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1   INTRODUCTION 

1.1   BEST SIGNAL SELECTION OVERVIEW 

In the last decades, air traffic spread more and more in the world, connecting more and 
more places. At the same time, the need to manage all the flights correctly and securely 
increased. Air traffic authorities imposed and updated several standards for the air traffic 
management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, 
special voice communication systems (VCS) were developed. They ensure the 
communication between the pilots and the operators from the ground control centers. When a 
communication is initiated between the aircraft’s pilot and the ground air traffic control 
operator, various systems are used. The pilot speaks through the aircraft’s radio station and 
the signal is received by several ground radio stations. Then, the signal from each ground 
radio station arrives on different paths to the control center. Here one of the received signals 
is played to the operator. Ideally, this should be the one which is the clearest and offers the 
highest intelligibility. This is the equivalent of the Best Signal Selection (BSS) for the 
received signals, which now is achieved through special signal processing algorithms.  

 The BSS has some issues. First, the decision has to be made very fast, in tenths of 
seconds. This is imposed by the ED-136 standard, which states that the maximum delay in a 
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ATM-VCS between the speech initiation and speech play should not be more than 300ms. 
But this represents the overall system time, which includes delays for radio stations 
activations, signal transportation and VCS processing, leaving an even shorter time for signal 
processing.  

Secondly, the number of radio stations is important. More receiving stations on the 
ground means more input signals in the VCS. Their number, as stated in [ED-136], is 
between 2 and 7. Because of security reasons, redundancy should be provided, thus it cannot 
be only one ground radio station.  

Another issue regarding the receiving quality of the ground stations is represented by 
their location. Because they have to cover a large area, they are placed in different regions, 
usually at distances of at least 200 km between each other. Because of this spread, they can 
easily be affected by different weather conditions. Bad weather affects the amplitude 
modulated radio signal, which is used in air traffic communications. Therefore, for a period 
of time, a ground station can receive noisy signals in stormy weather, while on sunny days 
provides clean signals. Thus, the alternation of the best signal selection is influenced by the 
weather conditions. 

Aircraft movement affects also the quality of the received radio signal. When an aircraft 
approaches a ground radio station, this station, generally, receives the best signal.  But, after a 
short time, the position of the aircraft will change and another ground radio station will be 
closer. By now, the new closer ground station will receive the best signal in most cases, 
leading to a new change in best signal selection. 

 

Figure 1.1 – Best Signal Selection Overview 

  
A solution to the above issue could be to predict the position of the aircraft and then the 

station which will receive the best signal. But, this idea does not work for several aircrafts at 
the same time, because, for security reasons, any aircraft can initiate a communication 
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anytime. Due to this, the communications’ order cannot be guaranteed and the previous 
selections cannot be used efficiently for a proper prediction of the next best signal selection. 

All the above presented issues describe largely the problem of best signal selection in air 
traffic control and management systems. In the next sub-sections the readers will be 
introduced to a deeper level of some solutions.   

 

1.2   TIME DELAY ESTIMATION 

The majority VCS use the time-domain multiplexing (TDM) technique to communicate 
between the command center and ground radio stations. This solution is in use for at least 20 
years and during this time it proved to have many advantages. The technology is well known 
and easy to be implemented by the telecommunication operators, especially in locations that  
already have communication copper lines installed. Another important advantage of the TDM 
technique is the fixed and relatively small delay introduced by a switching level. In ATM 
systems the switching level delay is usually 125µs, and the overall delay is usually less than 1 
ms. It is considered to be relatively small because it is compared with a syllable period. Also, 
because this delay is stable, the TDM technique practically does not affect the speech 
intelligibility.  

On the other hand, a recent solution uses the VoIP protocol to connect ground radio 
stations with the command center. It is expanding because it is cheaper than the TDM 
technique and can also provide new multimedia capabilities. But,  communication over the IP 
network is considered less reliable in contrast to the circuit-switched public telephone 
network, as it does not provide a network-based mechanism to ensure that data packets are 
not lost, and are delivered in sequential order [Sanchez, 2013]. Therefore, VoIP 
implementations may face problems mitigating latency, packet loss and jitter [Prabhakar, 
2005]. Thus, in ATM-VCS based on VoIP, the delays introduced by the network are not 
stable and in some cases could be much longer than those from TDM networks. 

Because of these, despite the fact that more ground radio stations receive the signal 
coming from the pilot at the same time, at the command center they can arrive with different 
delays, some times larger than 30ms. In this situation, for unaligned signals, the best signal 
selection algorithm cannot offer reliable results. Thus, prior to this, the signals received 
through  VoIP environments must be realigned. As it can be anticipated, this represents an 
important issue which will be studied and analyzed in this work.    
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1.3   VOICE ACTIVITY DETECTION 

Voice activity detection (VAD) algorithms try to discriminate speech segments from 
noisy input signals. They are widely used in speech and communications applications, 
including ATM-VCS. In this kind of systems, besides speech/non-speech decision, their role 
increases in VoIP environments, being able to save important bandwidth, as non-speech 
segments are stopped from transmission in the network. For this, they usually look for speech 
features into the signal and then assign a VAD score. After this step a speech/non-speech 
decision is taken, based on the specific techniques of each method. 

Generally, speech signals with better intelligibility lead to better VAD scores. This 
suggests including VAD in the best signal selection analysis. Thus, it is important to 
characterize the correlation between the VAD score and speech intelligibility. Therefore, it is 
necessary to perform a study of this topic, in order to obtain an optimal BSS solution for 
ATM-VCS.  

1.4   SPEECH ENHANCEMENT AND SIGNAL-TO-NOISE RATIO 
ESTIMATION  

Speech enhancement algorithms try to improve speech signals affected by noise. 
Depending on the applications, speech enhancement can use one, two or multiple channels. 
While the single channel methods are based only on information from one channel, the 
multichannel methods can speculate the distribution of the microphones/sensors in order to 
obtain more information regarding the background noise.  

The SNR estimation is the first step in various single or multi-channel speech 
enhancement. Its role is to estimate the background noise. Then, the additive background 
noise is subtracted from the noisy signal by different techniques. Depending on the 
applications, the processed signal will have a higher SNR and/or better speech intelligibility.  

The SNR estimation and speech enhancement are important for this thesis because they 
support the idea of an enhanced BSS (eBSS). Using a multi-channel approach we can reduce 
the additive transport noise from the received signals. Thus, by subtracting the noise from the 
BSS, the processed eBSS should lead to better speech intelligibility. 

1.5   THESIS OBJECTIVES AND OUTLINE 

After a short introduction regarding the ATM-VCS I will now describe the main 
objective of this thesis – the development of a solution for best signal selection in a VoIP 
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environment. Thus, the system has to integrate the new work in order to provide highly 
accurate selections for real time conditions. Besides this main goal, another aim was to 
provide an enhanced best signal selection (eBSS), which should make use of all the input 
signals, to offer a more intelligible output than the BSS. To achieve this, several specific 
objectives were addressed: 

a) Develop a fast and accurate time delay estimation method, based on generalized cross-
correlation. This is needed to align incoming signals before analyzing their 
intelligibility. Also, TDE is the first step in further speech enhancement processing 
for eBSS; 

b) Implement an optimum VAD algorithm as an important part of the best signal 
selection process; 

c) Search for an optimum signal-to-noise estimators which could be used for 
multichannel speech enhancement;  

The thesis is organized around seven chapters, as follows: 

Chapter 1 starts with an introduction to the best signal selection problem of the air traffic 
management voice communication systems. Then it summarizes the main tasks needed for 
obtaining an effective BSS and eBSS, and highlights the difficulties encountered by the 
system designer. Finally, chapter 1 describes the main objectives and outlines this thesis. 

Chapter 2 presents the time delay estimation problem and different state-of-the art 
approaches to solve it. Firstly the general adaptive filtering solution is presented, with two 
basic variants, least mean square (LMS) and recursive least square (RLS) algorithms. Then, 
a little bit like in previous approaches, the adaptive eigenvalue decomposition (AED) is 
presented. This is followed by an introduction to the difference functions. Continuing the 
presentation of TDE solutions, the generalized cross-correlation (GCC) method is 
introduced, with all its traditional approaches. The end of this chapter describes the wavelet 
based TDE, including specific methods.  

Chapter 3 proposes the accumulated GCC TDE methods for multi-frame analysis. Firstly 
the accumulated cross-power spectrum is presented, as well as ways extend it to all well-
known GCC methods. Then the database and the metrics used in the following experiments 
are described. Further, based on several metrics (accuracy and error rate, relative error, 
standard deviation of relative error, computing time) all traditional GCC methods 
implemented with conventional and proposed approaches are analyzed.  

Chapter 4 is dedicated to the description of several VAD algorithms. The standard G729, 
ETSI-AMR1 and ETSI-AMR2 VADs are presented at the beginning, as important reference 
points of this field. They are followed by two recently proposed VAD algorithms which were 
integrated into the BSS solution. 

Chapter 5 describes the VAD algorithms analysis for the BSS solution. This is supported 
by detailed aspects regarding the correlation between the VAD scores and speech 
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intelligibility. Beside the BSS solutions based on the two VAD algorithms presented in 
chapter 4, here a new BSS solution is introduced, called Smoothed Sub-band Spectral 
Flatness Measure (3SFM). Moreover, it is shown that this solution could also be used as a 
VAD in proper configuration. 

Chapter 6 is dedicated to the enhanced best signal selection. It describe the state of the 
art unbiased estimator based on speech presence probability and distributed multi-channel 
speech enhancement. Further it is proposed the eBSS solution based on the SNR estimation.  
The simulated results are analyzed based on the Perceptual Objective Listening Quality 
Assessment (POLQA). 

Chapter 7 summarizes the conclusion of this thesis regarding time delay estimation, 
voice activity detection, best signal selection and enhanced best signal selection issues. Then 
it includes references to the personal contribution and describes the further directions to be 
followed. 
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2   TIME DELAY ESTIMATION 

Despite the various techniques developed over the years, this topic continues to be 
interesting. As technology evolved, more and more applications demanded a real time 
solution for time delay estimation. For echo canceling, acoustics, radar and sonar localization, 
seismic and medical processing, pattern detection and speech enhancement, scientists are still 
looking to improve the existent solutions. However, the variety of TDE applications, 
implementation aspects and proper constraints, inhibit the design of a unique solution. 
Instead, various approaches have been developed based on application specific aspects 
[Marinescu, 2013d]. 

The main used approaches for TDE can be presented in more categories: a) generalized 
cross-correlation (GCC), b) adaptive filtering and c) adaptive eigenvalue decomposition 
(AED). Beside these main categories other techniques like average square difference function 
(ASDF), average mean difference function (AMDF) and wavelet based TDE were proposed 
over time, but they did not catch on in digital signal applications. In the next subsections all 
these methods will receive some attention for their description. 
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2.1   ADAPTIVE FILTERING METHODS 

The adaptive filters appeared as a solution for non-stationary environments and signals, 
or for applications where a low processing delay or a sample-by-sample adaptation process 
was required. Over the years several adaptation algorithms were proposed and were based in 
general on the well-known least mean square (LMS) and recursive least square (RLS) 
methods. The development of adaptive algorithms aimed to improve one or more factors as 
the speed of convergence to optimal operating condition, the computational complexity, the 
numerical stability, the minimum error at convergence or the robustness of the algorithm to 
initial parameter states. Some notable versions and comparison of several adaptive algorithms 
were presented in [Widrow, 1985][Dohnal, 1995][Lin, 1998][So, 2001][Zetterberg, 
2005][Benesty, 2006][Khong, 2006][Dyba, 2008][Emadzadeh, 2008] [Hongyang, 
2008][Jinhong, 2008][Iqbal, 2008][Hongyang, 2009][Paleologu, 2010][Sakhnov, 2011a] 
[Sakhnov, 2011c]. 

2.1.1   LEAST MEAN SQUARE ALGORITHM   

From the time when B.Widrow proposed an adaptive filtering technique based on Least 
Mean Squares (LMS) [Widrow, 1959, 1960ab, 1961], an adaptive theory also found an 
application to delay estimation. An adaptive implementation of the time delay estimation via 
Widrow’s LMS algorithm is usually referred to as TDLMS or LMSTDE. The adaptive 
filtering algorithms determine the time delay in an iterative manner.  

 

Figure 2.1 – System block diagram for LSM – TDE 

The system block diagram of the LMS-TDE is shown in Figure 1. The mathematical 
model of the digital input signals is given by: 

 
)()()(

)()()(

2

1

tnDtsty
tntstx



 (2.1) 
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where s(t)  is the unknown source signal, n1(t)  and n2(t)  are the additive noises and D the 
delay between received x(t) and y(t). The basic idea is to model the time difference by an 
adaptive non causal FIR filter. If W(t) is the L-vector off filter weights at instant t, then the 
filter’s output is expressed as follows:   

 )()()( tXtwtd T   (2.2) 

where T denotes the transpose and X(t)=[x(t), x(t – 1), …x(t – L+1)]T the state of the filter, 
represented by the last L samples of the reference input signal, x. Then, the output error e(t) 
can be expressed as:  

 )()()()( tXtWtyte T   (2.3) 

In order to minimize the error between y and d the filter’s weights are updated on each 
new sample based on the following relation: 

 )()()1( * tXenWtW    (2.4) 

where µ is the feedback coefficient which influences the convergence speed and * indicates 
the complex conjugate. If µ is increasing then the algorithm could converge much quicker, 
but on the other hand it could face stability issues. For the proper µ, after the adaptation phase 
has been finished, the filter’s coefficients insert an equal delay but opposite to the initial 
existing delay between the input signals x and y. In an ideal scenario, with no additive noise, 
the adapted coefficients can estimate perfectly the delay. In this situation all the coefficients 
will be zero, with the exception of the coefficient which corresponds to the true delay, which 
will be one. But, in real applications the additive noise is always present and some errors 
appear. These affect the filter’s weightings which will be in the interval (0, 1). Now, the 
estimated delay corresponds to the maximum coefficient. 

2.1.2   RECURSIVE LEAST SQUARE ALGORITHM 

The RLS [Gauss, 1821] adaptive filter represents a time-update, additive-sample, version 
of the Wiener filter. While for non-stationary signals the RLS algorithm follows the time 
variations of the process, for stationary signals it yields the same optimal filter solution as the 
Wiener filter at the end of its convergence stage. Comparing it to previous LMS, it has a 
higher convergence speed and also a higher computation complexity. 

The RLS algorithm uses an initial state when it begins the adaptation stage. Then it uses 
every input sample to adapt the filter coefficients. Considering the input signals x(t) and y(t) 
defined as in (2.1) from the above context with the filter coefficient vector expressed by w(t) 
= [w0(t), w1(t),…, wL-1(t)] we have the following formula for the filter’s output: 

      Tx̂ t w t x t  (2.5) 



Best Signal Selection with Automatic Delay Compensation in VoIP Environment 

– 23 –   
 

where  x̂ t  represents an estimate of the delayed signal y(t).Similar to (2.3) the difference 

between the filter output and the target signal  yields the filter error e(t). 

  For stationary signals it was shown [Vaseghi, 2006 – chapters 6 and 7] that the Wiener 
filter resulted by minimizing the above mean square error as: 

  1 xx xyw R r  (2.6) 

Now we have to express (2.6) by a time-update, recursive, adaptive form. As shown in 
[Vaseghi, 2006 – chapter 6], in the case of N sample vectors, the cross-correlation matrix is 
expressed as:    

    
1

T

0

t t




  T
N

xx
t

R X X x x  (2.7) 

where x(t) = [x(t),…, x(t – N – 1 )]T. It is now possible to express the above vector product in 
a recursive form as 

        1t t t t   T
xx xxR R x x  (2.8) 

To adapt to the time variations of the signal statistics, the autocorrelation estimate from 
(2.7) is windowed with an exponentially decreasing window:  

        1t t t t   T
xx xxR R x x  (2.9) 

where   is known as the forgetting factor, or adaptation, and 0 <   < 1. In the same way we 
can write the cross-correlation vector: 

    
1

0

t t





N

xy
i

r x y  (2.10) 

Applying now the recursive form for the above equation we obtain 

        1t t t t  xy xyr r x y  (2.11) 

Moreover, introducing here the same exponentially decreasing forgetting factor  leads 
to an adaptation form 

        1t t t t  xy xyr r x y  (2.12) 

To achieve a recursive solution of the least square error equation (2.12), we have to find 
a recursive time update formula for the inverse matrix in the form 

    1 1 1t t  xx xxR R  + Update(t) (2.13) 

This can be achieved by the following matrix inversion lemma. 
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The matrix inversion lemma 

Let A and B be two positive-definite L× L matrices associated by 

 1 1 T  A B CD C  (2.14) 

where C is a L × N matrix and D is a positive-definite N × N matrix. The matrix inversion 
lemma states that the inverse if the matrix A can be calculated as 

   11 T T   A B BC D C BC C B  (2.15) 

Proving this lemma consists of multiplying (2.14) and (2.15). Then the identity matrix 
results in the left- and right-hand sides of the equation. 

To use the matrix inversion lemma for the recursive inverse correlation matrix we 
identify matrices A, B, C and D as: 

  t xxA R  (2.16) 

  1 1 1xx t   B R  (2.17) 

  x tC  (2.18) 

 D  identity matrix (2.19) 

Now, replacing equations (2.9) and (2.10) in (2.8) yields: 

            
     

2 1 T 1
1 1 1

1 T 1

1 1
1

1 1
xx xx

xx xx
xx

t t t t
t t

t t t





  
  

 

 
  

 
R x x R

R R
x R x

 (2.20) 

Now let the variables  t  and  k t  be 

    1
xxt t  R  (2.21) 

and 

      
     

1 1

1 T 1

1
1 1

xx

xx

t t
k t

t t t




 

 




 
R x

x R x
 (2.22) 

or 

      
     

1

1 T

1
1 1

t t
k t

t t t
 

 








 
x

x x
 (2.23) 

Based on the new equations (2.21) and (2.22) we can rewrite the recursive equation 
(2.13) for the inverse matrix computation: 
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          1 1 T1 1t t k t t t        x  (2.24) 

Using (2.23) and (2.24) we obtain 

 
           

   

1 1 T1 1k t t k t t t t

t t

   



      


x x

x
 (2.25) 

With the (2.24) and (2.25) equations we will further determine the recursive least square 
adaptation algorithm. 

