be classified as sentenoéngd and non-terminal clauses,
and the type of the sentence can be recognized. fBlility can contribute to
automatic semantic analysis, to the automatic ptacé of punctuation marks in
ASR systems, or to the classification of sentegipe {for example, interrogative vs.
affirmative, which is very important in dialoguessgms). A similar framework can
be also used for automatic emotion recognitiorpigesh (T6th et al. 2008) — which
is based on acoustic analysis of supra-segmerdabgic features, which have been
expanded by some segmental features.
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REPORT ON BUILDING A TOOL FOR ROMANIAN
SPONTANEOUS SPEECH RECOGNITION

1 Introduction

The personalized interaction between human subprmiscomputers presents a
significant challenge today, as software serviced products become more and
more user-centered. Thus, spoken computer dialoguastitutes one of the most
natural and convenient means of interaction fotinaan.

For several international languages (i.e., Englistench), there are complete
human-computer dialogue systems, in domains fram or plane ticket reservation
(the American system CMU Communicator, designed Carnegie Mellon
University in the last decade of the 20th centggpstems developed by France, in
the ESPRIT European projects, in the last two dexanf the 20th century), to
resource —meeting room management in voice popalications (the PVE -
»Portail Vocal pour I'Entreprise” system, developgdcooperation with Grenoble
University 1, CNRS and several companies, suchrascé Telecom, and with
government financing, in 1992-2005). On the otrard) in other languages such as
Romanian, considered “under-resourced, from a $peleatabase point of view”
(according to recent studies), the developmenpokan dialogue systems is a long-
term process.

The task of the speech recognition component irp@ken dialogue system
consists of converting the utterance (in acoustimj from the user into a sequence
of discrete units, such as phonemes (sound unitsyoods. A major obstacle in
accomplishing a reliable recognition is speechaligariability, which results from
the following factors:

* Linguistic variability, in which includes the effts of several linguistic
phenomena, such as phonetic co-articulation the.,fact that the same phoneme
can have different acoustic realizations in diffeéreontexts);

» Speaker variability, in which includes the eftedf inter- and intra-speaker
acoustic differences; inter-speaker differencesdatermined by physical factors,
such as the particular shape of the vocal traetatie, sex or origin of the human
subjects (the fact that a speaker may not be aenafieaker of the language being
used for communication). Intra-speaker differenoesur when same word can be
uttered in several ways by the same speaker, aogotd her or his emotional or
physical state, or to the pragmatic (and situatjooantext of the utterance — for
instance, a word can be uttered more emphatigaldyder to stress a certain idea;

* Channel variability: includes the effects of eowimental noise (which can be
either constant or transient) and of the transmmssihannel (e.g., microphones,
telephone lines, or data channels — “Voice ove}.IP”

The speech recognition component in a typical diadoapplication has to take
into account several additional issues:
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« Speaker independence: since the applicationrimalty used by a wide variety
of individuals, the recognition module may not tarted for a single speaker (or for
a few speakers) supposed to use the system, asci dictation applications. Thus,
speech has to be collected from an acousticallyesgmtative set of speakers, and
the system will use these data in order to recegaiz utterance from (potential)
users, whose voices were not used during trairfihgs is why the performance of
the speaker independent recognition process iggnpoorer than that for speaker
dependent recognition.

« Size of the vocabulary: the number of words theg “intelligible” to the
dialogue system depends upon the application ceresid as well as on the
complexity of the dialogue. Thus, a strictly cofitd and rather inflexible dialogue
may constrain the user to a small vocabulary, ingithe system to a few words
expressing the available options . Yet, in moraursdtand flexible dialogues, the
accessed vocabulary can process several thousartt$ \ffor instance, the PVE
system, developed in France as a voice portalrftargrises, has about 6000 words
recognition module).

« Continuous speech: the users are expected tblbdaestablish a conversation
with the spoken dialogue system, using unconstaspeech and not commands
uttered in isolation (isolated voice command systéon industrial robots have been
developed also in Romania, in the 1980s, at UnityetBolitehnica” of Bucharest).
The issue of establishing the boundaries of worslsextremely difficult in
continuous speech, since in the acoustic signatetts no physical border between
words. Hence, linguistic or semantic informatiors @ be used in order to separate
the words.

« Spontaneous speech: since users’ utterances arealty spontaneous and
unplanned, there are generally characterized Hudiwies, such as hesitations or
interjections (e.g., “hmm”), false starts, in whitthe speaker begins an utterance,
stops in the middle and re-starts, or extra lingrighenomena, such as a cough.
The speech recognition module must be able to @xteaword sequence out of the
speech signal thereby allowing the semantic analyzeeduce the meaning of the
user’s utterance.

The concern of developing a speech recognition meodwited for spoken
dialogue systems is not trivial, although standialgontinuous speech recognition
systems exist (e.g., for dictation applicationsy aare beginning to appear in
Romania. Thus, a continuous speech recognition teoftu spoken dialogue in
Romanian must be adapted to the spontaneous raftsmeech, and be able to
interact with other modules in the dialogue systemagnely the semantic analyzer
(which can decide whether the utterance is meaningf not) and the dialogue
manager (which can decide whether the utteranceasonable and relevant to the
dialogue history).
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2 Speech recognition systems

In principle, speech recognition involves findingvard sequence, using a set of
determined models acquired in a prior training phasd matching those models to
the input speech signal. For small vocabularies, (less than 100 words), these
models can capture word properties, but tend tafan sound units are generally
modeled (such as phonemes or triphones, which gseptgohonemes in the context
of neighboring phonemes). The most successful agpes consider this process to
be probabilistic and has to account for temporailatdlity (due to different sound
durations) and acoustic variability (due to lingigissubjective and channel-related
factors, as emphasized above). Such systems, loasethtistical approaches, are
available in the research community (the SPHINXtamysfrom Carnegie Mellon
University, the HTK — “Hidden Markov Modeling Toatktoolkit from Cambridge
University, the RAPHAEL system, from Laboratoirdrdormatique de Grenoble,
etc.), as well as commercially (systems developebittance, Dragon or Microsoft
in the United States; those developed by Francec®det, Prosodie in France etc.).
At the same time, the first continuous speechgeition system for the Romanian
language was developed in 2006 at the Military Taxdi Academy in Bucharest.
Research to improve some of the components insilitem has been conducted at
University “Politehnica” of Bucharest.

A typical continuous speech recognition system wankiwo areas:

« training, which involves the creation of the n&sary acoustic and linguistic
knowledge, for the models being used,

« recognition, which involves the resources createring training which convert
a spoken utterance (in its acoustic form) into adrsequence.