 
Recursive time-update of filter coefficients  

Considering (2.6) and (2.21) the filter coefficients can be expressed as 

 
     

   

1t t t

t t




xx xy

xy

w R r

r
 (2.26) 

 Replacing the recursive form of the correlation vector in the above equation leads to 

 
         

         
1

1

t t t x t y t

t t t x t y t

 

 

    
  

xy

xy

w r

r
 (2.27) 

Substituting in the right hand of (2.27) the recursive form of the matrix  t  from 

equations (2.24) and (2.25) leads to 

                1 1 T1 1 1t t k t t t t k t y t             xyw x r  (2.28) 

or 

                  T1 1 1 1t t t k t t t t k t t       xy xyw r x r y  (2.29) 

Replacing      1 1 1t t t   xyw r  in equation (2.29) leads to 

            T1 1t t k t t t t      w w y x w  (2.30) 

Finally, this equation is equivalent to the next form 

        1t t k t e i  w w  (2.31) 

which represents the implementation of the recursive time-update least square error Wiener 
filter. 
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Now, for the input signals  x t  and  y t  the recursive least square adaptation algorithm 

with the initial values  t  I  and  0  Iw w  can be described in the following steps: 

1) Update the filter gain vector with the following equation 

      
     

1

1 T

1
1 1

t t
k t

t t t
 

 








 
x

x x
 (2.32) 

2) Compute the error signals with the next equation: 

        T 1e t y t t x t  w  (2.33) 

3) Update the filter coefficients 

        1t t k t e i  w w  (2.34) 

4) Update the inverse correlation matrix 

          1 1 T1 1t t k t t t        x  (2.35) 

5) Jump to the first step for the next sample.  

2.2   ADAPTIVE EIGEN VALUE DECOMPOSITION 

The methods for time delay estimation differ from one application to another. A special 
case is represented by the indoor applications for speech, communication and localization. 
Beside the additive noise and non-stationarity of voice, signals are affected also by 
reverberations. In [Bedard, 1994] and later in [Champagne, 1996], it was shown that make 
achieving good performance for indoor applications more difficult.  

A new method was proposed in [Benesty, 2000], including reverberations in a real signal 
model based on eigenvalue decomposition. In this sense the equations regarding the input 
signals in case of multiple microphones (i=1,2,…) are expressed bellow:  

 )()()( tntstx iiii   , (2.36) 

where αi is the attenuation factor caused by the propagation effects, ni(t) represents the 
additive noise signal which affects the i-th microphone and τi is the time needed by the signal 
to propagate the source s(t) to the microphone.  

If we further consider that s(t), n1(t) and n2(t) are stationary, uncorrelated, zero-mean 
Gaussian random processes then τ12 defines the relative delay between the two microphone 
signals 1 and 2 as follows:  
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 2112   , (2.37) 

But the above model is an ideal one because determining τ12 has a clear solution. In a real 
model it has to be more complete, including the room’s reverberations from the acoustic 
environment, which were not taken into account in the ideal model. In this case the real 
model for multiple microphones is expressed as follows: 

 )()()( tntsgtx iii   (2.38) 

where gi represents the acoustic impulse response between the source s(t) and the i-th 
microphone and * denotes the convolution operation. Moreover, the noisy signals n1(t) and 
n2(t) could be correlated. This is not a rare situation, because there are frequent cases with 
directional indoor noise, like those generated by an overhead projector or from a ceiling fan. 

In this case, the approach proposed in [Benesty, 2000] analyzes the impulse responses 
between the source and the microphones to estimate the time-delay. The idea of this method 
supposes that the system (in generally the room) is linear and time invariant, thus results the 
following equation: 

 1221 )(x)(x gtgt TT   ,  (2.39) 

where x(t)=[xi(t), xi(t – 1), … xi(t – L+1)]T for i=1,2 are vectors of signal samples at the 
microphone outputs, T  represents the transpose of a vector or a matrix, and the impulse 
response vectors of length L are defined as 

 gi = [ gi,0   gi,1 ...  gi,L-1] T,     i=1,2. (2.40) 

The linearity property of the above relation results from the fact that xi=s*gi, i=1,2, thus 
x1*g2=s*g1*g2=x2*g1. 

For two microphone signals we have the following covariance matrix 

 









2212

2111

xxxx

xxxx

RR
RR

R , (2.41) 

where  

  )(x)(x ttER T
jixx ji

 ,    i,j (2.42) 

and E{∙} indicates mathematical expectation. 

Consider the 2L×1 vector 
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 







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
1

2

g
g

u . (2.43) 

Using (2.8), (2.10) and (2.12) we can easily obtain R∙u = 0. This confirms that the vector u, 
which contains the two impulse responses, represents the eigenvector of the covariance 
matrix R corresponding to the eigenvalue 0. Furthermore, if the two impulse responses g1 and 
g2 have no common zeros and the autocorrelation matrix of the source signal s(t) is full rank, 
which is assumed here, the covariance matrix R can have one and only one eigenvalue equal 
to 0 [Tong, 1993]. 

However, in real applications it is not simple to accurately estimate the vector u, because 
of the non-stationarity nature of speech, the length of the impulse responses, the additive 
background noise, etc. But, a trivial solution is represented by an iterative estimation 
algorithm of the eigenvector which corresponds to the maximum (or minimum) eigenvalue of 
R. The Frost algorithm can be used [Frost, 1972], which is a simple restrained LMS, or the 
algorithm presented in [Owsley, 1978]. Next, achieving the solution to this problem by using 
these techniques is presented. In order to obtain the optimum filter weights uopt we have to 
minimize the quantity uTRu with respect to u and subject to ||u||2 = uTu = 1.  

Consider the error signal: 
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)(x)()(
t

ttte
T

u
u

 , (2.44) 

where x(t) = [ x1
T(t)     x2

T(t)]T. And now, the solution to the above eigenvalue problem is 
equivalent with the minimization of the mean square value of e(t). This can be achieved by 
computing the gradient of e(t) with respect to u(t)  

 
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u , (2.45) 

and we obtain the gradient-descent constrained LMS algorithm: 

 )()()()1( tetett  uu , (2.46) 

where µ is the adaptation step as a positive constant. 

Substituting (2.44) and (2.45) into (2.46) yields 
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, (2.47) 

and continuing with the mathematical expectation after convergence, we obtain 
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
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
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u
u

u
uR teE , (2.48) 

which is what is our solution: the eigenvector u(∞) which corresponds to the smallest 
eigenvalue E{e2(t)} of the covariance matrix R. 

In real applications we can avoid the round off error propagation by using the following 
adaptation formula, proposed by [Bellanger, 1989]: 

 )()()(
)()()()1(

tetet
tetett








u
uu . (2.49) 

If this advantageous approach is used, then we can remove ||u(t)|| (which appears in e(t) and 
∇e(t)) because it will always give us ||u(t)|| = 1.  

Note that the last equation can be used as a general way on any matrix R to obtain the 
eigenvector which corresponds to its smallest eigenvalue. However, making use of the fact 
that in our case the smallest eigenvalue is zero we can simplify even more the algorithm as 
follows: 

 )(x)()( ttte Tu  (2.50) 

and 

 )(x)()(
)(x)()()1(

ttet
ttett



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


u
uu . (2.51) 

Finally, we can conclude that the last algorithm from (2.51) may be considered as an 
approximation of the previous one by neglecting the terms in e2(t) from (2.49). For indoor 
applications, these two algorithms should offer the same performance after they converged 
even for a low SNR. Also, they appear to be more efficient than any other methods for 
reverberant environment applications [Benesty, 2000].   

2.3   DIFFERENCE FUNCTIONS 

Difference functions were used from the beginning of the digital signal processing 
because they were based on low-cost computing operations. Moreover, Average Magnitude 
Difference Function (AMDF) only uses additions. For the other operator, Average Square 
Difference Function (ASDF), it was shown in [Jacovitti, 1993] that it offers better accuracy 
results, thanks to the inclusion of multiply operations. But, because direct generalized cross 
correlation benefits from the reduced complexity order of the FFT approach, average 
difference functions now have limited applications in our days. 
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2.3.1  AVERAGE MAGNITUDE DIFFERENCE FUNCTION 

Thanks to its simplicity, this operator was widely used in audio applications, especially 
to determine the pitch period of voiced speech sound after the work from [Ross, 1974]. In 
[Jacovitti, 1987] a new faster correlation estimator was proposed, with applications for time 
delay estimation. 

Considering N samples of two signals, x1(t) and x2(t), acquired at a sampling interval T, 
then the average magnitude difference function estimator is expressed as 

 AMDFAMDF RD



minarg  (2.52) 

where  

 



N

k
AMDF kTxkTx

N
R

1
21 )()(1)( 


 (2.53) 

Compared to the direct cross correlation estimator which searches for the maximum 
value of the cross-correlation, the AMDF estimator searches for the minimum value of the 
average magnitude difference functions.  

2.3.2   MAGNITUDE DIFFERENCE FUNCTION 

Considering the above AMDF it is worthwhile to notice that the last averaging operation 
is not used in some applications. This eliminates the expensive time processing division 
operation leading to the magnitude difference estimator: 

 MDFMDF RD



minarg  (2.54) 

where  

 



N

k
MDF kTxkTxR

1
21 )()()( 


 (2.55) 

2.3.3   AVERAGE SQUARE DIFFERENCE FUNCTION 

The average square difference function tries to improve the estimation accuracy by 
including multiply operations. This increases the computing time, but for some applications it 
is a good trade between the accuracy result and processing speed. The ASDF estimator is 
similar to the AMDF estimator, searching also the minimum of the ASDF as in: 

 ASDFASDF RD



minarg  (2.56) 

where  
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
 (2.57) 

In [Jacovitti, 1993] it was shown that for a high SNR the ASDF estimator achieves 
higher accuracy results than the direct cross-correlation estimator. The better accuracy results 
were explained by the fact that for clear signals, the ASDF estimator yields correct 
estimation, while the direct cross-correlation does not.  

2.3.4   SQUARE DIFFERENCE FUNCTION 

Similar to the MDF estimator case, the ASDF could be simplified by removing the final 
average part. In this way results the Square Difference Function based estimator: 

 SDFSDF RD



minarg  (2.58) 

where  

  
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21 )()()( 


 (2.59) 

 

2.4   GENERALIZED CROSS-CORRELATION METHODS 

2.4.1   CROSS-CORRELATION FOR TIME DELAY ESTIMATION 

Adaptive filtering methods lead to very high accuracy results when they are used to 
estimate the time delay, but only after the convergence period has finished. But, in several 
applications there is no time left to wait for the filter to adapt. The solution in these cases is 
represented by the generalized cross-correlation methods, based on the simple cross-
correlation between two signals. This approach offers reliable accuracy results and it is much 
quicker than adaptive filtering methods because it does not need any adaptation time.  

Assuming two noisy signals, x1(t) and x2(t) defined as in (2.36) which come from the 
same source s(t), delayed with τ12, computed as in (2.37). Then, the cross-correlation between 
the two signals can be expressed as 
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 (2.60) 
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where E denotes expectations.  

Considering that the signal and noise are uncorrelated, then  

      
2 1 1 212 0sn sn n nr k r k r k    , (2.61) 

which implies  

    
1 2 1 2 12x x ssr k r k       (2.62) 

Because the autocorrelation  ssr  has its maximum value for  0ssr , than the time delay τ12 is 

obtained as the argument which maximizes 
1 2

 , x xr  which can also be seen in Figure 2.2 
[Vaseghi, 2006].  

 

Figure 2.2 – The cross-correlation for two delayed signals is maximized when the argument value 
equals the delay 

It can be shown that the cross-correlation between x1(t) and x2(t) is related to the cross-
power spectral density function Gx1x2 by the well-known Fourier transform relationship: 
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where 
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2.4.2   TRADITIONAL GENERALIZED CROSS-CORRELATION METHODS 

The term of generalized cross-correlation was introduced by Knapp and Carter in 
[Knapp, 1976] when they pointed out that a common method of determining the time delay is 
to compute the cross-correlation function. To improve the accuracy of delay estimation, a 
pre-filtering of the inputs is necessary before calculating the cross correlation. This is 
equivalent to the addition of a filtering block. If then we consider that the signals x1(t) and 
x2(t) have been filtered with filters having transfer functions H1(f) and H2(f), the cross power 
spectrum between the filter outputs is given by:  

        fGfHfHfG xx
g

xx 2121

*
21   (2.66) 

Therefore, the generalized cross-correlation between x1(t) and x2(t) is: 

      




 dfefGftR ftj
xx

g
xx

2
2121  (2.67) 

where  

      fHfHf *
21   (2.68) 

denotes the general frequency weighting [Knapp, 1976]. 

Over the years, different weighting functions were proposed to improve the estimation 
process of the basic cross-correlation. The well-known weighting functions, which are also 
analyzed in this thesis, are presented below. Gx1x1 and Gx2x2 represent the auto power spectrum 
of the noisy signals and  

1 2

2
x x f  is the signal's coherence function. 

      
1 1

*
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      
2 2

*
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For the normal Cross-Correlation (CC) the weighting function Ψ(f) is 1. This is the basic 
and the fastest computing GCC, because it has no weighting operations. 

The Eckart filter derives its name from work done in this area and published in [Eckart, 
1951]. It maximizes the deflection criterion, i.e., the ratio of the change in mean correlator 
output due to signal present to the standard deviation of the correlator output due to noise 
alone [Knapp, 1976]. Its weighting function can be expressed as 
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Twenty years later, in 1971, Roth proposed a new processor in [Roth, 1971]. It has the 
desirable effect of suppressing those frequency regions where Gx1x1 is large and the estimate 
of Gx1x2 is more likely to be in error [Knapp, 1976]. 

  fG
f

xx
Roth

11

1)(   (2.73) 

The same year, another weighting function was proposed, the HT processor, by Hannan 
and Thomson. This assigns greater weight in regions of frequency domain where the 
coherence is large [Hannan, 1971]. In [Knapp, 1971], it was shown that HT processor is a 
maximum likelihood (ML) estimator for time delay under usual conditions. Under a low 
signal-to-noise ratio restriction, the HT processor is equivalent to Eckart pre-filtering and 
cross-correlation. 
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The SCOT (Smoothed Coherence Transform) was introduced by Carter, Nuttall and 
Cable in [Carter, 1973], to reduce the influence of a strong tone. However, for smoothed 
signal and noise spectra, Hassab and Boucher have noted that the additional SCOT weighting 
function has weakened the performance of the basic cross correlator, while other functions 
have improved it [Hassab, 1980][Hassab, 1981].  

    fGfG
f

xxxx
SCOT

2211

1)(


  (2.75) 

Phase Transform (PHAT) or Cross-power Spectrum Phase (CSP) was developed purely 
as an ad-hoc technique to avoid spreading of the above two presented operators. Ideally, 
PHAT does not suffer the spreading that other processors do. Also, because it weights Gx1x2 
as the inverse of |Gx1x2|, the errors are accentuated where the signal power is smallest [Knapp, 
1976]. 
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21

1)(   (2.76) 

In practice a modified SCOT weighting function, called Cross-Power Spectrum–m (CPS-
m), is also used, as expressed below 
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where m is usually chosen as 1 < m < 2. 

In 1979, the HB processor was presented by Hassab and Boucher. It is similar to SCOT 
in that, for highly dynamic spectra, in addition to suppressing the cross-spectral estimate in 
frequency regions of low signal-to-noise ratio, high signal-to-noise ratio regions are also 
suppressed in attempt to reject strong tones in the observations [Hassab, 1979]. 
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The Wiener processor was proposed in 1985 by Hero and Schwartz. Based on the 
channel’s linearity it tries to estimate the original signal from the observation x1(t) and 
channel output signal from x2(t), by minimizing the mean-square errors. Thus, given the 
channel characteristics, the solution results in Wiener filters, which yield the Wiener 
weighting function [Hero, 1985].   

   2

21
)( ff xxWiener   (2.79) 

In 1996 a new weighting function, for acoustic localization, was presented, by Rabinkin 
et al., the ρ-Cross-power Spectrum Phase (ρ-CSP). It adds to the normal CSP the tuning 
parameter ρ (with values between 0 and 1) as a whitening parameter, which discards the non-
speech portion (below 200Hz) of the CSP [Rabinkin, 1996].  

   
fG

f
xx

CSP

21

1)(    (2.80) 

Relatively recently, in 2009, in addition to the above work ρ-Cross-power Spectrum 
Phase with Coherence (ρ-CSPC) was proposed by Shean and Liu. The presence of the 
minimum of the coherence function in the weighting function helps to reduce errors for 
relatively small energy signals [Shean, 2009]. 
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For the above presented GCC methods, an implementation block diagram is presented in 
Figure 2.3. First, the analysis frames of input signals are converted into frequency domain 
using the Fast Fourier Transform (FFT) block. Then, the cross-power spectrum is computed 
by multiplications of resulted spectra and weighting function. Going further, the generalized 
cross-correlation is obtained through an Inverse Fast Fourier Transform (IFFT). The final 
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step consists in finding the argument which maximizes GCC and estimating the delay. This is 
the basic way to obtain an estimation of delay. 

 
Figure 2.3 – Block diagram for a single frame GCC implementation 

For a large window with L samples, FFT’s complexity order is O(L∙logL), with L a 
power of 2. Because these consume important processing time, it is natural to search for 
solutions which increase the computing speed. A way to achieve this is to divide the larger 
analysis window into smaller frames, as it is shown in Figure 2.4. Thus, the larger analysis 
window of L samples is divided in K smaller frames, of n samples each. If the length of the 
frame l is also a power of 2, then the new complexity order is O(K∙l∙logl) = O(L∙log(L/K)), 
which needs a smaller processing time. For each smaller analysis frame, the partial estimated 
delay is obtained similarly as in Figure 2.3. Then, the final estimated delay yields as the 
average of all partial estimated delays. In this way, it is also easier to estimate a variable 
delay. This approach is recommended especially when the estimated delay is expected to be 
considerably less than the length of the larger window. 