For practical reasons, we have chosen to use “Hiditerkov Modeling Toolkit”
(HTK) as the basis for a general speech recognifiont-end architecture in a
spoken dialogue system. Before explaining the detdithe architecture, we start
with a brief statement of the constraints that e of architecture should satisfy:

« the nature of the speech signal: spontaneowskpi the Romanian language;

« system's usage conditions: in closed laboratooyn; with a constant signal-to-
noise ratio (SNR > 25 dB);

» microphone type: headset, with constant distéoet@een speaker's vocal cavity
and the microphone;

« vocabulary size: between 3000 and 10000 domaiegiendent words;

« characteristics relative to the speaker: spemddsEpendent, but tuneable to the
voice of a particular speaker, with less than 6fbsds of speech signal, acquired
from this particular speaker;

e voice detection: “on-line” speech decoding, walitomatic “voice activity
detection” (VAD); hence, “push-to-talk” setups wilbt be used.

In this context, we have designed a sequentialiteatbre, based on HTK, with
the following specific features:

a) speech signal parameterization (for both trginamd decoding regimes):
MFCC coefficients;
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b) acoustic modeling: triphone-level; for eachhope, an HMM is trained;

¢) HMM features for each Romanian triphone:

* number of states: 5 (including one initial stated one final state, both non-
emitting, and three emitting intermediary states);

« HMM topology: left-right, where transitions towds remote states and
“backwards” transitions are not allowed;

 output distribution: continuous, as a weightetedér combination of Gaussian
mixtures, for each emitting state.

Thus, the system is designed to work in two wayajning and testing
(recognition).

3 Romanian speech databases

3.1 Basic principles

A database for continuous speech recognition isemag of the following
components:

* a set of speech signal samples;

« a set of correspondences between the speecH samales with their features
(i.e., duration of the signal, identities of theeakers, speech type — read,
spontaneous, etc.);

* a set of labels that provide the words or phorsetiat are uttered in each speech
segment;

 a set of acoustic parameters, which “synthetitaktpresent the speech signal
(Mel Frequency Cepstrum Coefficients — MFCC, PetgapLlinear Prediction
Coefficients — PLP, etc.); a set of acoustic patamsds associated to each (suitably
chosen) speech signal window.

A phonetic dictionary is not necessarily part of@eech database, but such a
dictionary (that translates between the words a@sdcomponent phonemes) is
always needed when building a continuous speeabgnézer. Linguists’ research
showed that 36 phonemes are enough to cover thieusavord pronunciations in
the Romanian language. In one of our collaboratisitls expert linguists, we've
obtained an extensive phonetic dictionary that @iost a total of 800,000 entries
(literary word forms). This dictionary does not eovall the various word
pronunciations encountered in the spoken (orafjuage, but it gives us a head start
and the rest of the work focuses on matching tbaynciations with the word forms
encountered during the labeling process.

Although we are using IPA notations to distinguisiween different phonemes,
we've decided to employ other phoneme notationotor“in-house” development
and testing. We determined that most of the toaskveasier with ASCII encoded
text files versus Unicode encoded files. Table fnrsarizes the correspondence
between IPA and our SpeeD phoneme notations.

A database can be acquired via the following method

1. direct recording; this yields a series of spedgfsues:

» choosing the recording place (studio, laboratety.);
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Table 5.Corresponding between IPA and our phoneme noation

IPA SpeeD IPA SpeeD IPA SpeeD
Symbol Symbol Symbol Symbol Symbol Symbol
a a 0 ol f f
9 @ W w \Y% \Y
e e C k2 h h
i i b b 3 j
I il P p § sl
i i2 k k 1 I
0 ) tf k1 m m
u g g n n
y d3 g1 s s
o) 02 i g2 z z
e el d d r r
j i3 t t ts t1

e choosing the microphone (microphone type, sigtwlnoise ratio, noise
filtering);

» choosing the recording workstation (sound actaisiboard, signal amplitude,
overall signal to noise ratio, etc);

2. labeling audio books or other spoken materitis; specific issues in this
situation are:

* leveling the differences in the sampling frequescfor the different spoken
materials;

« splitting the audio and labeled content into $rspeech entities: phonemes,
words or word groups.

» detecting and correcting labeling and basic dpeetities splitting errors;

3. recording Internet broadcasted TV or radio shewabeling the content; the
specific issues in this situation are:

* homogeneity of the recording conditions (outdsbows, studio recordings,
movies, etc.);

« leveling the differences in speech coding staagléh - PCM,u- PCM, etc.);

« leveling the differences in the sampling frequeacfor the different spoken
materials;

« controlling the speaker set (so that a balanceauat of speech is obtained from
all speakers);

« detecting and correcting labeling errors;

4. direct acquisition from radio or TV broadcasawchels + labeling the content;
in this case, the specific issues are:

« the analog-digital conversion of the signal;

« the homogeneity of the recording conditions;

» detecting and correcting labeling errors.
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Our team has focused its efforts in acquiring spektabases using the first three
of the previously mentioned methods.

3.2 Databases descriptions

This section describes the various databases veegeired as a starting point for
our speech recognition projects. Here are somesraieut the purpose and the
features of each database:

» Database 1 and 2 were acquired using methodd 3 and are most suitable for
tuning up a system for continuous and spontangoeescé recognition;

« Database 3 is the starting point for any projéteés aim to model phonemes or
triphones. We've acquired this database in ordeadidress the initialization of the
system.

» Database 4 has been built using the first adguismethod (direct recording) in
order to offer an enhanced control of the wordsndpeiittered, the speakers,
recording environment, etc.

» Database 5 is a small database we’ve acquired fiifferent project: a voice
driven remote controlled device that understands executes only a few basic
voice commands.

3.2.1 Database 1 — Romanian language spontaneeashspecognition project,
see Table 2.

Table 2.Database 1.

Recording Internet broadcasted TV or radio showabeling the

Acquisition method content (3)

Acquisition date 2008
Andi Buzo, Cristina Petrea, Diana Hanes, Florint&adu, Roxana
Authors
Faur
Language Spoken Romanian
Type Oral, continuous, spontaneous
Total duration Approximately 4 hours
Speech signal Recording environment TV studio
Sampling frequency 8 kHz
Sample size 16 bits
Labeling Word groups level (60
seconds)
Number of 12 Females 8
speakers Males 4
Speakers Sessions per speaker 3-20
Time between recording sessiopns One day to two sveek
Total occurrences 37604
Words -
Number of different words 8068

73



3.2.2 Database 2 — Romanian language spontaneeashspecognition project,
see Table 3.

Table 3.Database 2.