 
Figure 2.4 – Block diagram for multiple frames GCC with time domain average estimation 

2.4.3   ACCUMULATED CROSS-POWER SPECTRUM PHASE METHOD 

An alternative to the above multi-frame approach is the accumulated Cross-power 
Spectrum Phase (acc-CSP), proposed by Matassoni and Svaizer in [Matassoni, 2006]. It 
accumulates the cross-power spectrum over multiple frames in frequency domain, as shown 
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in Figure 2.5. This scheme leads to a new computing time decrease, because the number of 
IFFT and peak detector is reduced to 1. In frequency domain it can be expressed as follows: 
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where K represents the number of accumulated frames. Besides the reduced computational 
complexity, the acc-CSP method enhances the estimation by intrinsic integration for fixed 
delay during the analysis window [Matassoni, 2006]. 

The acc-CSP method proposes the accumulation scheme of cross power spectrum in 
frequency domain, increasing the computation speed. Methods based on the approach 
presented in Figure 2.4 compute the TDE as the average of all partial estimated delays of 
each frame from the analysis window. Therefore, for K frames, the number of total FFT 
operations is equal to 3xK, because two FFT are used to transform the signals from time to 
frequency domain, and then one IFFT is used on the cross power spectrum to return in the 
time domain, for each frame. Instead, the accumulation scheme from Figure 2.5 is faster 
because it does not calculate any partial TDEs. Because the cross-power spectrum averaging 
is computed in frequency domain, only one estimate will result, for any number of K frames. 
Thus, only one IFFT is needed for the final estimation and 2xK FFTs for time to frequency 
transformations. This leads to a total number of 2xK + 1 FFT for the accumulating scheme, 
which is less than the 3xK FFT needed by previous methods [Marinescu, 2013c]. Also, a 
small increase in the computation speed is due to the reduction to only one peak detector call. 

 

 
Figure 2.5 – Block diagram for accumulating multiple frames GCC in frequency domain  
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2.5   WAVELET BASED TIME DELAY ESTIMATION 

In special acoustic tracking target applications the time delay estimation problem 
encounters some difficulties. The applications have to determine and predict the track of the 
target based on extremely short acoustic signals (transient) received by many sensors. 
Because of the diversity, short duration and non-stationary nature of these signals the 
previous TDE methods cannot offer reliable results. However, wavelet transform represents a 
powerful analysis tool for processing and decomposing these types of signals. The properties 
of the wavelet transform can provide additional tracking information to improve the previous 
TDE approaches. Based on these observations different combined methods for TDE were 
proposed, taking advantage of both wavelet transform and GCC. 

2.5.1   WAVELET PRE-FILTERING GENERALIZED CROSS CORRELATION 

The wavelet decomposition produces correlation coefficients between the input and the 
basic wavelet function. If the basic function is chosen properly so as to match the signal 
characteristics, then the higher the coefficients are, the higher the correlation is between the 
input signal and the basic function. Thus, the lower coefficients indicate a lower correlation 
between the input signal and the basic function, which indicate that the input signal does not 
contain the desired information, affected by noise. Based on the wavelet denoising, which 
eliminates the correlation coefficients which are smaller than a cutoff threshold, Wu et al. 
proposed in [Wu, 1997] the wavelet pre-filtering generalized cross-correlation method for 
time delay estimation. 

 

Figure 2.6 – Block Diagram for TDE Wavelet Pre-filtering Generalized Cross Correlation (WP-GCC) 

The wavelet pre-filtering is seen as a new weighting function which modifies the cross-
correlation input and it is done in a few steps:  

1)  using the discrete wavelet transform (DWT) the input signals are converted into the 
wavelet domain;  

2)  remove the noise by eliminating the coefficients which are smaller than a non-linear 
threshold; 

3)  apply the inverse discrete wavelet transform to obtain the filtered signals. 

After the input signals were filtered by the wavelet denoising, the cross-correlation and 
maximum search is performed in order to estimate the delay, as shown in Figure 2.6.     
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2.5.2   WAVELET DOMAIN INNER PRODUCT 

The second TDE method, based on wavelet transform, was proposed in [Barsanti, 2003], 
exploiting the time variant property of the DWT. Despite the fact that the DWT filtering 
operations are time invariant and linear, combining them with the decimation operation 
(which is implied by the DWT) results in a time-variant system. 

Based on the fact that for two delayed signals their DWT coefficients will correspond 
when the delay is zero, a comparison of the two sets of DWT coefficients over the entire 
possible delays was proposed. Then the estimated delay is selected as the one who produces 
the best correspondence between the two sets of DWT coefficients. 

 

Figure 2.7 – Block Diagram for TDE Wavelet Domain Inner Product (WD-IP) 

The processes presented in Figure 2.7 follows the next steps: 

1)  compute the DWT coefficients of the input signals  x1(t) and x2(t – τ); 

2)  apply the threshold for each DWT coefficients set in order to remove noise and to 
obtain the sparse representation; 

3)  with the resulting coefficients 1
,j kC  and 2

,j kC   the similarity index I(τ) between the two 

sets of DWT coefficients is computed, using the inner product (vector dot product) 
calculated as in (2.83); 

4)  shift the input signals  x2(t – τ) by one sample and repeat the operational steps from 1 
to 4 until the similarity index for all shifts is computed; 

5)  finally, estimate the delay as the automated introduced shift delay which maximizes 
the similarity index. 

      1 2, ,t

j k

I t C j k C j k  (2.83) 
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In [Barsanti, 2003] it was shown that this method outperforms other approaches for TDE 
of extremely low short signals even at a lower SNR. However, this method comes with a 
major disadvantage with regard to the computing time. When the inner product and the shift 
operations of the correlator are separated no fast FFT-based correlation algorithm can be 
used. Hence the operations for similarity index and time shift have to be executed 
sequentially, by “brute force” [Barsanti, 2001].  
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3   ACCUMULATED GCC 

After the presentation of TDE methods from the previous chapter, in order to choose the 
best TDE method, we should recall the specific demands and implementation issues of the 
BSS problem. As it was presented in the introduction part, before starting a BSS algorithm, 
we have to ensure that the input signals are aligned. Also, the introduced processing delay 
should not be more than 300ms, while the aircraft’s pilot’s conversation lasts just a few 
seconds in average. In these circumstances it is easy to observe that, despite the high 
accuracy results, the adaptive filtering and adaptive eigenvalue decomposition cannot be used 
in the BSS integration because of their long adaption time, which is usually more than a few 
seconds. In [Jacovitti, 1993] it was shown that difference functions offer good results only for 
high SNR and they could not yield reliable results for low SNR. Also, the wavelet based TDE 
methods are suited especially for transient signals and their implementation could lead to a 
long processing time. Thus, the only suitable method for the BSS integration remains the 
generalized cross-correlation. It offers good accuracy results, does not need any adaptation 
time, and does not have higher complexity than other methods. 

Starting from these premises I developed two new GCC methods in [Marinescu, 2013b].   
To extend the research on this topic, in this thesis the accumulating scheme will be applied to 
all well-known GCC functions. To the best of my knowledge, this technique was not 
presented by anyone in any other previous study. 
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3.1   PROPOSED ACCUMULATED GCC 

In chapter 3 traditional GCC methods and the accumulated version of CSP in frequency 
domain (2.82) for a multi-frame analysis were presented. In order to improve the TDE 
accuracy from the ATM-VCS, the ρCSP (2.80) and ρCSPC (2.81) methods in [Marinescu, 
2013b] were extended through the accumulation principle. These two new methods were 
called accumulated ρ-Cross Power Spectrum Phase with Coherence (acc-ρCSPC) and 
accumulated ρ-Cross Power Spectrum Phase (acc-ρCSP). In frequency domain their cross-
power spectrum is 
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where K indicates the numbers of frames used in the analysis. 

 Thus, it is possible to take advantage of both ideas: accumulation scheme (Figure 2.5) 
and enhanced accuracy of ρCSPC and ρCSP. The new approach, summarized by (3.1) leads 
to faster computations compared to the previous methods, because it uses the accumulating 
scheme. It can also provide better results in unfavorable conditions for smaller frame sizes. 
Beside this, emphasis on speech regions from the spectrum is achieved by the whitening 
parameter (ρ), which reduces, at the same time, the impact of noise outside the speech region. 
For parts of the signal with small energy, the addition of the minimum coherence function 
limits the effect of a very small denominator [Rabinkin, 1996] [Shean, 2009]. 

The second method, acc-ρCSP was proposed as a faster variant of acc-ρCSPC for 
applications where relatively small energy signals are not encountered. In such circumstances 
the minimum coherence function can be omitted from (3.1) because in these cases there is no 
need to compute the coherence function and to search for its minimum. Hence, the computing 
complexity is reduced. 

Over the years, several other studies discussed the details of TDE-GCC, like in [Youn, 
1983] [Omologo, 1994, 1997] [Tianshuang, 1996] [Zetteberg, 2005] [Wilson, 2006] [Sun, 
2010] [Sakhnov, 2011b, 2011c]. In this thesis the multi-frame analysis is extended with the 
accumulating cross-power spectrum scheme (Figure 2.5), not only for the above proposed 
methods, but also for the other well known GCC functions. Below the new accumulated cross 
power spectrum based formulae are presented:  
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The following subchapters include a thorough analysis of the traditional GCC methods in 
different implementation schemes. 

3.2   EXPERIMENTAL SETUP 

In this section the preparations needed for a proper evaluation of the GCC methods are 
presented. Because the choices made at this stage could affect the evaluation results it is 
necessary to describe these setups. This will help the reader to understand the evaluation 
results and to adapt his further implementations for different situations.       
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3.2.1   EXPERIMENTAL DATABASE 

In order to achieve reproducible evaluation results using accessible and well-known 
databases is recommended. Thus, the international noisy speech corpus Noizeus was used as 
the main database [Noizeus]. 

It contains 30 sentences produced by a group of 6 speakers: 3 males and 3 females. The 
sentences last a few seconds and were recorded in English at a sampling frequency of 8 kHz. 
It’s worth mentioning that other well-known databases recorded at higher sampling frequency 
exist in the signal processing community. But, because the ATM-VCSs use a sampling rate of 
8 kHz our experiments will also be performed at this sampling frequency.   

Beside the clear version of the 30 sentences the Noizeus database contains also multiple 
versions corrupted with 8 different real-world noises, from Aurora database [Aurora] at 4 
SNR levels (0, 5, 10, and 15 dB). The different noises are labeled as airport, babble, car, 
exhibition hall, restaurant, street, suburban train and train noise. 

If we consider the 8 noisy variations of one clear sentence then we have 2
8 28C   pairs 

for 2 different noisy variations which could be seen as the input signals for our system. 
Furthermore, the sentences from Noizeus database can be combined at the same noise level 
for all 30 various sentences yielding a total of 2

8 4 30 3360C     signal pairs. 

In further steps the database was split in two parts. The first half of the 15 sentences was 
used as the development database and the other half was used as the evaluation database.   

 

3.2.2  EVALUATION METRICS 

In this thesis, several methods were used for an extensive evaluation of the GCC 
methods. Because a perfect signals alignment is required in several further multichannel 
speech enhancement algorithms two accuracy metrics were used, the accuracy rate and the 
error rate. If we agree that a correct estimation is one where the estimated delay is equal to 
the real delay then the accuracy rate represents the ratio between the number of correct 
estimated delays and total number of estimations performed: 

 
.  

.  rate
No correct estimationsAccuracy

No performed estimations
  (3.11) 

Complementary to the above definition, the error rate denotes the ratio between the number 
of incorrectly estimated delays and the total number of performed estimations, as it is 
expressed bellow: 

 
.  

.  rate
No incorrect estimationsError

No performed estimations
  (3.12) 



Best Signal Selection with Automatic Delay Compensation in VoIP Environment 

– 45 –   
 

Another important statistical metric is the relative error, defined as 

 i
i
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  (3.13) 

where  i  represents the relative estimation error for the delay   by the measured i . 

To characterize the variation from the average (mean) of the estimated delay, the fourth 
metric used is the standard deviation of the relative error, computed for the unbiased form as 
in the following formula: 
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where  is the mean of the relative estimation error expressed in the next formula 
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and N is the number of performed estimations. 

For the above metrics the GCC methods were implemented and tested in Matlab. For the 
fifth metric, represented by the computing time, all methods were implemented in C 
language. In this way it was possible to obtain useful processing time results for any GCC 
approach. This metric is also important in the real-time implementation of the TDE GCC 
based solutions.  

 

3.2.3   CALIBRATING ACC-ΡCSPC AND ACC-ΡCSP 

Recalling the definition of ρCSPC from (2.80) and ρCSP from (2.81) we observe easily 
that the whitening factor  is not defined. This is also true for acc-ρCSPC from (3.1) and for 
acc-ρCSP from (3.2). In [Rabinkin, 1996 0.75   was chosen as an optimum value, while in 
[Shean, 2009] it varied from 0.78 to 0.9 depending on the SNR level. Hence, in these 
conditions it is naturally to search for a proper value for   to calibrate the above methods. 
To achieve this we have to run several TDE tests  for different values of   . Then, the 
optimum value for   is chosen as the one which yields the maximum accuracy rate. 

In this sense the development database was used to form the signals pairs. Then, for each 
signals pair 5 delay values (5, 10, 25, 50 and 100ms) was artificially introduced to be 
estimated by the acc-ρCSPC and acc-ρCSP methods. Considering these 5 delay values, the 8 
noise types and half of the sentences we obtain a total number of 2

8 4 15 5 8400C      tested 
pairs. 
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But  is not the only parameter to be set for the above TDE GCC methods. We have also 
to set the other parameters, which are common in all TDE GCC approaches. Depending on 
the applications’ demands we have to choose adequate values for the number of frames, 
frame size and overlap factor. These three parameters influence all evaluation metrics and in 
real-time implementations they lead to trade-off between computing time, accuracy and fast 
response of the system. In this case, for calibrating acc-ρCSPC and acc-ρCSP by finding the 
optimum value for ρ, 4 averaging frames of 1024 samples each and an overlap factor of 25% 
were used. 

The results of the simulation presented above are shown in Figure 3.1, presenting the 
accuracy rate characteristics of acc-ρCSPC. For different SNR the acc-ρCSPC has different 
accuracy rate characteristics with different optimum ρ. If for the SNR level of 0dB an 
optimum ρ is around 0.44, for 15 dB the optimum value is found around 0.74. This proves 
that the optimum ρ is highly influenced by the SNR and it is also highlighted the importance 
of the calibration stage. In some cases we may have a priori knowledge about the expected 
SNR level and we can then choose the optimum ρ. However, there are many cases when we 
do not know a priori the SNR level. In these situations the optimum value for ρ is the one 
which maximizes the accuracy rate for the average of the SNR levels. Because the evaluation 
experiments include general conditions the optimum value for ρ was chosen from the average 
SNR characteristic of the accuracy rate as 0.73  .     

 

Figure 3.1 – The influence of SNR and ρ over the acc-ρCSPC accuracy 

In situations in which the development database is not available or it is very limited, 
Figure 3.1 can be used to choose the optimum ρ, for a general or a specific narrow SNR 
domain. 
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Figure 3.2 – The dependence of acc-ρCSP and acc-ρCSPC on ρ 

In Figure 3.2 we can see the difference between the average SNR accuracy 
characteristics of the acc-ρCSPC and acc-ρCSP. It can be noted that for 0.77] [0,  the 
accuracy of the two methods is practically equal. For 0.77   the acc-ρCSPC outperforms 
acc-CSP thanks to the introduction of the minimum coherence term in (2.81), implying this 
also for (3.1). Even so, since we have the same optimum ρ = 0.73 for both methods, which is 
less than 0.77, then we will have practically the same accuracy rate for acc-ρCSPC and acc-
ρCSP, but a lower computing time for the second method because the coherence term was 
neglected. Nevertheless, more precise computing time results will follow in this chapter.  

As a special note, the CPS-m method also has a variable parameter, m , which is usually 
set between 1 and 2. Even if a special calibration was not performed for this parameter, after 
performing some accuracy tests it was discovered that m = 4 yields a higher accuracy rate 
than other values.   

3.3   EXPERIMENTAL RESULTS 

After the calibration stage of acc-ρCSPC and acc-ρCSP we will analyze the proposed 
and previous TDE-GCC methods, based on the simulated results obtained for the presented 
metrics (accuracy and error rate, standard deviation of relative error, and computing time). 
First, we will evaluate the proposed acc-GCC methods by their statistical simulated results. 
Then we will include the results for the traditional GCC methods which use the basic TDE-
GCC approach, like in Figure 2.3. The computing time of all GCC methods in several 
implementation schemes will end this evaluation section. 
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3.3.1   EVALUATING PROPOSED METHODS  

As presented in section 0, the accumulated cross-power spectrum methods divide a large 
analysis window into several smaller frames. Next, they compute their specific cross-power 
spectrum for every frame adding the results to the previous calculations.  After these 
operations are done for the last frame, the accumulated cross-power spectrum is obtained. 
Next, this is used to return in the time domain with the IFFT and then to find the estimated 
delay. 

Before presenting any numerical result it is useful to look over the normalized 
accumulated cross-power spectra of all GCC methods. These are presented in Figure 3.3 and 
were computed for a large analysis window of 2048 samples, split in 4 smaller frames of 512 
samples. In these cases the frames were not overlapped. The artificially introduced delay was 
10 ms (equivalent to 80 samples for a sampling rate of 8 kHz). 

 
a) 

 
b)  

 

 

 

c) 

 
d) 
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e) 

 
f) 

 
g) 
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k) 

 

 

 

 

 

 

 

 

Figure 3.3 – Accumulated Cross Power Spectrum for: a) cross-correlation, b) Eckart, c) HT, d) Roth, 
e) SCOT, f) CSP, g) CPS-m, h) HB, i) Wiener, j) ρCSP, k) ρCSPC  

It can be seen than not all GCC methods improve the cross-power spectrum 
characteristic of the normal cross-correlation in order to assure an accurate determination of 
the maximum peak.  