Acquisition method
Acquisition date

Labeling audio books or otheslggm materials (2)
Summer 2009

Adina Popa, Diana Uzum, Mihai lordache, Horia Cugan
Oneata, Tudor Mihailescu, loana Rolea

Authors

Language Literary Romanian
Type Read, continuous
Total duration Approximately 11 hours
Recording environment Recording studio

Speech signal Sampling frequency 16 kHz
Sample size 16 bits
3% word level
Labeling 12% word groups level (up to 3 seconds)

85% word groups level (60 seconds)

Number of 7 Females 3
speakers Males 4
Speakers Sessions per speaker Unknown
Time between recording
; Unknown
sessions

Words Total occurrences 40016
Number of different words 7770

3.2.3 Database 3 — Romanian language spontaneeashspecognition project,
see Table 4.

Table 4.Database 3.

Acquisition method
Acquisition date

Labeling audio books or otheskgmn materials (2)
Autumn 2009

Adina Popa, Diana Uzum, Mihai lordache, Tudor Mibsdu,
loana Rolea, Florin Baltescu

Authors

Speech signal

Language Literary Romanian
Type Read, continuous
Total duration N/A
Recording environment Recording studio
Sampling frequency 16 kHz
Sample size 16 bits
Labeling phoneme level
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Number of 10 Females 3
speakers Males 7
Speakers Sessions per speaker Unknown
Time between recording
. Unknown
sessions
Total occurrences N/A
Words -
Unique occurrences N/A

3.2.4 Database 4 — Romanian language spontaneeashspecognition project,

see Table 5.

Table 5.Database 4.

Acquisition method

Direct recording (1)

Acquisition date

Spring 2010

Authors

Adina Popa, Diana Uzum, Tudor Mihailescu, loanag@pl
Florin Baltescu

Language Spoken Romanian
Type Read, single words only
Total duration N/A
Speech signal Recording environment Laboratory
Sampling frequency 16 kHz
Sample size 16 bits
Labeling word level
Number of 5 Females 3
speakers Males 2
Speakers Sessions per speaker 10 -20
Time between recording Couple of hours to couple of
sessions days
Total number of words 50000
Words -
Number of different words 10000

3.2.5 Database 5 — voice driven remote controlageproject, see Table 6.

Table 6.Database 5.

Acquisition method

Direct recording (1)

Acquisition date

Spring 2010

Authors

Andreia Vlad, Florin Teodoru, Daria lon,id&a Milea
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Language Spoken Romanian
Type Read, single words
Total duration N/A
Speech signal Recording environment Laboratory
Sampling frequency 16 kHz
Sample size 16 bits
Labeling word level
Number of 4 Females 3
speakers Males 1
Speakers Sessions per speaker 3-10
Time between recording Couple of hours to couple of
sessions days
Total number of words 5600
Words -
Number of different words 4

4. Training strategy

Speech recognition using statistical models is dadlgi a decision-making
process. At the end of the process, the followingstjon is answered: “Which
model or sequence of models from a given set betstch with a given speech
signal?”. Statistical models are mathematical nm®dbhkt reflect various speech
features. One such models is the Hidden Markov M(deIM) that we have been
using in our projects. The process of building tiedels is called training. Several
speech elements can be modeled, like phonemekonigis (a phoneme for which
the leading and following phones are specified)labyses or even words. The
selection of speech elements to be modeled is portant decision in the training
process as recognition performance will vary sigaiftly. After a series of
experiments we have decided that the best wayitd peech models is to follow
these steps:

1. Phoneme models are trained using the isolatemgrhe (phoneme labeled)
database.

2. Phoneme models resulted from step 1 are futitaémed using the isolated
words database.

3. Triphone models are built by cloning the modeihe central phoneme of the
triphone.

4. Triphone models are trained by using the isdlatords (word labeled)
database.

5. Triphone models are trained by using both watitled and the file labeled
database (used for continuous speech recognition).

In order to train the models properly, a corresgmue between the models and
the recorded speech files must be established. ddriespondence is realized by
labeling the boundaries between phonemes in a Wlthnemes are usually uttered
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inside words and not separately, so the best wasaio phoneme models is to use
utterances within words and not isolated, spokewnphmes). Labeling each
phoneme in each word is a time-consuming proced<altecting a large database
becomes very difficult. In order to overcome ttgsue.embedded trainingis used
which applies the Baum-Welch algorithm. This altfori is able to align models to
the recorded data. However, the use of well-traimeadels instead of plain
(untrained) models in initialization helps the aitfon to achieve a better alignment
and obtain a faster convergence. That is why sispni/oked.

Triphones are used because, by the way they arn@edefthey add more
restrictions during the recognition process. Ond®s been decided that a model is
most probable, practically the decision about @ghbors is affected. The triphone
model specifies not only a certain phoneme but tdegphonemes that surround it.
The first triphone models are cloned from the plo@enodels. While training, the
central states of the HMMs for triphones with tla@ne central phoneme are tied,
which means that at the end of the training, th@raé states will have the same
parameters.

Another important topic to be mentioned is why stdpand 5 are not merged.
There are differences among words used for isolatedd recognition and
continuous speech recognition. Words in a sentemeepronounced differently
depending on the syntactical role of the word i& $entence or depending on the
type of sentence (affirmative, interrogative, ingieme, etc.). All these changes
affect the models characteristics and should bentakto consideration. If we
skipped step 4, models would not have been welhall with the data because the
models are not very robust at this stage.

5 Recognition

Generally, the recognition process considers itpise an unlabeled segment of
speech signal (because it is unknown to the systm)it involves three distinct
stages:

1. Acoustic processing of the input speech sigimak manner identical to the
training process.

2. Acoustic decoding of the parameter vectors serpigepresenting the input
signal. This process matches the acoustic vectothe models estimated during
training and obtains a sequence of the most likelyustic units associated with the
original utterance.

3. Refining the results of the acoustic decodingcess, using the language
model. This step matches the word sequence obtaingte preceding step, to the
language model. Thus, if the word sequence wasdfaiging only acoustic models
and it is highly unlikely according to the languagedel, then the system would
choose less likely word sequences (according ta¢bestic decoding) that are more
likely, according to the language model.

At the end of these processing steps, the outpuh@frecognition system is
represented by a number of alternative word seepsgefur an utterance. Sometimes,
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the differences between alternative word sequeacessmall and determined by
semantically irrelevant words (for example, twceatttives for the same original
Romanian utteranc&;and decoleaz avionul? — ‘when does the plane take off?’,
may bela cat decoleaz avionul— ‘at what time does the plane take off',p& cand
decoleaZ avionul‘around what time does the plain take off’, butcadand deraiaz
vagonul— ‘when does the coach derail’, which obviously lmadifferent meaning
than the original utterance). The choice of the tmmtevant alternative, in a
specified context, is the responsibility of othemponents of the dialogue system
(namely, the semantic analysis component, or talglie manager). For example,
if the application domain is air traffic, then tlast version, indicated above, will be
eliminated as irrelevant.