The analysis of proposed methods continues with several experiments intended to reveal 
the difference between all accumulated GCC approaches. In further experiments the same 
setup was kept: analysis window of 2048 sample, split in 4 frames of 512 samples without 
overlapping. At a sampling frequency of 8 kHz a single frame represents 64 ms of signal. 
Thus, the introduced delay varied from 5 to 50 ms. In order to achieve a clear analysis these 
delays were separated in two categories: small delays (from 5 to 30 ms) and large delays 
(from 35 to 50 ms). This division was made in order to obtain results for delays shorter than 
half of the frame size and separated results for delays longer than half of the frame.  

The error rate, relative error and standard deviation relative error for all accumulated 
GCC approaches will be presented and commented in next subsections. 

 

3.3.1.1   Error Rate for Accumulated GCC Methods 

In the next 4 tables, from Table 3.1 to Table 3.4 we can see the error rates at different 
SNR and different delays for all accumulated GCC methods. The results, computed with the 
(3.12) formula, prove that for higher SNR the accumulated GCC methods yield lower error 
rates.  

We can also notice that not all the proposed methods perform better than the basic cross-
correlation, which was already shown in several studies like [Hassab, 1980][Hassab, 
1981][Sakhnov, 2011b]. This could be explained by the fact that the papers in which some 
methods were proposed contain only mathematical presentation and no simulated results. 
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TABLE 3.1 – ERROR RATE FOR ACCUMULATED GCC METHODS, AT SNR = 0DB 

 Error rate (%) 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.48 0.81 1.19 1.57 6.26 14.24 23.48 34.48 53.83 72.43 
Eckart 70.21 79.79 83.69 88.50 91.76 95.45 97.29 96.83 98.48 99.69 
Roth 57.00 63.62 73.79 77.36 83.90 87.36 92.60 95.31 97.31 99.14 
HT 90.26 91.00 94.24 96.17 96.33 98.02 98.45 99.26 99.52 99.60 

SCOT 59.88 60.10 58.98 63.93 71.57 77.38 82.38 88.19 93.19 96.67 
CSP 13.48 13.67 19.71 24.67 33.17 41.50 60.05 70.02 76.60 88.98 

CPS-m 2.38 0.98 0.95 1.02 2.74 4.50 10.45 18.40 34.10 61.67 
HB 13.48 13.67 19.71 24.67 33.17 41.50 60.05 70.02 76.60 88.98 

Wiener 25.81 39.40 49.10 59.95 65.74 74.50 82.07 89.67 91.33 98.26 
ρCSP 3.67 0.81 1.48 1.52 2.71 4.50 9.90 18.31 31.71 57.33 

ρCSPC 3.88 0.98 1.60 2.69 3.50 5.26 10.62 21.17 34.95 61.86 

TABLE 3.2 – ERROR RATE FOR ACCUMULATED GCC METHODS, AT SNR = 5DB 

 Error rate (%) 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 3.36 7.67 17.48 28.12 50.26 68.71 
Eckart 65.83 68.36 75.12 81.81 86.10 90.38 93.24 96.10 98.12 98.81 
Roth 57.00 63.62 73.79 77.36 83.90 87.36 92.60 95.31 97.31 99.14 
HT 83.40 87.93 89.29 91.33 93.88 95.81 97.50 98.12 99.33 99.40 

SCOT 58.17 52.45 51.07 60.95 61.40 70.19 71.14 79.33 86.83 90.69 
CSP 7.02 7.43 8.29 16.38 15.76 24.26 42.17 53.14 63.64 73.33 

CPS-m 0.71 0.10 0.10 0.21 0.12 1.19 3.10 8.62 21.10 44.67 
HB 7.02 7.43 8.29 16.38 15.76 24.26 42.33 53.14 63.64 73.33 

Wiener 12.83 25.98 34.79 46.14 56.98 67.93 79.05 86.57 89.31 96.62 
ρCSP 1.57 0.00 0.00 0.26 0.33 1.12 2.50 6.95 15.55 36.05 

ρCSPC 1.57 0.00 0.00 1.33 2.07 1.26 3.48 6.86 17.21 40.86 

TABLE 3.3 – ERROR RATE FOR ACCUMULATED GCC METHODS, AT SNR = 10DB 

 Error Rate 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 2.52 7.57 16.81 25.71 47.64 67.26 
Eckart 63.00 60.10 69.17 75.07 79.50 83.90 91.57 95.36 95.57 98.95 
Roth 22.50 35.95 42.12 51.29 55.98 68.55 82.55 87.50 93.19 97.10 
HT 76.74 79.83 84.71 88.38 91.55 92.76 95.02 96.55 98.43 98.50 

SCOT 56.10 51.02 51.45 54.88 57.69 65.93 59.05 72.26 82.55 88.02 
CSP 4.76 6.48 6.33 10.62 10.38 15.00 30.33 43.71 47.19 66.50 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 0.81 4.90 15.57 38.52 
HB 4.76 6.48 6.33 10.62 10.38 15.00 30.33 43.71 47.19 66.50 

Wiener 10.50 28.43 35.43 48.14 56.43 67.43 73.24 86.83 88.43 97.14 
ρCSP 0.43 0.00 0.00 0.00 0.00 0.00 0.67 2.83 8.36 25.98 

ρCSPC 0.43 0.00 0.00 0.52 1.86 0.19 0.67 2.83 8.93 28.19 
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TABLE 3.4 – ERROR RATE FOR ACCUMULATED GCC METHODS, AT SNR = 15DB 

 Error Rate (%) 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 2.50 7.50 16.86 25.14 49.90 66.33 
Eckart 60.33 58.50 65.88 74.62 74.90 80.45 87.76 92.33 94.98 96.05 
Roth 13.17 24.05 33.24 39.98 47.21 57.74 77.24 82.86 87.98 93.57 
HT 69.69 75.69 78.19 86.12 88.69 91.76 93.62 95.71 97.00 97.74 

SCOT 52.93 53.19 51.71 51.67 57.90 57.26 52.71 64.83 73.83 84.21 
CSP 2.21 4.38 4.90 7.40 8.40 5.71 20.98 38.67 38.98 55.07 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.33 14.74 36.19 
HB 2.21 4.38 4.90 7.40 8.40 5.71 20.98 38.67 38.98 55.24 

Wiener 11.24 36.38 43.29 55.64 50.10 67.45 75.10 83.90 88.50 96.17 
ρCSP 0.10 0.00 0.00 0.00 0.00 0.00 0.21 2.19 5.00 23.38 

ρCSPC 0.26 0.00 0.00 0.98 3.14 0.00 0.21 1.88 6.33 28.81 
 

 
Figure 3.4 – Average error rates for accumulated GCC methods 

The average error rate for all accumulated GCC methods is shown in Figure 3.4. It was 
computed as the average of error rates for all 4 SNR levels (0, 5, 10, and 15 dB).  
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From Table 3.1 to Table 3.4, and Figure 3.4 we can see that accumulated approaches for 
Eckart, Roth, HT, SCOT, and Wiener method are not suitable for accurate TDE, because they 
lead to high error rates even for relatively small delays. The accumulated HT and CSP 
approaches have almost the same error rates for all SNR levels. This could be explained by 
the similarity between weighting functions (2.76) and (2.78).  

The CC, CPS-m, ρCSP, and ρCSPC offer smaller error rates (<5%) for small delays, 
with a small exception for CC. Moreover, while the CC approach outperforms all other 
methods with respect to the error rate for very small delays, for small and larger delays it 
cannot yield error rates as other approaches do. For relatively small delays these last 4 
methods could be used with great confidence. For larger delays the error rates increase for all 
previous 4 methods, with a higher increasing rate for CC. The lowest error rate for large 
delays is achieved by acc-ρCSP and acc-ρCSPC, which were proposed and analyzed recently 
in [Marinescu, 2013a, 2013b]. 

The influence of the number of frames on the accumulated GCC error rate is highlighted 
in Table 3.5. The GCC error rates were computed for 1, 4 and 8 frames of 512 samples, at 15 
dB SNR. It is shown that the error rate decreases when more frames are used. This is due to 
the fact that the accumulated cross power spectrum domain keeps the spectral information 
over multiple frames. Therefore, the correlation between the frames is maintained. 

TABLE 3.5 – ACCUMULATED GCC ERROR RATE DEPENDENCY BY THE NUMBER OF FRAMES 
 

 Number of frames 
GCC  1 4 8 
CC 37.17 4.79 2.21 
Eckart 63.67 66.95 59.69 
ROTH 53.8 29.69 21.22 
SCOT 64.92 56.68 45.96 
CSP  26.35 5.86 1.66 
CSP-m 24.94 1.72 0.05 
HT 76.97 80.36 80.03 
HB 26.35 5.86 1.66 
Wiener 68.42 46.22 26.56 
ρCSP 18.2 0.6 0.56 
ρCSPC 19.3 0.6 0.56 

 
Because acc-ρCSP outperforms all other accumulated GCC approaches and acc-CC 

should be the fastest with respect to computing time for these two methods the dependency 
between the accuracy rate and the estimated delay was further investigated. In order to obtain 
the results presented in Figure 3.5, 4 frames of 512 samples each were used. Then the average 
accuracy was computed from 0, 5, 10 and 15 dB SNR for acc-ρCSP and acc-CC.  

 For delays of 50 ms, which represent 78% of the frame size length (64 ms), the accuracy 
rate for acc-ρCSP is around 75%, while for acc-CC is less than 35%. This confirms that 
while most of GCC methods are able to estimate accurate delays smaller than half of the 
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frame size, acc-ρCSP outperforms them and continues to provide reasonable accuracy for 
larger delays. 

 

Figure 3.5 – Accuracy Rate Comparison between acc-CC and acc-ρCSP 

 
Figure 3.6 – The influence of SNR and delay over the acc-ρCSP accuracy 

For a better characterization of the proposed acc-ρCSP the accuracy rate’s variation with 
the SNR and delay is presented in Figure 3.6. It is shown that the higher the SNR is, the 
higher the accuracy gets. For delays up to 50% of the frame size, the difference between 
accuracies on various levels of SNR remains almost the same. Once the delay increases over 
50% of the frame size, the accuracy decreases much faster for lower SNR. 
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3.3.1.2   Relative Error for Accumulated GCC Methods 

The relative error for different SNR and different delays for all accumulated GCC 
methods is presented in the following 4 tables, from Table 3.6 to Table 3.9. The results for 
this metric were computed with formula (3.13). Similar to the previous metric results (error 
rate results) the higher SNR is, the lower the accumulated GCC relative error is. 

The average of the relative error for all 4 SNR levels for all accumulated GCC methods 
is shown in Figure 3.7. It synthesizes the results from Table 3.6 to Table 3.9 offering a visual 
intuitive report.   

TABLE 3.6 – RELATIVE ERROR FOR ACCUMULATED GCC METHODS, AT SNR = 0DB 

 Relative Error [%] 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.06 0.25 0.38 0.49 2.85 5.05 7.16 10.00 18.65 30.21 
Eckart 59.59 74.43 82.65 89.27 89.33 95.25 102.24 94.98 101.62 101.98 
Roth 110.50 74.49 84.26 83.11 83.13 92.34 92.18 90.93 100.07 97.05 
HT 63.38 97.29 93.50 101.71 94.97 91.52 101.59 96.07 98.68 102.97 

SCOT 21.54 28.13 25.13 35.52 46.81 49.25 70.59 79.90 84.00 91.60 
CSP 11.96 24.02 17.27 26.40 34.01 44.97 63.28 74.55 77.99 90.78 

CPS-m 1.77 0.19 0.32 0.18 0.99 1.18 3.62 8.19 15.59 29.94 
HB 24.13 24.02 27.42 34.01 43.14 53.09 71.54 83.68 84.42 102.35 

Wiener 17.01 17.48 16.58 20.91 23.61 32.35 42.31 45.07 47.98 56.59 
ρCSP 2.87 0.19 0.69 0.60 1.75 3.66 8.06 14.51 24.85 43.34 

ρCSPC 2.72 0.16 0.94 2.06 2.60 4.32 9.03 17.54 28.63 48.77 
 

TABLE 3.7 – RELATIVE ERROR FOR ACCUMULATED GCC METHODS, AT SNR = 5DB 

 Relative Error [%] 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 1.58 3.19 5.64 7.44 14.19 23.26 
Eckart 58.45 66.94 80.84 76.85 85.60 89.58 95.55 92.66 100.36 98.04 
Roth 51.40 34.13 55.68 69.39 71.25 89.97 85.55 99.58 100.63 100.23 
HT 41.92 107.75 85.00 97.03 97.37 88.28 99.75 98.22 101.19 102.20 

SCOT 18.70 7.17 15.23 27.52 31.91 42.04 55.72 71.85 74.96 85.01 
CSP 7.26 6.38 4.96 18.01 15.17 29.81 48.56 51.32 66.57 80.15 

CPS-m 0.27 0.00 0.00 0.12 0.00 0.17 0.83 1.79 6.79 15.81 
HB 7.26 6.38 12.06 18.77 16.39 33.36 54.99 60.83 77.06 89.29 

Wiener 12.35 10.85 10.54 13.95 17.42 23.88 34.49 39.08 44.57 51.69 
ρCSP 1.11 0.00 0.00 0.26 0.02 0.39 1.37 4.45 9.48 25.22 

ρCSPC 1.11 0.00 0.00 1.45 1.57 0.46 2.38 4.69 11.51 32.99 



Best Signal Selection with Automatic Delay Compensation in VoIP Environment 

– 56 –   
 

 

TABLE 3.8 – RELATIVE ERROR FOR ACCUMULATED GCC METHODS, AT SNR = 10DB 

 Relative Error [%] 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 1.26 3.35 5.94 7.50 13.54 20.06 
Eckart 53.62 49.50 77.84 78.66 84.30 78.47 90.01 90.99 97.61 101.96 
Roth 17.69 13.52 62.25 54.26 66.99 91.83 87.86 96.32 100.34 103.07 
HT 76.50 87.02 91.79 93.77 89.96 92.67 96.24 98.50 99.66 99.02 

SCOT 14.80 7.45 14.03 23.40 24.66 35.20 40.72 59.99 62.03 83.63 
CSP 4.65 7.82 3.68 10.12 8.44 19.55 30.29 45.89 52.94 79.25 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.69 4.57 11.69 
HB 4.65 12.39 9.77 11.64 10.88 20.06 38.56 53.50 61.74 85.64 

Wiener 5.07 10.19 12.25 13.90 18.57 22.49 31.43 40.77 43.38 51.39 
ρCSP 0.56 0.00 0.00 0.00 0.00 0.00 0.60 1.99 5.62 20.53 

ρCSPC 0.56 0.00 0.00 0.71 1.67 0.24 0.60 2.09 6.38 23.27 

TABLE 3.9 – RELATIVE ERROR FOR ACCUMULATED GCC METHODS, AT SNR = 15DB 

 Relative Error [%] 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 1.55 3.51 6.26 7.66 13.93 20.88 
Eckart 68.56 32.62 75.87 80.77 76.09 81.45 75.54 90.65 104.32 100.70 
Roth -1.64 8.18 38.92 53.74 42.92 63.78 75.91 92.28 93.88 97.57 
HT 62.35 87.20 89.13 89.08 95.36 100.86 92.99 96.74 99.55 97.49 

SCOT 16.83 12.57 13.24 21.31 21.79 24.80 33.08 53.11 54.06 80.53 
CSP 2.26 4.52 2.24 8.29 7.89 8.85 21.86 39.16 46.20 63.43 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 5.07 10.39 
HB 2.26 4.52 8.33 8.29 9.11 9.36 25.34 51.72 47.56 66.44 

Wiener 3.96 11.74 17.11 17.80 16.67 22.51 32.53 36.75 43.47 49.84 
ρCSP 0.10 0.00 0.00 0.00 0.00 0.00 0.36 2.02 4.75 20.30 

ρCSPC 0.17 0.00 0.00 0.95 3.10 0.00 0.36 1.79 6.22 26.33 
 

Looking over Table 3.6 to Table 3.9 and Figure 3.7 we notice that the trend of the results 
of this metric is similar with the one of the error rate metrics. HT, Eckart and Roth acc-GCC 
approaches yield a very high error rate even at high SNR levels and for small delays. SCOT, 
Wiener, CSP, and HB perform much better and they can offer reliable results for high SNR 
and small delays. While for the previous metric CSP and HB offered almost the same results, 
now, CSP yields a smaller error rate than HB. This means that when these methods do not 
estimate the delay correctly, the estimated delay yielded by the CSP method is closer to the 
real delay than the estimated delay achieved through the HB approach is. 
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Figure 3.7 - Average relative error for accumulated GCC methods 

The group of the last 4 methods, CC, CPS-m, ρCSP, and ρCSPC, estimates the delay 
with a small relative error. For small delays the relative error is usually < 5%. For large 
delays it starts to increase for all 4 approaches, but CPS-m outperforms all other methods. 

In the tables we could find also several results with the relative error equal to 0. These 
are expected results, because the error rate was also 0 for the same configuration. These cases 
represent the correct time delay estimations.   

 

3.3.1.3   Standard Deviation of Relative Error for Accumulated GCC Methods 

The statistical analysis of the accumulated GCC methods for TDE would not be 
complete if the standard deviation of relative error would not be used. Using this metric we 
can characterize every method by their variation around the average estimation. Thus, the 
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simulated results of this metric for all accumulated GCC methods for 4 SNR levels are 
presented in Table 3.10 to Table 3.13. Figure 3.8 points out the differences between the 
average standard deviations of relative error of all accumulated GCC methods. This average 
also represents the simulated results over all 4 SNR levels. 