In the recognition stage, the resources createthgluraining are used. More
precisely, the HMMs and the phonetic dictionary amed for recognizing the
utterances. The process encompasses the follotépg:s

1. Manual definition of a set of test sentences.

2. Production, acquisition and parameterizationttd@rances of test sentences.

3. Triphone-level decoding, which consists of daeiaing the set of HMMs that
have generated (with maximal probability) the segeeof acoustic parameters
obtained at step 2. This process involves a Vitatignment of the sequence of
acoustic frames to the set of paths in the HMM¢, #wen chooses those for which
the Viterbi distance is minimal (i.e. the sequemdeacoustic vectors had been
generated by the considered HMMs with maximal pbdlig). This is
accomplished with the “HVite” HTK tool.

4. Converting the set of triphones obtained at stejn a word sequence,
according to the phonetic dictionary (which, thisd, is used in a different way than
for training: now, triphone sequences are conveudesords). This is also done with
the “HVite” tool.

5. Performance evaluation: this process involvesaiing stages 1 to 4 on a
sufficiently large set of test utterances, and tbemparing, by dynamic alignment
(the Levenshtein distance), the reference sentewithsthe recognition output.
Thus, we compute both an utterance error rate andrd error rate. This is done
with the “HResults” HTK tool.

For improving the efficiency of the training prosgsvith respect to the size of the
database), state tying might be used, or at leddtira tying can be envisaged for
the HMMs, in order to reduce the number of paramsdtebe estimated.

6 Results

Several outputs may result from the processes ibescabove. Some examples
are presented below.

6.1 Triphone occurrence statistics

As an example, the database described in Sectibh @atabase 1) is meant to
be used in an application for spontaneous speexdgn@ion purposes. The results
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that characterize the database are representddtisfiss referring to the number of
occurrences for both words and triphones.

One result that may be found during database mmgleis a histogram
representing the number of occurrences for diffetephones in the database. An
example is shown in Figure 1.

2500 X

2000

1500

1000

mumber of occurrences

5004

de de i+n t-e r1-e ul SH Si pte l-a
triphone type

Figure 1.The triphones with the highest number of occuresrin Database 1.

6.2 Word occurrence statistics

In order to validate the speech recognition archite, several experiments were
conducted with a reduced word set, as when buildingcognition system for a
language with a very small vocabulary. The speeduances were chosen from the
same speaker, also based on Database 1. The seweani@n language words
chosen for this experiment are listed in Table 7.

Table 7. Limited set of (frequent) Romanian words chosenthia recognition
experiments

Words . Occu_rrences _ Occurrences
in the first phase in the second phase
n 27 34
si 22 25
de 36 51
la 24 32
cu 12 21
din 14 22
un 10 20

6.3 Recognition rate
For Database 1, the training of the HMMs was pentat in two different phases,
shown in Table 7. The second phase utilizes moserghtion data, about 40% more
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than the first phase. The goal here was to show aogveater number of word
occurrences Yields a higher word recognition ratee recognition rate used as
metric in this experiment was calculated as the bamof words correctly

recognized over the total number of words presettie test sequences.

In these conditions the recognition rate for thetfphase was 52%, while the
recognition rate for the second phase was 70%sdltdeen observed that the order in
which the triphones are trained slightly affectda tresults, so these figures
represented the best match.

For the larger databases (2—4), the recognitionga®has been slightly improved
(see Table 8). The recognition process outputsrabwsrds that have the highest
probabilities to be the same as the sample todmgrezed. Then, the comparison is
made and recognition rates are calculated takityaocount all the words selected
as possible “candidates”.

Table 8.Example of recognition rates on Database 4.

Partially Partially Partially
Training/ Fully Partially recognized recognized recognized
testing recognized recognized among first among first among first
iteration [%] [%] two results  three results four results
(%] [%0] (%]

6 39.03 60.76 63.28 65.79 66.7
11 48.89 67.61 70.62 72.33 74.25
16 45.67 69.11 71.83 74.14 74.85
21 44.87 70.12 72.64 74.55 75.45
26 44.87 70.02 73.64 75.25 76.06
31 44.97 70.52 73.54 75.65 76.46
41 45.88 70.93 73.04 75.25 76.36
51 46.38 70.62 73.44 75.05 75.96
61 46.08 70.12 73.44 75.25 76.16
71 46.08 70.12 73.34 74.95 75.86
81 46.38 70.52 73.14 75.15 75.86
91 46.28 70.62 73.24 75.05 76.16

7 Conclusions and prospects

A medium-size database for the Romanian language ongated by gathering
together all our SpeeD databases. In order to imgptioe analytic possibilities, the
goal is to increase the size of the database. Alscare working on improving the
recognition process. The “measurable” result we laaking for is a higher
recognition rate.

Some conclusions drawn from the statistical meeors the first corpus: the large
number of triphones that have been identified intaDase 1 is specific to
spontaneous speech. There are cases when somené&igiombinations have a
greater number of occurrences, compared to otRersinstance, triphones “d+e”,
“d-e” and “i_+n” have more than 1500 occurrencdsisThas a logical explanation,
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as the most frequent triphones happen to be peeird suffixes. The frequency of
these triphones could also be the result of nahesitations in speech planning. For
instance, when stammering, the speaker tends toelthe beginning or ending of a
word. Likewise, a person who is speaking in frohao audience or an important
person, simply being a nervous person, or inuadn that involves a higher level

of stress or even attention, tends to hesitatehik situation, in order to regain

speech fluency and avoid the conversational blagkine speaker tends to double
some of the verbal constructions, in an unconsawaisner. While the speaker may
double, triple or multiply produce a whole word ghrase, he gains precious time
that allows him to construct his utterance.

In a similar way, when tension rises in a monologu@ conversation, a normal
healthy person may adopt more verbally erratic eha In this case, the
physiology of the person changes, the face and bodfract and the person tends to
sweat, to become red or they may become pale. drhigety could cause different
behaviors, but the most predominant one is disiyeithe most common pattern
here is the repeated pronunciation of the firslabj¢s of the words. Hence,
spontaneous speech may be a way to observe conpeechspatterns in persons
with speaking anxiety.

The histograms determined for the word occurrencethe database revealed
that: “de” (1659), “la” (891), “in” (803), “a” (66) “si” (656) were the most
frequent. This observation, together with havinglaser look at some triphone
constructions and their number of occurrences lemdeme other conclusions:

« “d+e” (2305) and “d-e” (1897) are part of the wdde”, which is a preposition
in the Romanian language. The high number of oecges of both “d+e” and “d-e”
demonstrates that “de” is the preposition mostlgdug the recorded Romanian
database. Subtracting the number of occurrencesthi®rword “de” from the
triphones’ frequencies: 2305 — 1659 = 646 and 183B59 = 238 mean that there
are more words ending with “d+e” than words begigrnwith “d-e”.

«“i_+n" (1511) and “i_-n" (852) also form the Romian preposition “in” and,
following the same reasoning as above, the diffeeri511 — 803 = 708 and 852 —
803 = 49 revealed the number of occurrences ofr atloeds besides “in”, ending
with “i_+n” and beginning with “i_-n". There is aigher number of words ending
with “i_+n” than words beginning with “i_-n".

« “S+i” (1115) and “S-i" (1094) form the conjunctio“si” in the Romanian
language. The differences 1115 - 656 = 459 andl 10856 = 438 represent the
number of occurrences for other words besid#s Where the words ending with
“S+i” have more occurrences than the ones beginnitig“S-i”.

« “l+a” (982) and “lI-a” (983) have almost the samember of occurrences, most
of them (891) belonging to “la” preposition. In ghsituation, almost the same
number of words from the database begin or end ‘it / "I-a”.

There are 2903 triphones with less than 10 occoe®and they represent 57% of
the total number of triphones. When enlarging ihe of the database, it is expected
that the triphones with lower frequencies will hawere entries. Due to the nature
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of spontaneous speech, it is expected to obtailorapletely different view of
triphones occurrences after augmenting the database

The corpus and the spontaneous speech recognsutis have applicability as
recognition tools. They will ease the work of theey taking off some of the
existent constraints, like forcing a person to gigenmatically correct phrases or by
stressing an individual with dyslexia to correablect his words.

In future studies, the first problem considered| W& database augmentation:
nowadays, hundreds of hours are spent at the acdesel, in state-of-the-art
systems.

Secondly, the tradeoff between recognition accuany computing (decoding)
time has to be carefully considered. In dialogueliagtions, the former can be
sacrificed for the latter, to a greater extent timthe case of related applications as
in broadcast news transcription. Hence, the comgutime can be improved
(reduced) with parallelization strategies, by edirg previous work, or by adopting
particular search heuristics while decoding thexaigDatabase 4 is currently used
for recognition purposes and for time optimizatioflsese experiments are currently
in progress.

Lastly, it might also be interesting to improve tiobustness of the system at the
acoustic level, by computing confidence measuretherphoneme or triphone-level
HMM probability estimates. This work is currently progress.

Prof. Corneliu Burileanu,
Cristina-Sorina Petrea (PhD student), Andi Buzo@Rtudent),
Horia Cucu (PhD student), Alina Pasca (PhD student)
Faculty of Electronics, Telecommunications and imfation Technology,
University “Politehnica” of Bucharest, Romania
e-mail: corneliu.burileanu@yahoo.com
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TOOLS USING SPEECH TECHNOLOGY FOR RESEARCH AND
EDUCATION

Glottalizer: A tool to transform regular voice into irregular voice

This paper describes a freely availalseftware program that semi-automatically
transforms regularly phonated speech into an iteegiwice. This program utilizes a
transformation method that introduces irregulactpiperiods into a modal speech
signal by scaling the amplitude of the individugtles. The scaling factors can be
set individually or ‘copied’ as a pattern from grearly phonated speech.

1 Irregular phonation

Irregular phonation refers to regions of voicingendthere are significant periods
of abrupt, cycle-to-cycle changes in either thecsnof the glottal impulses and/or
their amplitudes ( see Figure 1c). This type adguiar vocal fold vibration includes
deviations from periodicity which exceed the ugiidr and shimmer values present
in regular or modal phonation (Surana & Slifka 200bhis deviation is clearly
audible to people with normal hearing. Irregulaopétion also includes when the
fundamental frequency abruptly drops below the lspes characteristic voice
register, resulting in a perceivable change in eajoality. Irregular phonation can
serve as a cue to segmental contrasts (Laver 199830-331) and prosodic
structure (Dilley et al. 1996), as well as to fffee state (Gobl & Ni Chasaide 2003)
and speaker identity (Henton & Bladon 1987).

2 Transformation method

The transformation method utilized to produce ialagvoice introduces irregular
pitch periods into a modal speech signal by scallregg amplitude of individual
cycles within the speech signal. First, the periadsseparated by windowing, then
multiplied by appropriately chosen scaling factensd finally overlapped and added
(the details of the transformation method are diesdrlater in this section). Thus,
amplitude irregularities are introduced via bocagtor attenuating selected cycles.
The abrupt, significant changes in cycle lengttes Hre characteristic of naturally-
occurring irregular phonation can be achieved logandng (scaling to zero) one or
more consecutive periods. A method is proposedofry ¢stylized pulse patterns’
(the spacing of glottal pulses and their amplitjide®rder to set the scaling factors
semi-automatically.

The input to the transformation method is the speaaveform X[n]) with
markers for the approximate times of glottal exwites pitch marks denoted byp;,
1<i < P)in the region to be transformed. As a first stepough approximation of
the impulse response for each glottal pulse isaet¢d by applying an asymmetric
Hanning-window ¥[n]) in the vicinity of each pitch mark. The peaktbé window

1. http://www.bohm.hu/glottalizer.html
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is positioned on the pitch marf) and it spans from the previous.4) to the next
pitch mark fi.1). This windowing procedure is the same as theyaisgaktage in the
PSOLA algorithm (Moulines & Charpentier 1990). ieh extracts rough estimates
of the individual glottal cycles into separate wlaves. The samples in each of
these one-impulse-response waveforms are then phiedti by a hand-selected
scaling factor¢) and overlapped-and-added to re-synthesize timalsigigure 2):

il = . ($x0rw[r)

where X[n] is the output speech signal. The term ‘overlap-aad refers to the

way the scaled one-impulse-response waveforms ezembined into one long
waveform: each of the scaled signals is positios@dhat the timing of the pitch
marks is the same as in the input. As a resulhisf positioning, the waveforms
overlap in time. The final output is calculatedddding the samples that fall into the
same instant in time.