Analyzing results from Table 3.10 to Table 3.13 and from Figure 3.8 we obtain 
important details about the acc-GCC methods. For CC, CPS-m, ρCSP, and ρCSPC, the 
standard deviation of relative error increases with the delay. This is a normal trend because 
the higher the delay is, the higher the probability of wrong estimations gets and the higher the 
variance of the results is. However, for HT, Roth, Eckart and Wiener this is not true, 
moreover the standard deviation of relative error gets lower for larger delays. Also SCOT, 
HB and CSP show only a slowly increasing trend for this metric with the increased delay.   

TABLE 3.10 – STANDARD DEVIATION OF RELATIVE ERROR FOR ACCUMULATED GCC METHODS, 
AT SNR = 0DB 

 STD 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 12.03 7.57 6.26 4.91 12.71 14.96 16.34 19.43 27.23 33.31 
Eckart 392.71 241.59 196.12 143.68 120.04 111.08 92.22 81.88 73.90 65.67 
Roth 478.61 265.64 198.94 155.04 129.08 113.93 94.88 82.11 72.08 62.64 
HT 659.28 347.58 232.55 173.85 144.32 120.65 105.05 89.05 81.30 73.14 

SCOT 129.70 121.14 67.45 79.71 80.02 82.97 71.21 70.24 62.08 58.71 
CSP 129.73 112.18 79.77 81.10 76.67 89.77 78.59 79.54 70.27 67.56 

CPS-m 11.72 2.80 4.86 3.49 8.89 8.50 16.76 25.00 31.95 38.88 
HB 137.33 112.18 89.16 87.44 83.70 94.29 81.96 81.92 71.99 68.17 

Wiener 122.78 66.96 49.83 46.98 44.52 45.91 52.03 46.16 40.44 37.68 
ρCSP 15.51 2.76 8.15 6.67 13.04 19.31 27.97 35.95 44.22 49.42 

ρCSPC 14.77 2.81 9.61 13.78 16.23 20.51 29.29 38.57 45.70 48.77 

 

TABLE 3.11 – STANDARD DEVIATION OF RELATIVE ERROR FOR ACCUMULATED GCC METHODS, 
AT SNR = 5DB 

 STD 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 9.72 12.36 14.04 14.47 21.06 26.62 
Eckart 346.36 232.92 188.64 128.27 120.25 105.37 93.97 84.36 75.31 67.76 
Roth 431.47 235.62 165.86 128.38 115.97 111.02 93.53 81.55 70.75 70.12 
HT 618.14 334.90 233.32 176.62 139.61 122.33 103.55 91.40 82.34 72.17 

SCOT 37.83 47.59 38.19 52.14 59.46 76.54 69.65 71.32 63.89 66.61 
CSP 25.79 37.34 45.43 46.90 50.17 77.54 75.31 69.79 73.62 76.05 

CPS-m 4.63 0.04 0.03 3.41 0.02 2.05 10.19 8.32 19.04 28.59 
HB 25.79 37.34 58.06 48.21 52.18 80.63 79.51 75.57 77.55 77.88 

Wiener 107.15 48.52 34.95 32.12 31.24 37.63 39.87 38.16 37.97 35.90 
ρCSP 9.30 0.00 0.00 4.90 0.54 5.45 11.16 20.01 28.43 41.81 

ρCSPC 9.30 0.00 0.00 11.88 12.37 5.82 15.15 20.48 30.47 46.63 
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TABLE 3.12 – STANDARD DEVIATION OF RELATIVE ERROR FOR ACCUMULATED GCC METHODS, 
AT SNR = 10DB 

 STD 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 8.55 12.65 14.63 14.90 21.07 21.81 
Eckart 299.92 192.77 173.04 123.75 122.46 106.09 101.46 83.90 80.95 73.71 
Roth 250.12 185.00 174.33 133.70 111.44 114.57 96.07 86.25 78.47 74.59 
HT 605.18 321.28 224.67 167.09 137.67 114.09 105.49 92.97 83.57 72.62 

SCOT 34.62 44.49 40.58 46.26 54.83 69.36 57.43 71.36 66.67 70.00 
CSP 20.21 69.02 36.79 35.18 34.86 69.20 61.27 70.75 73.18 20.21 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 1.70 3.25 15.44 25.05 
HB 20.21 74.77 49.96 38.87 40.71 69.78 69.59 75.99 78.16 80.26 

Wiener 27.56 22.59 24.21 26.52 28.23 29.58 35.88 40.22 36.84 35.73 
ρCSP 6.60 0.00 0.00 0.00 0.00 0.00 7.75 13.74 22.55 40.42 

ρCSPC 6.60 0.00 0.00 8.43 12.81 4.88 7.75 14.11 24.00 42.59 

TABLE 3.13 – STANDARD DEVIATION OF RELATIVE ERROR FOR ACCUMULATED GCC METHODS, 
AT SNR = 15DB 

 STD 
acc-
GCC 

Small delays (ms) Large delays (ms) 
5 10 15 20 25 30 35 40 45 50 

CC 0.00 0.00 0.00 0.00 9.43 12.97 15.20 15.27 21.19 23.47 
Eckart 279.51 218.84 147.93 122.69 112.77 110.30 99.79 86.73 81.46 75.72 
Roth 194.78 173.25 134.91 125.42 98.39 105.73 96.45 80.19 79.02 66.42 
HT 537.09 303.44 219.39 171.15 137.94 121.08 101.96 91.36 81.73 72.79 

SCOT 35.61 33.82 33.91 50.03 46.11 51.61 57.01 66.94 67.93 73.36 
CSP 14.88 20.77 34.87 30.45 28.75 41.73 50.62 68.36 68.07 76.52 

CPS-m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.47 16.91 24.25 
HB 14.88 20.77 48.74 30.45 32.41 42.82 55.64 77.77 69.12 77.94 

Wiener 18.86 32.58 51.61 26.03 25.86 32.32 40.75 37.01 40.48 32.63 
ρCSP 2.85 0.00 0.00 0.00 0.00 0.00 5.99 14.09 21.26 39.68 

ρCSPC 3.52 0.00 0.00 9.72 17.33 0.00 5.99 13.25 24.96 43.94 
 

The above statement could seem bizarre at first glance, but when we corroborate these 
results with the previous ones from the error rate we find the explanation. For CC, CPS-m, 
ρCSP and ρCSPC there is no issue for larger delays, whereas for almost all other methods we 
notice that the error rate is very high (over 60%) in these cases. At these error rates these 
methods do not offer reliable results therefore it is clear that the decrease of standard 
deviation of relative error is due to the fact that almost all delays were much frequently 
estimated incorrectly. Moreover, the incorrect estimation delays are much frequently 
estimated with the same error, resulting in smaller variation of the relative error and then a 
smaller standard deviation. 
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Figure 3.8 – Average standard deviation of relative error for accumulated GCC methods 

 
Another conclusion drawn from these simulated results is represented by big difference 

between standard deviations for various approaches. This is also explained by the high error 
rate of the implied methods which leads to incorrectly estimated results with high variation. 

The CC, CPS-m, ρCSP, and ρCSPC approaches offer reliable results regarding standard 
deviation, CC outperforming all methods for very small relative delays and CPS-m being the 
best for small and large delays.  

Recalling previous simulated results we find that ρCSP outperforms all other methods as 
regards the error rate, while for the relative error and standard deviation CPS-m does. This 
difference is explained by the fact that when both methods estimate incorrectly, ρCSP 
introduces a higher error than CPS-m. 
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3.3.2   EVALUATING GCC METHODS 

In this subsection all presented GCC methods are analyzed with regard to three 
implementation schemes. Recalling their descriptions from section 0 we remember that the 
implementation of scheme 1 (Figure 2.3) uses a large analysis window to perform TDE. On 
the other hand, the implementation of schemes 2 (Figure 2.4) and 3 (Figure 2.5) divides the 
large analysis window into several smaller frames. Then, scheme 2 proposes to compute the 
final TDE as an average of the smaller frames estimates, while scheme 3 proposes to 
accumulate the cross power spectrum of all frames in frequency domain and then compute a 
single TDE.       

In the experiments simulated next, the same configuration as in the previous section was 
used. For scheme 2 and 3 the number of frames was 4, the frame size was fixed to 512 
samples and the overlapping technique was not used. The length of all 4 smaller frames is 
equivalent to a large analysis frame of 2048 samples. This large frame was used to test the 
methods implemented with scheme 1. 

 

3.3.2.1   Statistical Metrics Results for GCC methods 

The results were again grouped in 2 categories, for small and large delays. From Table 
3.14 to Table 3.17 the simulated results confirm that the all GCC methods, in any 
implementation scheme perform better for higher SNR. In these favorable conditions they 
yield a smaller error rate and a smaller standard deviation of relative error. Also, it is 
confirmed that a smaller delay has more chances to be estimated correctly than a larger one.  

All GCC methods lead to the smallest error rate, in all four combinations (low/high SNR 
and small/large delays) when they are implemented with scheme 1. This implementation 
analyzes a larger frame and has more signal data to estimate the delay. As opposed to 
schemes 2 and 3, scheme 1 uses an analysis window of 256ms (2048 samples at a sampling 
frequency of 8 kHz) to estimate delays between 5 to 50 ms. Thus, these delays represent 2% 
to 20% of the analysis window, being categorized as relatively small delays for this scheme. 
On the other hand, for schemes 2 and 3 the delays between 5 to 50 ms correspond to almost 
8% to 80% of the their frame size, including small and large delays. For these 
implementations a delay of 50 ms is categorized as a relatively large one and the probability 
of correct estimation decreases significantly. 
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TABLE 3.14 – GCC METHODS EVALUATION, WITH LOW SNR (0DB), AND SMALL DELAYS (5..30MS) 

  GCC name 
Error rate (%) Standard Deviation of Relative Error 

Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 
CC 0.53 94.52 8.42 5.13 35.69 13.4 
Eckart 40.46 99.72 82.71 564.68 109.59 196.95 
ROTH 34.99 98.97 65.05 758.9 117.82 220.88 
SCOT 51.75 99.87 64.65 201.27 78.29 78.94 
CSP  4.46 95.74 19.54 228.85 99.69 94.07 
CSP-m 0.48 95.29 6.93 1.29 33.6 17.9 
HT (ML) 57.82 99.81 92.81 786.93 122.57 272.72 
HB 4.46 95.74 19.54 230.8 102.75 101.65 
Wiener 31.8 99.01 55.68 116.64 44.2 66.52 
ρCSP 0.44 93.27 4.69 6.35 34.71 22.09 
ρCSPC 0.56 93.94 5.53 3.48 33.53 20.37 

 

TABLE 3.15 – GCC METHODS EVALUATION, WITH LOW SNR (0DB), AND LARGE DELAYS 
(35..50MS) 

GCC name 
Error rate (%) Standard Deviation of Relative Error 

Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 
CC 3.77 99.91 47.22 7.94 21.54 26.47 
Eckart 50.6 100 97.64 223.31 40.5 79.11 
ROTH 45.14 100 93.44 272.55 39.37 83.94 
SCOT 55.6 100 83.16 113.09 36.73 70.90 
CSP  8.07 99.96 62.42 106.65 44.31 78.89 
CSP-m 1.81 99.94 31.55 5.23 22.34 29.99 
HT (ML) 66.46 100 99.15 261.3 40.44 86.63 
HB 8.07 99.96 62.42 111.73 44.84 83.10 
Wiener 45.32 100 86.99 45.17 21.64 42.92 
ρCSP 1.25 99.52 27.52 7.12 22.8 39.05 
ρCSPC 1.35 99.57 30.87 10.31 22.91 41.78 

 

TABLE 3.16 – GCC METHODS EVALUATION, WITH HIGH SNR (15DB), AND SMALL DELAYS (5..30MS) 

GCC name 
Error rate (%) Standard Deviation of Relative Error 

Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 
CC 0 86.93 4.79 0  27.41 7.37 
Eckart 13.63 99.69 66.95 355.88 89.89 161.42 
ROTH 15.83 95.84 29.69 461.29 93.21 135.05 
SCOT 49.6 99.75 56.68 0.51 55.79 39.92 
CSP  0 88.82 5.86 0 61.69 38.25 
CSP-m 0 84.98 1.72 0 29.89 5.76 
HT (ML) 35.24 98.88 80.36 626.69 112.74 246.01 
HB 0 88.82 5.86 0 67.21 45.55 
Wiener 7.44 97.83 46.21 20.27 31.99 35.49 
ρCSP 0 81.88 0.6 0 32.55 3.86 
ρCSPC 0 84.13 0.6 0 35.11 4.37 
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TABLE 3.17 – GCC METHODS EVALUATION, WITH HIGH SNR (15DB), AND LARGE DELAYS 
(35..50MS) 

GCC name 
Error rate (%) Standard Deviation of Relative Error 

Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 
CC 0.08 100 39.62 0.51 22.21 17.93 
Eckart 16.56 100 92.19 152.04 44.35 88.87 
ROTH 34.79 100 77.77 233.78 40.71 82.75 
SCOT 52.53 100 65.52 2.97 38.41 75.74 
CSP  1.58 99.3 28.83 8.66 43.58 68.82 
CSP-m 0 100 12.8 0 22.73 8.33 
HT (ML) 41.83 100 96.21 213.36 42.89 86.43 
HB 1.58 99.3 28.83 8.66 47.53 75.62 
Wiener 28.89 100 85.85 14.04 20.58 37.10 
ρCSP 0 99.4 4.29 0 26.99 18.18 
ρCSPC 0 99.43 4.83 0 31.17 20.05 

 

Implementation of scheme 2 leads to unusable results because the error rate is very high, 
more than 80%, for all GCC methods. Scheme 3 is the second best scheme with regard to 
error rate and for some weighting functions it has acceptable performances. It leads to faster 
computing speed than scheme 1 and represents a tradeoff between the computing time and 
the error rate. Because of these, scheme 3 could be used instead of scheme 1 for relatively 
very small delays, implemented by acc-ρCSPC, acc-ρCSP, acc-CC or acc-CPS-m 
approaches.   

Regarding the standard deviation of relative error we have to notice a few aspects. First, 
for several GCC approaches implemented with scheme 2 and 3 the standard deviation of 
relative error decreases with the SNR. Normally, the standard deviation of error rate should 
increase with the decrease of the SNR level. However, this case is similar the above analyzed 
situation encountered when we discussed the results of this metric for accumulated GCC 
methods. The explanation stands in the fact that those implemented methods provide in these 
situations high error rates (over 60%). In these cases for the majority of the estimations they 
provide incorrect results much more frequently. Because of this the variation error decreases 
and this leads to a smaller standard deviation even for higher error rates.    

Secondly, in spite of a smaller error rate from the GCC method implemented with 
scheme 1, usually the standard deviation of the relative error is higher for this scheme than 
for scheme 2 and 3. This is explained by the fact that scheme 1 uses a four times larger frame 
size and any incorrectly estimated delay varies in a larger domain. Thus, the variations of 
relative error are larger and this leads to higher standard deviation values. 
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3.3.2.2   Processing Time Evaluation for GCC Methods  

Beside the statistical results the computing time is also important when we analyze the 
GCC method. This metric offers useful data for any real time system designer. First we 
compare the computed time for all methods implemented with all three schemes and then we 
further evaluate the accumulated approach. To perform the processing time tests the methods 
were implemented in C and were compiled with gcc-4.7.3. Then the tests were ran on a 
machine with Ubuntu 13.04 operating system, Intel Core i5 processor and 4 GB RAM. 

Table 3.18 provides detailed data for the presented GCC methods, in all three 
implementation schemes. A large analysis frame of 2048 samples was used for scheme 1, 
whereas, for schemes 2 and 3, 4 smaller frames of 512 samples were used. As we expected, 
the results confirm that the implementation scheme 1, which uses a large analysis frame, is 
slower than those which divided the large analysis frame in several smaller frames, like 
scheme 2 and 3. Moreover, the computing time for the accumulating methods is reduced even 
more, thanks to the benefit offered by scheme 3 (which reduces the total FFT number, from 
3K to 2K+1, as was presented in section 0).  

TABLE 3.18 – COMPUTING TIME EVALUATION FOR GCC METHODS 

GCC  Computing time (µs) 
Scheme 1 Scheme 2 Scheme 3 

CC 1.51 1.28 1.00 
Eckart 3.72 3.89 3.61 
ROTH 1.87 1.64 1.38 
SCOT 2.41 2.20 1.92 
CSP  2.28 2.08 1.82 
CSP-m 5.30 5.03 4.72 
HT 4.39 3.70 3.43 
HB 2.87 2.67 2.39 
Wiener 3.26 3.08 2.80 
ρCSP 4.85 4.67 4.39 
ρCSPC 6.66 6.54 6.26 

 
For all schemes, the normal cross-correlation has the fastest processing time. This is 

because this CC has not any weighting operations. On the other hand side we find ρCSPC as 
the slowest method. Besides the ordinary FFTs, it has to spend additional time in computing 
its complex weighting function. 

Depending on the size of the large analysis window and the number of smaller frames 
which divide it, the computing time may suffer significant variations.  This is presented in 
Table 3.19, for the acc-ρCSPC method, where different window sizes were chosen for 
evaluation. The computing time for all possible and practical values of the frame size was 
measured for each window size. For example, if the window size is 1024 samples, the 
possible sizes for the frame are 512 samples and 1024 samples. The N/A cells indicate the 
situations in which the frame size is larger than the window size. It must be noted that the 
frame size cannot be too small because in that case the expected delay to be measured may be 
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larger than the new smaller frame. The number of samples per frame was chosen to be a 
power of 2 in order to facilitate the fast computation of the FFT. 