The scaling factors can either boastx( 1), attenuates(< 1), remove g = 0) or
leave the impulse responses unmodifigd-(1). In regions of the speech waveform
where all scaling factors are set to one, the waigsignal is reconstructed (apart
from rounding errors), so any possible artefacts lamited to the amplitude-
manipulated regions of the speech signal. See &idilr for an example of a
transformed speech waveform.

[] 1
original regular

a
[}
=2 I I | I I
= 1] 0.05 0.1 0148 0.2 0.27 0.3
a
E T T T T T 1
ol b = *  transformed to irregular
ke rv«mjmv P resmemaee]
o}
N
ﬁ 1 1 1 1 1
= 1] 0.05 0.1 015 0.2 0.25 0.3
o) T P T T - - |
) ;WWWMWWMMWWWNW;W[

| | | | |
o 0.05 0.1 014 0.2 0.25 0.3
time [s]

Figure 1.A speech recording with a regular ending (a) asdrénsformed version
(b). An originally-irregular recording is also showc). Horizontal arrows mark
irregular regions.

Note that the method does not alter the timindhefdlottal pulses (which is what
the PSOLA algorithm does in order to change FOradntrast to PSOLA, where the
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aim is to implement fine adjustments of the fundarakfrequency, here we need
abrupt, substantial changes in the glottal pulsisgs, as observed in naturally-
occurring irregular phonation. In our experiendbss can be achieved by removing
one or two consecutive cycles (and thus doubling trgeling that specific
fundamental period), without the need for fine cohbver pulse positions.

Input:
waveform with r\v : . | A
pitch marks [ Wl.\. \u Ty,

1. Hanning
windowing

U’l i .
ey (A AL, I| ‘\ | i ——»M’\.\’ s _ """‘"”"*L._

”‘"J"r Y

2. Scaling l51 =0.6 |l52=1 7 ls3=0
| |‘

NN

m
3. Overlap- \
and-add

A'.‘. - 1A
" \JI:II‘ b"l’ ‘n \ A l' \W “Iﬁ

Figure 2. lllustration of the transformation method that attuces irregular pitch
periods into the speech signal.

Attenuating or zeroing an impulse response alstescdown the background
noise present during that fundamental period. Kamgle, if several consecutive
cycles are removed from a recording with audiblekgeound noise, the lack of
noise in the transformed region might decreas@éneeived naturalness. In order to
avoid this problem, background noise (windowedfoarn the end of the recording,
for instance) can be added to attenuated and zergrdse responses.

To transform a modal recording so it is perceivedaugh, one should create a
pulse pattern (glottal pulse spacing and amplitudearacteristic of natural irregular
phonation. To reach this goal, the scaling facts be modeled after a sample
region of natural speech with irregular pitch pdsio The factors need to
approximately match the irregular pulse patterithis sample. These factors then
can either be set by hand using trial-and-errofcopied’ as a pattern from the
model recording.

When the scaling factors are set by pattern copyong has to select both the
regular region to be manipulated in the signal tnadirregular region to be copied.
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Then a ‘stylized’ pulse pattern is extracted frdm trregular region, consisting of
the s scaling factors to be used in transforming theulsgregion (i.e., not the
absolute pulse positions and amplitudes). Note tiatconcept of stylized pulse
patterns is somewhat similar to Malyska’'s (2008%40) glottal event patterns.

The stylized pulse pattern is initially constructad a vector containing the
relative amplitudes of the glottal pulses in thegular sample. The amplitude of
each period is measured as the peak amplitudee(ethsitive or negative) around
the pitch mark. The values in the stylized pulsigpa are expressed relative to the
mean amplitude ot regular periods preceding the irregular region.ewhan
irregular cycle is substantially longer than a refiee cycle length (e.g., two or three
times or more than the referent@.y, that is calculated as the mearLgfpreceding
regular cycles) zeros are inserted into the stylfm@ise pattern since periods need to
be removed from the regular recording at thesetpoirhe number of zeros to be
inserted between two consecutive scaling values, the number of periods to be
removed) is determined by the rounded ratio of dlctal cycle length to the
reference cycle length. Cycle lengths are measasedme differences between
consecutive pitch marks. The number of periods tsedliculate the reference cycle
length (7o) and reference amplitudd.s) is 5 by default, but can be set as a
parameter. The scaling factors comprising the zaylipulse pattern are finally
applied to the selected region of the waveformeterénsformed.

A detailed description of the transformation metltat be found in &m et al.
2008 and in Bhm 2009. Results of the evaluations presenteddsetipublications
illustrate that this transformation method reprastuto some degree) most of the
well-known acoustic characteristics of irregularophtion, and that listeners
perceive the output to be acceptable as roughratataunding speech.

3 About the program

A graphic tool, namedGlottalizer has been developed to allow fast and
convenient application of this transformation metht runs in Windows and it is
freely available for non-commercial use. The graghiuser interface was
programmed by the second author, while the tramsftion functions were
implemented by the first author.

The program provides a means for a) the paraltgilay of both the waveform to
be modified and the model waveform; b) copying ized pulse patterns; and
¢) convenient iterative refinement of the scaliagtérs, because the effects of the
parameter changes are immediately visible and &udithe program also has the
usual sound display and play functionalities, a asa command history.

Figure 3 shows a screenshot of the program in &@peraThe bottom panel
displays the waveform of the recording to be malaifgal. The top panel depicts the
model waveform that can be used to guide the iteegohonation transformation
(either manually or by copying its pulse pattem)model recording that contains
irregular phonation can be loaded into this pahgte that the model recording
cannot be manipulated. In order to open a waveifileither one of these two
panels, a corresponding pitch mark file must alsoalailable (such files can be

86



ganarated by, for example, Praat, in PointProcaissat). The pitch marks can be
overlaid on the waveform and can be edited anddsave

m Glottalizer v 0.9 Beta by Tamas Bohm and Nicolas Audibert =] & ==
File Edit Help

=l

Zoom and move
Wertical

Model: anne-laure_pag_suiv_17 (1.249 s) - 0.1286 s displayed (13 pms) - 0.0801 5 selected (6 pms)

\E |:|| Default |
_ Hoizontal
(5] (e (sel) (]
' L [

| Play |

Play selected

| B V H H 1 d I ¥ I I : ; Apply selected.pattem to signal
10.3552 (03760 03867 | 0.3474 D08l 0i4188 04205 {04402 04500 04616 D474 | 04431 — 1
! ‘ . { . . ‘ ‘ : ; ! _

Manipulation: anne-laure_pag_suiv24 (1.38 s)- 0.1194 s displayed (18 pms) - 0.0796 s selected (12 pms)

Zoom and move —

1 & g 4 Ol S R D i DR Ol DR T Gt cae Vertica|
AN - e EnEmirm
: Harizantal
o ESEEnEN
N | ] -
: E | Play | Play selected
04171 D4270 04370 (04469 04569 | 0468 Q76T (04867 (04966 (0506 06165 05065 | P SR
| Show pitchmarks  [/] Show gain valuss [V Replace removed periods with background noise Setbackgmundnnisetoselecﬁnn‘ | Edit pitchmarks |

Figure 3.The screen of the program after copying the ppétéern in the selected
region of the model recording (top panel) to thkeotwaveform (bottom panel);
scaling factors are shown above the pitch marksh@th lines).

In the bottom panel, individual periods can be edatemoved (scaled to zero) or
reverted to their original form (i.e., resettingethcaling factor to 1) by a simple
mouse click. The applied scaling factors are shoatove the manipulated
waveform and can be saved to a separate file #mbe reloaded later.

The transformation can also be carried out by aapwi stylized pulse pattern. In
order to do this, one has to select the regiorh@model waveform that has the
target pulse pattern, and the region in the botpamel where the pattern is to be
applied. To enable pattern copy, there should ladsenough pitch marks preceding
the model selection to calculate the referenceeglu

A more comprehensive documentation is availabltherGlottalizer website.
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On line acoustic features of segmental level speedata (Hungarian)
http://fonetika.nytud.hu/cvvc

This is a spoken word database for the acoustiseptation of CV, VC, VV,
VVV, CC, CCC and CCCC sound combinations (2007)

1. search;

2. put the word into the basket for acoustic dgtail

Research and design

Gabor Olaszy, Research Institute for Linguisticangarian Academy of Sciences
(2005-2007).
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Presentation of Hungarian sound combination in spegh

The aim of this speech database is to show thesticatructures of Hungarian
speech sounds and their combinations (and indyréztshow the acoustic results of
the coatrticulation).

The structure of the database

The sound combinations are shown in spoken worssryEpossible form is
presented for CV,VC,VV and CC combinations. Theeashas VVV, VVVV and
CCC, CCCC are represented by the most frequensit€he words are produced by
a male and a female speaker while reading a wsird i

Sound symbols

The special sound symbols used in the phonemicrigéeos can be seen in
Figure 1. The j + sound symbol means a hiatus wéeal in certain VV
combinations. The symbols and their counterpart® are shown in the “sound
table” as well.

[
=
o
b
[
o

= B
L T TR T T
L = ] -

Figure 1.The special sound symbols used in the phonemirigésns

How to search in the database

Two ways are available for searching sound comiginat

a) Speech sound searcfiFigure 2: upper left box). Here, the sound coratim
can be given directly (please use the “sound talBligiure 3). IPA symbols show the
sound.
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b) Letter-based search(Figure 2: lower left box). Here, the letter seoge can
be given and letters will be searched. Attentionhgfarian letters must be used.

The result of the search

A list is given below (Figure 4), containing the nds found (every word in a
separate box). Every word box contains the texrah, the sound representations
of the word, the sound durations and three comnvemdls in brackets above the
sound symbols. The three command words in bracketsdetails in sound wave
[Det.], baskets for acoustic presentations ar®as[1] and [Bas.2].

Acoustic presentation

Two forms of acoustic presentation are available.

Sound clusters in Hungarian speech - Acoustic representation in
words
Magyarul e
Sounds: I* d The basket is empty!
. m Two words have to be put into the basket
Speaker: IFemaIe ar male ]’ as a preparation for the comparison,
Display: ISresuIts 'l
m The list includes all words stored in the
database.
List words
Letters: *
Soesker Fermale or male :l' (T Click for detailed information about
Display: lm W the database. ‘
cearch ‘Detailed information
13466
Figure 2.Speech sound search
Sound clusters in Hungarian speech - Acoustic representation in
words
Magyarul
Sounds: l*— £ Ennnd | The basket is empty!
Speaker: Sound table Close %
ClEIERR =[a: a=[a o= =| =[y =[i D=[@
o adfa] adfo] ool weu] U] H] ool
E=e:] | ee] o=o:] u=[w] | U=[y:] i=i:] 0=a:]
e = b=[b] =[ts]  C=[1]] d=[d] | d=z=[dz] dz=[d3] t=[f]
Speaker; Femaleor mae, 191 Gl be(h] L1 k(K] =] m=[m]
pisply: . [oreste =1 onl Nl pelpl o] T[” sl e
T=[c] v={v] z=z] Z=3] hiatus * ? # [Del]
resolution
nase I™ Long consonant

Figure 3.The “sound table”
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Sound clusters in Hungarian speech - Acoustic representation in
words
Magyarul =]
Sounds: " « Sound The basket is empty!
. Two words have to be put into the basket
Speaker: Female or male :I' as a preparation for the comparison.
Display: Sresults x
Search . .
The list includes all words stored in the
database.
List words
Letters: ha*
Snesker IFemaIe or rmale j' 3 Click for detailed information about
Display: |5 results .I ¥ the database.
Detailed information
Search
¥alues are in milliseconds
1. dcspalla [Det.] [Bas.1.] [Bas.2.]
A C p a I o
164 112 1) 191 72 1949
2. dcspalld [Det.] [Bas.1.][Bas.2.]
A C [ a I: o
164 ag a4 1461 fi4 2249
3. agykapacitds [Det.] [Bas.1.][Bas.2.]
a T k a p a c i t A: s
124 89 73 95 &2 86 7 a0 a4 176 154
4. agykapacitas [Det.] [Bas.1.] [Bas.2.]

Figure 4.The result of the search

Wave form in detail [Det.]

Click on [Det.]. The waveform of the word will b&b@vn as a separate window
(Figure 5). Sound boundaries can be shown insidewthveform as well. Zoom
facilities are available with parallel audio demiaton. Sound duration
measurements (fine scale) can be done in thisrpietsiwell. The wave form can be
played with normal, slower, or faster speeds. lditaah, repeated play can be asked
for (e.g. for one period of a voiced sound).

Acoustic structures and comparisons - [Bas.1], [Ba3]

You have to put the word you want from the seaishihto the basket (for
example click on [Bas.1] and next on [Bas.2], assult, the selected word will be
placed into the basket). Two items always haveet@tit into the basket! Press the
“Acoustic presentation” and the result will be simown a separate window
(Figure 6). The following acoustic presentatiors available: waveform with sound
boundaries, spectrogram, or intensity. Listeningh® whole word or part of it is
also available. On a selected part of the wavefalunation measurements can be
performed and the results are shown in ms. The samdoe done on spectrograms
(frequency is measured and displayed in Hz in thallswindow) and on intensity
curves (the dB value is displayed in the small wing
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1. acspalle [Det.]