TABLE 3.19 – ACC-PCSP PROCESSING TIME DEPENDENCE ON WINDOW/FRAME SIZE 

Frame 
size 

Computing time in µs for windows of 
1024 

samples 
2048 

samples 
4096 

samples 
8192 

samples 
512 151 289 565 1058 
1024 163 302 582 1081 
2048 N/A 330 617 1124 
4096 N/A N/A 670 1193 
8192 N/A N/A N/A 1305 

 
The results show that by increasing the number of frames within the analysis window the 

processing time is reduced. For example, for a long window size of 8192 samples which is 
divided in 2 smaller frames of 4096 samples the processing time decreased by almost 8.6%, 
from 1305 µs to 1193 µs. If we divide the window in 4 frames of 2048 samples the 
processing time decreases even more, by almost 14%, from 1305 µs to 1124 µs. We stopped 
with iterations at 16 frames of 512 samples for which the processing time decreased by 19%, 
from 1305 µs to 1058 µs. This computing time reduction was demonstrated in section 0 and 
now it was confirmed by these tests.  

The results also suggest that longer windows require longer processing time. On the 
other hand, longer windows provide better accuracy. Depending on the time and accuracy 
constraints that each application imposes the appropriate configuration may be chosen. 
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4   VOICE ACTIVITY DETECTION 

Identifying speech from non-speech segments (regions) in an audio signal is known as 
voice activity detection (VAD) or speech detection. This topic is still a very hot one for the 
telecommunications and audio processing community, because almost all speech applications 
need a special block for speech detection. Various VAD methods are used in applications 
such as voice communications, speaker recognition, text-to-speech, noise reduction for 
hearing aids, speech enhancement, voice coding, and compression. 

The above mentioned speech applications generate various VAD algorithms. Usually, 
they look for speech features of the signal and then assign a VAD score. After this step a 
speech/non-speech decision is taken, based on the procedure of the method in question. In 
time one or more different features of voice signals and techniques were included in VAD 
algorithms, such as power envelope [Mark, 2002], energy or/and subband energy [ITU-T 
G729b] [Cornu, 2003] [Evangelopoulos, 2005][Soleimani, 2008] [Moattar, 2009] [Jiang, 
2010], entropy [Ouzounov, 2004], linear prediction coefficients [Rabiner, 1977], SNR and 
channel SNR [ETSI-AMR], zero-crossing [Kotnik, 2001], voice pitch, cepstral distant 
measure [Haigh, 1993], correlation coefficients [Craciun, 2004] [Shuyin, 2009], wavelet 
transform [Wu, 2006][Lee, 2006], Walsh basic function representation [Pwint, 2005], 
longterm speech information [Ramirez, 2004] [Ghosh, 2011] [Ma, 2013], periodic to 
aperiodic component ratio [Seo, 2007] [Ishizuka, 2010]. Also, in [Chatlani, 2010] it is shown 
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that the image processing technique called “local binary pattern” could be used for VAD 
algorithms. Besides these, some statistical methods train voice of noise mixtures in labeling 
them in supervised or semi-supervised mode like [Davis, 2006] [Farsi, 2008] [Fujimoto, 
2008][Ying, 2011] [Harding, 2012] [Omar, 2012] [Germain 2013].  

Generally, speech signals with higher SNR and/or better intelligibility yields higher 
VAD scores. But this observation suggests that finding an adequate VAD algorithm to fit 
demands from ATM-VCS is a key point in the best signal selection issue. Thus, VAD 
algorithms were implemented and tested in this work, as a solution for the BSS issue.  

In time numerous VAD algorithms were developed in order to satisfy the specific 
demands for various applications. Thus, a unique solution, to fit all applications, could not be 
implemented. However, the International Telecommunication Union – Telecommunication 
Standardization Sector (ITU-T) and the European Telecommunications Standards Institute 
(ETSI) proposed globally-applicable and recommended standards for Information and 
Communications Technologies (ICT) to ensure interoperability between different networks 
and technologies (fixed, mobile, radio, converged, broadcast and Internet).  

From among these standard VAD algorithms, ITU-T G729B and ETSI-AMR1&21 were 
important starting points for several other VAD algorithms. Because of this, they continue to 
be of high interest to the speech processing community; thus, it is only natural to start the 
VAD algorithm description with them. They are followed by two relatively new VAD 
algorithms which were further integrated into the BSS solution from ATM-VCS. 

4.1   ITU-T G729.B 

 
General description of ITU-T G729B VAD 

The VAD ITU-T G729.B algorithm was introduced in 1996 in order to optimize the 
transmission rate during silent periods of speech. It provides a VAD decision for each frame 
at every 10 ms, based on several parametric features. Its flow chart is presented in Figure 4.1. 

For the first iN  frames, the algorithm extracts the next four parameters: low and full-
band frame energies, the set of Line Spectral Frequencies (LSF) and the zero crossing rate of 
the frame. Before the iN -th frame a long-term average initialization stage is performed. 
Meanwhile, the frame energy obtained with LPC analysis is compared with a threshold of 
15dB. If the frame energy is less than the threshold, then the voice activity detection is set to 
0. Otherwise, the voice activity detection is set to 1. When the frame number reaches iN  it 
starts the initialization process for the features of the background noise.  

                                                 
1   © European Telecommunications Standards Institute 2012. Further use, modification, copy, and/or 
distribution are strictly prohibited.  ETSI standards are available from http://pda.etsi.org/pda”. 
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Figure 4.1 – G729B VAD flowchart2 

 

                                                 
2 Figure from [ITU-T G729B] 
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Starting with the frame number 1iN   a set of difference parameters is computed. It 
represents the variation between current frame parameters and the average values of the 
background noise features. The difference parameters are: 

  an energy difference; 

  a spectral distortion; 

  a zero-crossing rate; 

  a low-band energy difference. 

At this stage, the voice activity decision is based on a multi-boundary decision region 
space formed by the above four difference measures. Thus, the union of these regions 
corresponds to a voice activity and the complementary space of this union corresponds to a 
non-active voice. Further, a smoothing decision results based on energy and the past 
decisions of previous frames.  

A final step in this algorithm is the update of running averages. This takes place only in 
the absence of speech, on a background noise and after a true adaptive threshold test. 

 
 
Parameter extraction 

For each 10ms frame a set of parameters is extracted from the input signal. The basic set 

is represented by the autocorrelation coefficients    0
 

q

i
R i


, where 12q  . From this set the 

set of the linear prediction coefficients (LPC) will be derived and further the set of the line 

spectral frequencies    1

p
i i

LSF


 will be derive, where 10p  . 

Then, the low band energy lE , from 0 to the cutoff frequency lF  of an FIR filter is 
calculated by means of the following formula: 

 
110lglE
N

    
Th Rh  (4.1) 

where  h  is the impulse response of the FIR filter and R  is the Toeplitz autocorrelation 
matrix which has the autocorrelation coefficients on each diagonal. 

Afterwards, the full band energy fE  is obtained from the first autocorrelation term  0R  by: 

  110lg 0fE R
N

    
 (4.2) 

where 240N   is the length of the linear prediction coefficients (LPC) analysis speech 
window.  
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The zero-crossing rate (ZC) is computed in the normalized form for each frame as: 

    
1

0

1 sgn sgn 1
2

M

i

ZC x i x i
M





          (4.3) 

where  x i  is the preprocessed input signal and M 80,   as defined in G.729 for codec 

description. 

 
Initializing running averages 

The first iN  frames, which have the energy E  greater than 15 dB, are used to compute 
the next initializing parameters: 

  the spectral parameters of the background noise  is initialized as the 

average of the    1

p
i i

LSF


 of the actual frames; 

  the average of the background noise zero-crossing  is initialized as the average 
of the ZC  of the actual frames; 

  the average of the frame energy nE initialized as the average of frame energy  fE  

over the first iN  frames. 

Further, the running averages of the background noise low-band energy lE  and the 

background noise energy fE are computed based on the following rules: 

if  1 nE T  then 

      1l nE E K   

     0f nE E K   

else if  1 2 nT E T   

           3l nE E K   

           2f nE E K   

       else 

           5l nE E K   

           4f nE E K   
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where 1T , 2T , 0K , 1K , 2K , 3K , 4 K , and 5K  are constant values defined in G729 VAD 
constant table. 

 
Difference parameters 

After the initialization stage completed, the G729B VAD algorithm computes four 
difference parameters for each frame.  They are called difference measures because they are 
obtained as the difference between the current frame extraction parameters and the average 
running parameters of the background noise, as shown below: 

  The spectral distortion S   

 
 

(4.4) 

  The full-band energy difference fE  

 f f fE E E    (4.5) 

  The low-band energy difference lE  

 l l lE E E    (4.6) 

  The zero-crossing difference ZC  

  (4.7) 

 

Multi-boundary initial voice activity decision 

An initial decision regarding the presence of voice, noted as  VDI , depends on the vector 
of difference measures. If the vector lies in the union of fourteen boundary decision regions, 
then it is considered voice activity and  1VDI  , otherwise 0VDI   when no voice activity is 
detected. The union region is obtained in a four-dimensional space by fourteen boundary 
decisions expressed bellow:  

1)   1 1S a ZC b     

2)   2 2S a ZC b     

3)   3 3fE a ZC b     

4)   4 4fE a ZC b     

5)   5fE b   
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6)   6 6fE a S b     

7)   7S b   

8)   8 8lE a ZC b     

9)    9 9lE a ZC b     

10)   10lE b   

11)   11 11lE a S b     

12)   12 12l fE a E b     

13)   13 13l fE a E b     

14)   14 14l fE a E b     

where  ia and  ib are constant values defined in the G.729 standard. If at least one condition is 

“FALSE”, then   0VDI  . 

Smoothing the voice activity decision 

The final voice activity decision for each frame is obtained after a smoothing procedure 
of four steps: 

a)  firstly, several conditions are evaluated to determine if the smoothing procedure is 
applicable  for the current frame. Besides the  verification, previous smoothed 
voice activity decision and energy parameters are also tested; 

b)  in the second stage the result of the first step is tested combined with the full band 
energy of the current frame, energy of the previous frame, smoothed voice activity of 
the previous 2 frames, a Boolean parameter, a smoothing counter, and a G729 
constant value;  

c)  the third smoothing stage has four tested conditions for the current smoothed voice 
activity decision, full-band energy of the current frame, energy of the previous frame, 
a noisy continuity counter and a G729 constant value;  

d)  the final smoothing stage decides no speech if three combined conditions are 
“TRUE”; the combined conditions tests full-band energy of the current frame, the 
average full-band energy, frame count, two G729 VAD constant values and the 
smoothing activity for the current frame.  

 
Updating the running averages 

The final stage of the VAD module is represented by the running averages update. The 
update sequence is performed only if the next condition is “TRUE”: 
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6f fE E T   

The update of the running averages of the background noise uses the first order 
autoregressive model, as expressed below in the general form for all 4 updates: 

  1i i i i iA A A     (4.8) 

where iA represents the running averages of the full-band energy ( fE ), low-band energy 

( lE ), zero-crossing ( ) and line spectral frequencies ( ), and i  stands for the update 
coefficient set which depends on the current frame number.  

4.2   ETSI-AMR 1 

The first option for a VAD algorithm for the Adaptive Multi-Rate audio codec proposed 
by ETSI is known as the ETSI-AMR 1 VAD. Compared to G.729, this algorithm uses 20 ms 
frames to indicate any voice activity. More importantly, this algorithm does not look only for 
speech features in the signal, but it also searches for music or information tone details. Thus, 
further in this VAD algorithm, speech detection will refer not only to speech, but also to 
music and information tones.  

Figure 4.2 shows that the ETSI-AMR1 VAD contains five important blocks. Based on 
the output of the following four blocks – filter bank and sub-band levels, pitch detection, tone 
detection and complex signal analysis – the VAD decision block yields vad_flag = 1 for 
speech detection, otherwise vad_flag = 0.   

 

Filter block and sub-band levels calculation 

This block is used to compute the sub-band levels of the input signal. First, a filter block 
divides the input signal into nine sub-band frequencies, as shown in Table 4.1. This is 
accomplished by the 3rd and 5th order filter blocks which split the input into low-pass and 
high-pass components, followed by sampling frequency decimation by 2. 

Then, for each sub-band output the signal level is computed by means of the following 
rule: 

    
n

n

LAST

n
i FIRST

l n x i


   (4.9) 

where n is the frequency band,   nx i  is the i-th sample of sub-band n, 
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 

 

 

 

 

Figure 4.2 – Block Diagram for VAD ETSI-AMR13 

 

 

 

                                                 
3 Figure from [ETSI-AMR] 



Best Signal Selection with Automatic Delay Compensation in VoIP Environment 

– 75 –   
 

TABLE 4.1 – ETSI-AMR1 SUB-BAND DISTRIBUTION 

Band number Frequencies (Hz) 
1 0 - 250 
2 250 - 500 
3 500 - 750 
4 750 - 100 
5 1000 - 1500 
6 1500 - 2000 
7 2000 - 2500 
8 2500 - 3000 
9 3000 - 4000 

 
 
Pitch detection 

This block is intended to detect any vowel sounds or other periodic signals. Based on 
open-loop pitch lags, represented by the values which maximize the autocorrelation function 
of the speech signal, the pitch detection procedure is described as follows. First the difference 
of two consecutive open-loop lags is compared. If this difference is smaller than a threshold, 
a lagcounter is incremented. Then, the pitch is detected if the sum of lagcounters from two 
consecutive frames is greater than a threshold.    

Tone detection 

In some cases it is possible that information tones are spotted by pitch detection because 
of their periodicity. But for these tones, a better detection is provided by the tone detection 
block. The decision is taken by comparing the autocorrelation maxima, computed by the 
open-loop pitch analysis, to the signal power related to the autocorrelation maxima multiplied 
by a tone threshold. 

 
Complex Signal Analysis 

The role of the correlated signal analysis block is to spot the correlated signal from the 
higher bands which were not detected by the pitch and tone detector blocks. The decision is 
taken based on statistics of the maximum correlation value computed from the output of the 
high-pass filter.  

 
VAD Decision 

As anticipated, this final block has to decide if the current frame contains speech or not. 
For each frame, it computes the estimated background noise and levels of each sub-band, the 
average noise level, the power of the input signal and an adaptive threshold. If the power of 
the input frame is higher than the adaptive threshold, then an intermediate speech activity 
decision is taken. Before a final decision for the current frame, the intermediate decision 
follows a smoothing procedure.  
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4.3   ETSI-AMR 2 

The second option for VAD algorithm in AMR encoders returns a decision of voice 
activity for each 20 ms frame. Similar to ETSI-AMR 1, this algorithm verifies if the input 
signal contains voice, music or information tones, but uses a different approach. Its block 
diagram is shown in Figure 4.3. 

Frequency Domain Conversion 

First, a high-pass filter prepares the input signal for the frequency domain conversion. 
Then the filter output  hps n  is pre-emphasised for the speech reconstruction in order to 

reduce the negative effects of noise, by means of the following formula: 

      1 1hp hpd n s n a s n    (4.10) 

where 1a  is known as the pre-emphasis factor which is typically chosen 10.96 0.99a  . 
After the pre-emphasis a rectangular window is applied to the signal which is then padded 
with zeros to prepare the sequence for the FFT. 

 

 

Figure 4.3 – Block Diagram for VAD ETSI-AMR24 

                                                 
4 Figure from [ETSI-AMR] 
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Channel Energy Estimator     

The energy of the current frame is estimated by this block using several parameters such 
as the minimum allowable energy, channel smoothing factor, combination table for low and 
high channel, and the signal’s spectrum resulting from the previous block. The estimated 
channel energy is used in further blocks which compute and estimate spectral deviation, 
peak-to-average ratio, channel SNR, and background noise. 

 
 
Channel SNR Estimator and Voice Metric Calculation 

These blocks estimate the channel SNR for the voice metric calculation, which is further 
needed in the background noise update and voice activity decisions. The computing flow 
follows these steps: 

a)  calculate an estimate for channel SNR based on the current channel noise energy 
and channel energy; 

b)  transform the previous result in 3/8 dB steps, from 0 to 89; 

c)  compute the voice metric as the sum of voice metric table values, indicated by the 
previous results. 

 
Spectral Deviation Estimator 

Based on the estimated channel energy the spectral deviation estimator is derived. Its 
role is to prevent false updates of the background noise when spectral deviation is very high. 
For this, the following actions are performed: 

a)  compute the log power spectrum from estimated channel energy; 

b)  estimate the spectral deviation based on the current log power spectrum and the 
average long-term log power spectrum;  

c)  compute the new exponential window factor based on instantaneous SNR and 
long-term peak SNR; 

d)  update the average long-term log power spectrum based on the current log power 
spectrum and  the previously obtained exponential window factor. 

 
Peak-to-Average Ratio 

For the current frame it computes the log ratio between the maximum value of the 
estimated channel energy and its average. If the maximum estimated channel energy value is 
10 times greater than the average of the estimated channel energy, then the background noise 
energy update could be inhibited by the noise update decision block. 
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Background Noise Update     

Because of the non-stationary nature of speech, the algorithm has to update the 
background noise. In normal cases, the decision to start the update of the background noise is 
conditioned by the comparison between the previously calculated voice metric and an update 
threshold. If the condition is met, then the channel noise is estimated based on the minimum 
allowable energy, current channel energy and channel noise smoothing factor.  

If the above condition is not met, a new set of conditions is evaluated. The new verified 
parameters are total channel energy, estimated spectral deviation, long-term prediction flag 
and sine wave flag. The last two flags are obtained from the open-loop pitch predictor of the 
speech encoder and from the peak-to-average ratio. 

 
VAD Decision  

This final block of the ETSI-AMR2 VAD algorithm block decides on the voice activity 
based on each 20 ms frame. However, it is important to mention that a VAD decision needs 
to analyze two 10 ms sub-frames.  

The decision algorithm also includes a smoothed VAD decision procedure. This 
procedure involves different test conditions which are based on the next computed or defined 
parameters: quantized SNR, hangover count, burst count threshold and voice metric 
threshold. 

4.4   WAVELET BASED VAD 

 
General Description 

This subsection presents a VAD algorithm, proposed in [Wu, 2006], which includes the 
Teager energy operator (TEO), auto-correlation function and wavelet transform. Its final 
feature was called speech activity envelope (SAE) and it is used for the voice activity 
decision. As I noticed that the SAE could be used to extract information regarding the quality 
and intelligibility of speech signals this algorithm was implemented, tested and used as a 
solution to the BSS problem.      

Compare to the previous standard VAD algorithms, which were presented earlier, this 
approach needs larger frames (32 to 128 ms) for the analysis. The input signal from each 
frame is decomposed by the Discrete Wavelet Transform (DWT) into four sub-bands in order 
to exploit more precisely the periodicity property of speech. Then, for each sub-band the TEO 
is applied to reduce the noise effects over the wavelet coefficients. Afterwards the auto-
correlation function for each TEO sub-band is calculated, resulting in the Sub-band Signal 
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Autocorrelation Function (SSACF). To extract the periodic intensity of the signal, a Mean-
Delta (MD) method is applied for each SSACF envelope, resulting in the MDSSACF. The 
first stage of this method uses Delta SSACF metric to characterize the local variation of each 
SSACF. Then, the average DSSACF is computed in order to extract the amount of periodicity 
from each subband. Consequently the SAE is obtained as the sum of all four MDSSACF. 
Depending on the application, the final voice activity decision compares the SAE with an 
adaptive or non-adaptive threshold. The block diagram for the wavelet based VAD is shown 
below, in Figure 4.4. 

 
Wavelet Decomposition    

The wavelet decomposition is performed by the wavelet transform (WT) which is based 
on time-frequency analysis. An important advantage of the wavelet analysis is the multi-
resolution analysis (MRA) capability. This way larger time intervals can be used for a precise 
characterization of lower frequencies and shorter intervals for detailed information about 
higher frequencies. To implement the DWT efficiently, the filter bank method proposed in 
[Mallat, 1989] is used. 

 

 

Figure 4.4 – Block diagram for the wavelet based VAD5 

 
 

                                                 
5 Figure from [Wu, 2006] 
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Figure 4.5 – DWT with filter bank6 

 
The result of DWT decomposition, obtained by using quadrature mirror filters (QMF), is 

made of by two sub-band signals A and D, the approximation and detailed parts. The 
approximated part results after the low-pass filter and the detailed part after the high-pass 
filter. This process is illustrated in Figure 4.5, where ↓2 denotes the downsampling operator 
by 2. 

 

 

Figure 4.6 – The proposed three level wavelet decomposition structure7 

This algorithm proposed implementing the QMF with the Daubechies family wavelet. 
Moreover, because the periodicity of the voice is found mainly in the low frequency bands, 
the algorithm grants higher resolution for the lower bands from a three level decomposition. 
This is also shown in Figure 4.6 where for decomposition order  j we obtain  j+1 subband 
coefficients. As the algorithm proposed third order decomposition, we can express the result 
as 

                                                 
6 Figure from [Wu, 2006] 
7 Figure from [Wu, 2006] 
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  (4.11) 

where  s n  is the input signal, N is the frame size, k is the sub-band number and 3
,k mw  is the 

mth coefficient of kth sub-band. Also, because of the downsampling operation the length of 
each subband will be  / 2kN . 

 
Teager Energy Operator 

It was shown that TEO can increase the differentiation between speech and noise; 
moreover, it reduces the noise components which affect the noisy speech signals [Jabloun, 
1999]. When compared to the popular noise reduction methods which operate in frequency 
domain, the TEO performs in time domain conducting to a faster computing speed. 

For continuous-time TEO is described by the following formula 

        2
c s t s t s t s t           (4.12) 

where  s t  is the continuous-time signal, 

   ss t
t




  (4.13) 

as the first derivative of  s t  and 

  
2

2

s ss t
t t

 
 

 
  (4.14) 

as the second order derivative of the input signal. 

For the discrete-time implementation, the TEO is computed by 

        2 1 1d s n s n s n s n         (4.15) 

where  s n  denotes the discrete-time input signal. Thus, regarding Figure 4.4 we can express 

this as follows: 

  (4.16) 

 

Sub-band Signal Auto-Correlation Function 

The self-periodic intensity of a signal can be characterized well by the Auto-Correlation 
Function (ACF), defined as 
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(4.17) 

where  k  denotes the sample shift and p  represents the length of ACF, or it can be written as  

 3 3
, , ,  k m k mR R t     (4.18) 

where  represents the auto-correlation operator. 

In order to obtain a better characterization of the periodicity of the input signal, the ACF 
function is applied to all sub-band decomposition resulting from the TEO processing. This 
new feature is called the subband signal auto-correlation function. 

 
Mean Delta SSACF 

The Mean Delta method applied to each SSACF was proposed in [Ouzounov, 2004]. Its 
role here is to describe the periodic intensity of each SSACF. Thus, the Delta SSACF 
function is computed firstly by means of the following formula: 

  
 

2

M

m M
M M

m M

mR k m
R k

m








  (4.19) 

where  MR  is the Delta SSACF over M  sample neighborhood. The compact form found in 
Figure 4.4 is 

 3 3
, ,k m k mR R    
  (4.20) 

where   is the Delta operator. 

The next step is to obtain an average of the absolute values of DSSACF over the M  
sample neighborhood, thus resulting in MDSSACF, expressed as follows: 

  
1

0

1 bN

M M
kb

R R k
N





    (4.21) 

where bN  stands for the number of samples of the sub-band signal. Again, the form 
presented in Figure 4.4 is written as 

 3 3
, ,k m k mE RR    

  (4.22) 

where E  stands for the mean operator. 
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Speech Activity Envelope 

The final Speech Activity Envelope is computed as the sum of all MDSSACF which 
describe the periodic intensity from each sub-band, as is shown below 

 
4

1

 k
k

SAE R


  (4.23) 

This finishes the feature extraction process, which is now followed by the speech activity 
decision. 

 
VAD decision and Adaptive Threshold 

The decision part for this algorithm is based on an adaptive threshold technique, which 
was described in [Gerven, 1997]. In fact, this method computes two adaptive thresholds, one 
for the speech and one for the noise. They use statistical data from SAE feature from the 
noisy frames. In order to initialize the noise mean and variance, it is assumed that the first 
five frames do not include any speech activity. Further the speech and noise thresholds 
denoted by sT  and nT  are computed with the following formulae: 

 s n s nT      (4.24) 

 n n n nT      (4.25) 

where n  and n  are computed as the mean and variance of the SAE feature. The  s and  n  
parameters control the difference between the speech and noise thresholds. In this algorithm 
they are used as 5s   and  1n   . 

Next, the VAD decision procedure is described by the following pseudo-code sequence: 

   sif SAE t T       

      1thenVAD t   

    nelseif SAE t T  

       0thenVAD t   

    1elseVAD t VAD t   
 

Figure 4.7 shows the SAE for a speech signal, with the two noise and speech thresholds. 
Based on the voice activity decision, the algorithm selects voice frames as those consecutive 
frames which have SAE greater then sT , and non-speech frame those consecutive frames 

which have SAE lower than nT . The switch decision of the VAD is suggested in Figure 4.7 by 
the start-point and end-point.  
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Figure 4.7 – Adaptive thresholding technique for voice activity decision8 

In order to adapt the thresholds, the mean and the variance of the SAE are updated only 
in the noise periods as shown below: 

        1 1n nt t SAE t       (4.26) 

       22
n buffer nmean

t SAE t t          (4.27) 

        22 2 1 1buffer buffermean mean
SAE t SAE t SAE t            (4.28) 

where   2 1buffer mean
SAE t     is the mean of the previous SAE values from the noise only 

frames and 0.95   is the update factor. 

 

 

                                                 
8 Figure from [Wu, 2006] 
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4.5   VAD BASED ON LONG-TERM SPECTRAL FLATNESS 
MEASURE 

 
General description 

The VAD algorithm which was recently presented in [Ma, 2013], proposes using a new 
feature for speech detection, called long-term spectral flatness measure (LSFM). The input 
signal is divided in 20 ms frames with overlap of 10 ms. Each frame is then multiplied by a 
Hann window before estimating its spectrum by means of Welch-Bartlett method. Further, 
based on the spectrum from previous frames the LSFM is computed, which finishes the 
feature extraction procedure of the current frame. The next steps compose the voice activity 
decision which includes an adaptive threshold and a voting scenario proposed by [Ghosh, 
2011].      

 
Long-Term Spectral Flatness Measure 

The Spectral flatness measure is used to characterize the uniformity of a sequence, 
expressed as the logarithmic ratio between the geometric and arithmetic means of the 
sequence. Thus, for the power spectrum, a low value of spectral flatness suggests a less 
uniform power frequency distribution, while a high value implies a more uniform power 
distribution. Further it was noticed that a voice sequence is described by a lower spectral 
flatness measure while the noisy one is described by high spectral flatness. 

In speech signals the background noise is assumed to be stationary for a long period, 
while the speech is known as highly non-stationary. Based on these remarks, the LFSM VAD 
algorithm proposes using the spectral flatness measure over larger signal intervals. This way 
the long-term evolution of the spectral flatness measure is analyzed, to improve decision 
regarding speech and non-speech separation. In this approach the LSFM for the mth frame and 
over all chosen frequencies  xL m  is calculated using the spectra of the last R frames of the 

input signal  x n , as expressed below: 

    
 10

GM ,
log

AM ,
k

x
k k

m
L m

m



  (4.29) 

where  GM , km   and  AM , km  represent the geometric and arithmetic mean of the 

power spectrum, computed as: 

    
1

GM , S , ,
m

Rk k
n m R
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   (4.30) 
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In the above equations,   S , kn    is the short-time spectrum estimated here with the 

Welch-Bartlett method, as the average of previous M spectra. This method leads to a good 
trade-off between the spectral resolution reduction and variance reduction, as shown in 
[Davis, 2006] and is expressed by: 

     2

1

1S , ,
n

k k
p n M

n X p
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 
  

   (4.32) 
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where  , kX p   represents the short-time Fourier transform (STFT) coefficient at frequency 

k  of the p th frame,  w i  is the Hann window of wN  samples and shN represents the 

sample shift number. 

The experiments of the VAD algorithm from [Ma, 2013] show that 30R   and 10M   
are the optimum values for these parameters. Also, kω was chosen to be uniformly distributed 
between 500 Hz and 4 kHz. This was due to the fact that this frequency band is essential for 
speech intelligibility [Bies, 2003]. 

 

VAD decision 

The initial decision, denoted by INLV  and regarding the voice activity is conditioned by 
the comparison between the LSFM of the last R frames and an adaptive threshold. If in the 
previous R frames, which end at the mth frame, a speech frame is found, then   1INLV m  ; 

otherwise   0INLV m  .  

From this point further on, the final VAD decision is based on the next voting scheme. 
For the mth frame, all previous R frames are analyzed by their initial decision and counted 
frames which were indicated as containing speech are counted. If 80% or more frames 
indicate speech activity, then the current frame is marked as speech activity; otherwise it is 
marked as non-speech. 

The 80% was found experimentally in [Ma, 2013] yielding the maximum VAD accuracy 
in most noise tests. 
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Figure 4.8 – Block Diagram for LSFM-VAD9 

 
Adaptive Threshold 

An accurate VAD algorithm must adapt its decision by the varying acoustic 
environment. The algorithm which is described here also uses an adaptive threshold to 
increase the accuracy of VAD. Considering that the first N frames do not contain speech 
signals, then we can fill a noise-only LSFM buffer INL  with the LSFM values of the frames. 

Now, the initial threshold will be set to: 

  INL INLTHR min   (4.34) 

After initialization, we have to update the threshold for each new frame. For this two 
buffers are used: S N    and N  . The first one will hold the last N LSFM values of the frames 
which were marked as containing speech, while the second will store the last N  LSFM values 
of the frames which were marked as noise-only. Then, the adaptive threshold for the current 
frame is computed as: 

        S N NTHR λ max 1 λ minm        (4.35) 

where λ  is the combination parameter and was experimentally found to be optimum for 
performed experiments as λ 0.55.  Also, N = 100 in the description of the VAD algorithm 
form [Ma, 2013]. 

 

                                                 
9 Figure from [Ma, 2013] 
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5   BEST SIGNAL SELECTION  

In this section, the proposed solution for the BSS problem and its specific issues is 
presented and commented. Briefly recalling the BSS problem description in the introduction 
chapter, the goal of this selection is to choose from among several noise signals received by 
different channels the signal with the best intelligibility and speech quality. Moreover, this 
decision has to take into account various problematic aspects such as: 

  the speech sequence lasts in average, for less than a few seconds; 

  the selection has to be done relatively quick, in less than 300ms; 

  the analysis is done on relatively small parts of the signal, usually for less than 
300ms; 

  in the first part of 300ms of the received signal, the noise level undergoes 
significant variations due to the automatic gain control activation; 

  for each reception the signals could be received with different delays; 

  on the same channel, two consecutively received signals may be significantly 
different in terms of speech intelligibility. 
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Typical waveforms of multi-channel reception of the aircraft transmission in the ATM-
VCS are shown in Figure 5.1. In this example, the speech lasts for less than 2 seconds. For 
channel 1, the voice signal begins around 0.5 s and ends at approximately 2.2 s. The varying 
signals around 0.3 and 2.45 seconds are caused by pushing and releasing the push-to-talk 
(PTT) button in order to start and end the communication. For the other 2 channels these 
limits vary, because the signals are received with different delays.   

The first speech utterance is colored with red and lasts for less than 200ms. The green 
area represents the first part of the received signals, where there is noise and no speech 
utterance. An accurate BSS could not use only the green areas because they do not contain 
voice and thus it would be difficult to predict the speech quality. However, they could be 
used to compute the channel’s background noise, but this is also a tricky task. Thus, the BSS 
has to decide about one channel based on the analysis of these parts of the signals. 

 

Figure 5.1 – Typical multi-channel reception in ATM-VCS 

  
The issue here is represented by the different features of radio receivers. In this example 

we can conclude that dynamic compensation block of the 3rd receiver is not enabled, while it 
is quite clear that the 2nd receiver uses an automatic gain control (AGC) circuit. For the 2nd 
channel this is suggested by the recorded waveform. The noise is amplified to a specific limit 
when the PPT button is pressed at the beginning of the transmission. Later, the emergence of 
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voice in the signal increases its power and the output is saturated. Then, the AGC reduces its 
gain; therefore, the noise level during the following non-speech regions is much lower. Thus, 
in this example we can see that, after the first utterance, the noise level is similar in all 
channels.  

At this point, a BSS analysis should provide accurate results if computed for the second 
speech utterances. But the second utterances are situated relatively late in the signals and the 
results would be obtained after the imposed 300 ms limit. Hence the difficulty of the BSS 
analysis is increased by the fact that it should be performed on delayed signals, for their first 
utterances when the noise level may still vary.    

A detailed analysis could prove that the channel with the best speech intelligibility could 
change during a conversation. In this case, at a first glance the BSS should change its first 
selection in order to adapt to the new situation. However, despite the fact that the first 
selected channel does not currently provide the best speech quality it is not indicated to 
change the BSS. This is due to the fact that the operator has already accommodated to the 
background noise of the first BSS and changing the channel in the middle of the conversation 
would result in other background noise. But this would cause high discomfort to the operator 
who would try to adapt to the new background noise. Moreover, changing the channel during 
the conversation would be more annoying, if conversations are very short which usually 
happens in ATM. 

As various speech features from VAD algorithms are correlated more or less with the 
speech quality, a solution for the BSS problem could be constructed starting from this 
observation. Further in this section two solutions will be presented, which were tested and 
which offered good results. 

5.1   WAVELET-BASED BSS 

The first solution proposed for the BSS problem is based on the VAD algorithm from 
[Wu, 2006] which was also presented earlier. It uses wavelet decomposition, Teager energy 
operator, auto-correlation function and mean delta method to obtain the speech activity 
envelope (SAE). It has acceptable computing complexity and offers good results.  

The performed experiments and analysis over the SAE indicated that this feature is 
closely correlated with speech quality. This can also be noted in Figure 5.2.  The speech 
signal was corrupted with additive Gaussian white noise at various SNR levels, as presented 
in Figure 5.2a. When corrupted with SNR =  5 dB the signal is hardly intelligible, while at 
SNR = 25 dB it is quite easy to understand the speech. Their SAEs are presented in Figure 
5.2b and were computed with the wavelet-based VAD algorithm from [Wu, 2006], which 
was presented earlier in this chapter. The parameters from this experiment were set as 
follows: 
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  the frame size was set to 1024 samples, equivalent to 128 ms for a sampling 
frequency of 8 kHz; 

  the frames were overlapped with a factor of 50%; 

  the wavelet function was set to 4th order Daubechies (db4); 

  the length of the auto-correlation function p = 40; 

  the Mean-Delta parameter M = 2.  

 

Figure 5.2 – SAE and speech quality: a) noisy signal waveforms for different SNR; b) SAE for 
different SNR: green – 25 dB, magenta – 20 dB, cyan – 15 dB, red – 10 dB, blue – 5dB 
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In this case the adaptive threshold was not computed since we needed only the speech 
activity envelope. 

In Figure 5.2b we notice that signals corrupted with higher SNR have higher SAEs. 
Thus, the higher the SAE, the higher speech intelligibility is assumed. Moreover, during the 
non-speech intervals, the SAE has similar values for all SNRs. Hence, it can be considered a 
robust speech and intelligibility feature.  

 

Figure 5.3 – Received signals in ATM and VoIP environment 

 Based on the previous observations, it appears natural to use the SAE features of the 
input signals to obtain the solution of the BSS problem. Hence, the first proposal for the BSS 
solution is described as follows. First, a fixed threshold is set to detect the beginning of the 
first utterance. In this example, it could be set to around 0.19. Then, for each frame of each 
channel the SAE is computed. If the SAE of k consecutive frames of a channel is higher than 
the fixed threshold, then we assume that the first utterance appeared on the respective 
channel. Depending on the length of the frame size, the overlap factor and the maximum 
response time imposed for the BSS, the k parameter may vary. However, in this experiment k 
= 3. Furthermore, if voice activity was spotted on channel j, then the accumulated SAE of the 
jth channel is computed as: 

  
1

0

i k

j j
i

ASAE SAE m i
 



   (5.1) 
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where  jSAE m is the speech activity envelope of the mth frame for channel j. 