A: C p I

[Bas.1.][Bas.2.]

o

Found: 99 Showing: 1-5

72

I Details - Mozilla Firefox

[ 51 [httpeonetica. nytud.hujeccejhall phprwid=37ahien

acspalld

,||‘HIIJ|“‘J|HH\‘“,k

0ms

Download Java runtime

.mh\\l|||||H,“lHIII|||IHIJ__“|||||‘||_I|1,IJ_ (
T | | ‘ll I |

[4]

Figure 5.The waveform of the word

words

¥) Acoustic presentation - Mozilla Firefox

‘Sound clusters in Hungarian speech - Acoustic representation in

Magyary|

Frekvencia (Hz)

"'t

I & |hi}'l:??f;ﬁfDJ'l&hﬁfmd-ﬁﬁictg&‘fﬁﬁg{ew‘phm'?wiﬂ_l=37\§_«l{\1iﬂ2="‘38‘%i=‘e_ﬁ_€:(\3=_1
acspallé Male speaker <0 Selection
Begin me
T LR
Length ms

Freguency Hz

Time (s)

| Intensity
| Spectr. +Int.

Fernale speaker

<

Frekvencia (Hz)

I

iy
| h‘l\lliu-- il

Time (s)

0.82

Selection
Bedin ms

Length [— ms
Frequency Hz

| Waveform

| Intensity

| Spectr.+Int.

| Adatstvitel = kitvetkezs helyrdl: fanstiks nytud.hu..,

Figure 6.Acoustic representations
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List of words
The list of words are shown used in the databakeki@ on a word results in a
search command according to letters.

Gabor Olaszy

Department of Telecommunications and Media Inforosat
Budapest University of Technology and Economicsydiguy
e-mail: olaszy@tmit.bme.hu

From text-to-sound - A Hungarian word level pronungation database
using IPA symbols

1 Introduction

Humans perform letter-to-sound conversions autaralyi during the course of
reading. The rules of the mother tongue are apgbednost words, however, the
pronunciations of loanwords, names (surnames, gpbgral names, brand names)
and other foreign words and expressions may cauddems because the spelling of
the language of origin is retained. To help pedpleéhese instances, classical,
printed pronunciation dictionaries are used.

Electronic pronunciation dictionaries may signifitdg differ from their classical
printed counterparts. The methods used to comp#e Iéxicon, the size of the
compilation, as well as the functions of the dictioy are all determined by the
range of possibilities provided by information teology. Electronic pronunciation
dictionaries are essential for speech technologyicgiions and also for linguistic
research.

To date, no electronic pronunciation dictionary hiasen constructed for
Hungarian to provide general information about theguage. Our project is
designed to rectify this situation. We will briefgurvey our work related to the
electronic collection of lexical items, the implemt&ion of the data set, and outline
the possibilities for its application.

The main feature of Hungarian is its agglutinativeture, making Hungarian
morphology rather complicated. The estimated nunolbétungarian word forms is
close to 1 billion. The Hungarian writing systemesian expanded Latin alphabet.
This orthography of this language is largely tramept, i.e. the pronunciation of the
majority of words can be derived from the orthodpiagorm.

2 Material and method

The structure of electronic pronunciation dictioesaris basically simple: they
provide the orthographic form, and in the same v, phonetic transcription of the
given sequence is provided with sound symbols. dditen, there are several
possibilities for accessing this large and wellamiged database (i.e., grouping,
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running statistics etc.). The rendering of pronations is not a trivial task, even in
Hungarian. One can make an effort to provide a desmpentifically based
transcription or an easily readable one. The forome must contain the sound
symbols for all possible speech sounds of the laggu(i.e., the phoneme
representations and the allophones); the latter usa other sound representations.
Our goal in developing this system was to constaugtonunciation database which
represented the pronunciations possible in theulageg (and to avoid constructing
exceptions to account for foreign vocabulary iteriigiis system uses IPA symbols
for all Hungarian sounds. In addition, the easgadiable form is also represented as
a choice, i.e., the person can ask for the useuofglrian letters in the transcription
(where the allophones are not distinguished froneirthoriginal phoneme
representative). Text material was collected frbmm ¥Web, lexical items (different
forms) were derived from the texts, the phonetinscription were performed using
software (based on rules) and manual manipulatidesting of the database
occurred over a one year period. The accuracyeteakt-to-sound conversion was
higher than 99%.

3 The development

The development of this electronic pronunciatiottidnary proceed through four
major steps: (1) the selection of texts from theb\\(@) the compilation of the items
for the rough database, (3) the screening of léfizens and the compilation of the
final word form database, (4) the definition of fmnunciation for each item, and
(5) the testing for transcription accuracy of tiire database. The development of
this dictionary took 4 years.

3.1 The selection of texts from the Web

The text material was compiled by means of autamatthods, relying on a
large, electronically recorded text corpus colldcteitomatically from the Internet
(Zaink6é & Németh 2001). Online editions of newspapand the collections of e-
libraries also were downloaded. We chose to use@melditions of hewspapers and
e-libraries to collect data because, in our expege they contain more carefully
edited and revised texts than ordinary websitesp@e such a selective way of
choosing our sources, we had to screen out camaterial, like that written in a
foreign language on these sites. The detectionoofhHungarian texts was carried
out by means of a language detection software weloged. Language detection
took place predominantly at the sentence levelté®ees written in languages other
than Hungarian were eliminated from text storadethé number of sentences
written in a foreign language outnumbered the swm@e written in Hungarian, we
left the text out of the corpus. The final text mas consisted of 80 million words
and formed the basic text material for the furtierk.

3.2 The compilation of the lexical items for the d@abase and screening of
word items

In the 80 million-word text corpus, we found apgroately 1.5 million different
word forms, which then constituted the searchadstéutl base of the pronunciation
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dictionary. The definition of word form was as fmdls: a lexical unit in a text,
which is delimited by non-letter characters(mainly spaces). The letter-content in
each and every word form differs from every otherdvform of the dictionary by at
least one letter. A second screening was perforomethe selected word forms to
delete lexical units which do not belong to HungariAt the end of this screening, a
searchable Hungarian lexical unit database (womth$p was formed, which served
as the orthographic part of the future pronuncratiictionary. Further screening
was conducted continuously until the end of projdetvelopment. If a non-
Hungarian element was found, it was deleted.

3.2.1 Statistical representation of the database

Word forms occur at a given rate of frequency ie dverall text corpus. If we
take this particular rate of frequency into consitien, we can make a coverage
diagram that shows what percentage of the wholedespus is covered by word
forms (see Figure 1). Thi