Finally, after a simple comparison, the solution selected for the BSS is the one with the 
maximum ASAE. In case that voice activity was not detected on a channel, its ASAE will not 
be compared. 

The purpose of Figure 5.2 was to highlight the existing correlation between the speech 
quality and the speech activity envelope. Therefore, a signal similar to those used in this 
simulation is rarely found the ATM-VCS. The noise corrupted signals from Figure 5.2 have a 
constant noise level from the start to the end of the communication. This seems like an ideal 
situation because the beginning of first utterance is detected much easier.  

However, in the real-life conditions described above and presented in Figure 5.1, the 
beginning of the communication may have variable noise. Also, the voice could appear in 
less than 50ms from the communication initiated by the PTT. In these cases it is more 
difficult to distinguish the voice from the largely varying noise. A typical example is shown 
in Figure 5.3, where the voice starts immediately after the communication was initiated by 
pressing the PTT button. Their SAE is presented in Figure 5.4. 

 

Figure 5.4 – SAE of the signals presented in Figure 5.3 

Because another configuration with an overlap factor of 75%, p =24 and M = 8 was used 
for this measurements, the fixed threshold will have to be modified. Thus, we notice that a 
fixed threshold around 0.6 leads to good discrimination of speech and non-speech segments. 
However, for this value, the wavelet based BSS solution which computes the ASAE for each 
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signal will decide the best quality speech quality for channel 2 (red). But, if we look again at 
Figure 5.3 we see that channel 2 is the noisiest one, thus having the lowest speech quality. To 
avoid this wrong decision, the fixed threshold should be set higher. Hence, a new fixed 
threshold around 0.8 will lead to a BSS between channel 1 and 3, which clearly offer better 
speech quality than the 2nd channel.  

We saw above that setting a higher threshold would reduce the probability of a wrong 
decision with respect to the BSS. However, a higher threshold could also lead to undetected 
speech utterances or late decisions in low SNR and heavy variable noise level. Thus, when 
setting the level of the threshold we have to face the compromise between the reduced rate of 
a wrong decision and late or undetected voice activity.    

5.2   LSFM-BASED BSS 

The second proposal for solving the BSS problem is based on the long-term spectral 
flatness measure (LSFM) presented in the previous chapter where it was used in voice 
activity detection. Compared to the previous BSS solution based on wavelet decomposition, 
this second option has a better time resolution. In [Ma, 2013] a frame size of 20 ms is 
proposed with an overlap factor of 50%. In this settings, the LSFM is computed every 10 ms. 
This is an important advantage against the wavelet based solution, which usually uses 128 ms 
frames and an overlap factor of 50% or 75%, resulting new SAE every 32 or 64 ms. 
However, the wavelet based method needs fewer memory resources and smaller computing 
time. 

 

Figure 5.5 – Long-Term Spectral Flatness Measure for BSS 
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To highlight that the LSFM feature is able to characterize the speech quality, in the next 
experiment the same signals as in wavelet-based BSS were used. Therefore, the LSFM 
features of the five corrupted signals in Figure 5.2a are presented in Figure 5.5. For this, a 
configuration similar to the proposal from [Ma, 2013] was used: 

  frame size of 20 ms, resulting in 160 samples at a sampling frequency of 8 kHz; 

  overlap factor of 50%; 

  the FFT order was decreased to 256 because the sampling frequency is also lower 
in our case; 

  M = 10 previous spectra were used to estimate the current short-time spectrum with 
the Welch-Bartlett method; 

  the LSFM feature was computed over the last R = 30 spectra; 

  the LSFM was computed for the frequencies in the range 500 Hz – 4 kHz. 

We can notice that, after the initialization process is finished, the LSFM features of each 
corrupted signal have similar values during the non-speech segments. On the speech 
segments the higher the SNR, the lower the LSFM. Thus, for the 5th corrupted signals, with 
the highest SNR (25 dB), the green characteristic has the smallest values during the speech 
section, while for the first signal, which is the heaviest noise corrupted signal (5 dB), the blue 
characteristic does not decrease significantly. Therefore the LSFM feature could be 
associated with speech quality. 

Similar to the previous BSS solution, for the second BSS option we have to set a fixed 
threshold to detect voice activity. When the LSFM feature of channel j has k consecutive 
values below the threshold, we assume that the voice activity has started and we compute the 
accumulated long-term spectral flatness measure (ALSFM) of this channel by means of the 
following formula: 

  
1
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i k

j j
i

ALSFM LSFM m i
 



   (5.2) 

where  jLSFM m denotes the long-term spectral flatness measure of the mth frame for 

channel  j. The value of k will now depend on the frame size, the overlap factor and the 
maximum response time.  

If 30R   then we have to wait *10 300R ms ms initialization before we can obtain the 
first LSFM. Considering the demands from the ATM systems and the imposed response time 
of maximum 300 ms, the above configuration could not be implemented as a BSS solution. 
Therefore we have to adapt the configuration on the ATM system demands and the following 
parameters were used: 

  frame size of 20 ms, representing 160 samples at a sampling frequency of 8 kHz; 
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  overlap factor of 50%; 

  the FFT order was set to 256;  

  M = 8 previous spectra were used to estimate the current short-time spectrum with 
the Welch-Bartlett method; 

  the LSFM feature was computed over the last R = 15 spectra in order to decrease 
the initialization time; 

  the LSFM was computed for the frequencies in the range 500 Hz – 4 kHz. 

With this configuration adapted for air traffic management system demands, the signals 
in Figure 5.3 were tested again, but this time with LSFM-based BSS. The results are 
presented in Figure 5.6.  

By comparing the LSFM features in Figure 5.6 to the SAE features in Figure 5.4 we 
notice that the use of LSFM features highlights the differences between the signals much 
clear. Now it is much easier to conclude that the 2nd channel has the worst speech quality, 
while the 3rd channel provides the best speech quality. Moreover, with the LSFM feature we 
can also notice a time difference between the 1st and 3rd channels much easier. This is due to 
the fact that LSFM has a higher time resolution, in this case 10 ms, while for the SAE feature 
it was 32 ms. 

 

Figure 5.6 – LSFM of the signals presented in Figure 5.3 

However, despite the better analysis over the entire signals offered by the LSFM, there 
are still some issues concerning the BSS. These refer to the fact that the BSS cannot wait to 
analyze the entire signals and it has to decide during the first 300 ms maximum. In this 
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situation, for the first utterance there is a small difference between the LSFM feature of all 
channels. If we compute the ALSFM for k = 10 we will find that ALSFM3 < ALSFM2 < 
ALSFM1, meaning that the 1st channel has the worst speech quality and the 3rd channel has 
the best speech quality. From the BSS point of view the final decision is correct, the best 
speech quality is found on the 3rd channel, but we have to minimize the possible wrong 
decisions.    

In order to minimize the number of wrong best signal selections it is important to 
analyze the sources which lead to these situations. As the reader could already guess, one 
major cause is represented by the varying noise level between the start of the received signal 
and the first utterance. However, we have already discussed about this and in ATM this is 
difficult to predict and to control if we do not have any information about the configuration of 
the radio stations with respect to the automatic gain control circuits.  

Another important cause in the VoIP environment is related to time delays. As could be 
seen in Figure 5.6 the delay between the channels could influence the ALFSM feature. A 
detailed analysis is provided in the next section. 

5.3   TIME DELAY AND BEST SIGNAL SELECTION 

One of the main causes for wrong decisions with respect to the BSS appears to be the 
delayed signals. In the ATM-VCS based on TDM communications there was no delay 
problem because in these networks the delay is known and fixed. However, in the new 
environment based on VoIP the delays between the received signals through the network are 
un-known and variable. In these conditions it is important to know how much this can affect 
the BSS decisions.  

The following simulated experiments will measure the exchange rate of the BSS at 
different delays. We defined the exchange BSS rate as the ratio between the numbers with 
different BSS decisions after we automatically delayed the signals and the total number of 
BSS decisions. In other words, for an aligned signals pair we choose the BSS with the first 
proposal option, based on wavelet decomposition. Then we delay the signals two times, 
backward and forward, and we reapply the wavelet-based BSS. If the new results indicate the 
same BSS, then the exchange rate is equal to zero. If the new results indicate 1 or 2 (from 
backward and from forward introduced delay) then the exchange BSS ratio will be 50%, 
respectively 100%, for this pair at the tested delay. 

The signals for this test were selected from the [Noizeus] database and also from ATM-
VCS communications. The wavelet-based BSS was configured as proposed in section 5.1 and 
the BSS decision was chosen based on ASAE features for k = 3 consecutive frames with 
voice activity. The introduced forward and backward delay was automatically varied between 
2 ms and 120 ms, with a step of 2 ms.   
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Figure 5.7 – Wavelet-based BSS dependence by the delay between the signals 

Generally, the maximum delay in the VoIP environment for ATM-VCS is set to 40 ms 
through QoS demands. However, because of various causes in some ATM-VCS the QoS 
cannot be guaranteed. Therefore, Figure 5.7 shows the exchange BSS rate obtained by means 
of the above mentioned procedure, for a larger delay. We notice that the higher the delay, the 
higher the exchange BSS rate.  

For a delay of 40 ms, the exchange BSS ratio is around 27%, while for delays over 
100ms, it is almost 35%. Therefore, we conclude that the delay from VoIP environment from 
the ATM-VCS considerably affects the decision of BSS. Thus, in order to reduce the wrong 
BSS decisions special measures must be taken regarding this delay. Generally, it is not 
possible to obtain a high control of the delay in VoIP environments, hence a time delay 
estimation method should be used to align the signals before starting the BSS algorithm.  

As shown earlier, Chapter 2 presents several TDE methods and Chapter 3 proposes and 
analyzes TDE methods which fit in ATM-VCS to decrease the probability of wrong BSS 
decisions.    

5.4   OTHER BEST SIGNAL SELECTION ATTEMPTS  

5.4.1   MVSS-BASED BSS 

In [Jiang, 2010] a new VAD algorithm was proposed, based on maximum values of sub-
band SNR (MVSS). It tries to take advantage of the fact that voice activity can be indicated 
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by the high SNR points in sub-bands. Starting from this idea, the voice activity feature based 
on the MVSS method is computed. This procedure is described in the following steps: 

a)  the input signal is divided in 32 ms frames, with an overlap factor of 75%; 

b)  for each frame the power spectrum is computed; 

c)  the power spectrum is divided in nine sub-bands, similar to ETSI-AMR1, presented in 
Table 4.1; 

d)  the sub-band SNRs are estimated based on posteriori SNR of each component; 

e)  for each sub-band we extract the M largest values;  

f)  the MVSS for the ith sub-band set   iG k  of the current frame k is computed as: 

     
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1( )  
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G k P k
M 

   (5.3) 

where     r i
P k  represents the rth maximum value from the set   iG k  and 6M  ; 

g)  the final distant feature gain  D k  is computed as: 

 
 

(5.4) 

where  is the average of all MVSS sets.  

 
 

(5.5) 

In order to verify the correlation between this new voice feature and speech quality, the 
MVSS based feature was tested for the noise corrupted signals in Figure 5.2a. The results are 
presented in Figure 5.8. As we can see, despite a larger variation of this feature during non-
speech sectors, above a fixed threshold around 3 it is correlated with speech quality. Also, 
higher the distance gain is, higher the SNR and speech quality are.  

By comparing this feature to the previous ones we are able to notice a higher time 
resolution for the MVSS-based feature. This is due to the fact that it uses a frame size of 32 
ms and on overlap factor of 75%. Hence, a value of this feature is provided every 8 ms, 
which is twice faster as for LSFM-based feature. However, these update rates can be 
modified for each method and a compromise must be made between time resolution and 
computing time. 

Because the results of the above simulation indicated that the MVSS-based feature could 
be used to characterize speech quality, the feature was further tested with real signals from 
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ATM-VCS. Keeping the same configuration as in the previous simulation, the obtained gain 
difference features based on MVSS are presented in Figure 5.9.  

 

 

Figure 5.8 – MVSS-based distance gain feature 

 

 

Figure 5.9 – MVSS-based distance gain features LSFM of the signals presented in Figure 5.3 



Best Signal Selection with Automatic Delay Compensation in VoIP Environment 

– 101 –   
 

We notice that the distance gain feature of the 2nd channel is generally the lowest one, 
and that the average distance gains are higher in channel 1 and 2. However, due to the high 
variations of this feature, it is very difficult to decide on the start of the first utterance. This 
could not be solved by a higher threshold, which worked for wavelet-based ASAE, because 
the large variation of this feature will often change its position with respect to the fixed 
threshold. 

Compare to the previous two features, the distance gain leads to a higher incorrect BSS 
rate. However, because the results in Figure 5.8 suggest that there is a correlation between 
this feature and speech quality, further work is possible to improve the BSS rate for this 
feature. In this sense, the important direction to be followed relates to a better discrimination 
of the first utterance. For this, a possible solution could be a smoothed distance gain in order 
to minimize its large variations. Another solution could implement a hysteresis mechanism to 
invalidate sporadic values below the threshold when the first utterance is detected.      

 

5.4.2   NEW 3SFM-BASED BSS 

Based on the distance gain from the MVSS method and on the spectral flatness measure 
(SFM) this thesis proposes a new voice activity feature, called smoothed sub-band spectral 
flatness measure (3SFM). The idea behind this is to benefit from the strong points of the 
SFM, but with less memory and time processing than LSFM. Therefore, this new voice 
feature, which is also based on the MVSS method, can be computed by means of the 
following similar steps: 

a)  we divide the signal in 32 ms frames which overlap by 24ms; 

b)  for each k frame the power spectrum   S k is computed with the DFT; 

c)  the power spectrum is then divided in nine sub-bands, similar to the ETSI-AMR1 and 
Table 4.1; 

d)  for each sub-band  j  the SFM is computed with the following formula: 

 ),(
),(log)( 10 kjAM

kjGMkSFM j   (5.6) 

where  ,GM j k  and  ,AM j k  represent the geometric and arithmetic means for 

the jth. The above means are computed as shown below: 
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where  jS k  and jL  stand for the power spectrum and for the number of frequency 

bins of  the jth sub-band, respectively;  

e)  next it is computed the distance gain for the current frame as: 

 
 

(5.9) 

where  represents the average of all  sub-bands spectral flatness measure: 
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f)  finally, the smoothed sub-band spectral flatness measure is computed as 

        3 1 3 1SFM k DSFM k SFM k        (5.11) 

where  is the exponential smoothing factor.  

 

Figure 5.10 – 3SFM features for α = 0.9 

Depending on the value of  the 3SFM could be used for voice activity detection or as 
an option for the BSS algorithm. Thus, the following experiments will address both 
approaches. First, we analyze the correlation between 3SFM and speech quality. For this, we 
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use the same configuration as the previous MVSS-based BSS and the smoothing factor 
0.9  . The 3SFM features of the signals in Figure 5.2a are presented in Figure 5.10.  For 

this configuration, we notice that the 3SFM feature is able to indicate the channels with the 
highest and lowest SNR, hence the feature can be used to decide the BSS. Moreover, we can 
easily differentiate between speech and non-speech segments using a threshold with a value 
of about –2.2. As the 3SFM levels have similar values during non-speech periods, the feature 
is robust to noise and can be used in VAD algorithms. 

 

Figure 5.11 – 3SFM feature of the signals in Figure 5.3, α = 0.9 

 
In order to obtain more information regarding the 3SFM feature, we apply it to the real 

signals from the air traffic management system. The result is shown in Figure 5.11, where, 
for an easier comparison to previous approaches, the input signals were the same as those 
presented in Figure 5.3.  

We can see that the 3SFM features for real air traffic control communication signals 
have high variations, which are also smaller than those obtained by means of the MVSS 
method. The smaller variation is explained by the smoothing operation. However, for 

0.9  , the variations are high enough to perturb the detection of the first utterance and the 
final BSS decision.  

A solution to this problem is an accentuated smoothing, obtained through a higher 
smoothing coefficient. Thus, the simulation was repeated for the same signals, but with 

0.99  . The results are presented in Figure 5.12, where we can notice that the 3SFM 
features are more distinctive. Now it is clear that the 2nd channel leads to the worst speech 
quality, even from the first utterance. Based on the analysis of the features of all channels, for 
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the first utterance the 1st channel offers the best speech quality. However, regarding the BSS 
decision by analyzing the entire features of the signals it is difficult to decide between 1st and 
3rd channel. But this is not due to the proposed feature, but moreover to the similar speech 
quality of both waveforms, as seen in Figure 5.3.  

 

Figure 5.12 – 3SFM features of the signals from Figure 5.3, α = 0.99 

 

Figure 5.13 – 3SFM features for α = 0.9  
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The over-smoothing with 0.99   has positive effects for the BSS reducing the wrong 
decision rate. On the other hand, a higher  extends the exponential smoothing period. This 
is shown in Figure 5.13 where the 3SFM feature of the corrupted signals in Figure 5.2a was 
computed. We now notice that during the non-speech periods the 3SFM features do not have 
similar values. This is explained by the fact that the smoothing period was highly increased 
and the feature will need more time to update its value for the non-speech periods. Moreover, 
the feature now cannot be considered a robust one due to these effects and cannot lead to an 
accurate VAD. 

As it was show in previous experiments the new proposed 3SFM feature could be used to 
implement VAD and BSS algorithms. Due to different characteristics caused by the 
smoothing parameter  this feature could not be used in the same time as a VAD and BSS 
component. However, because the smoothing step is the last one when computing this 
feature, for the cases when VAD and BSS need to work together a solution would be to 
compute two 3SFM features with two different smoothing factors. 
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6   ENHANCED BEST SIGNAL SELECTION 

The Best Signal Selection must decide which one of several signals is the one that offers 
the best intelligibility. For this, several algorithms were proposed in the previous chapter. 
They compute scores for each received signal. Then, depending on the implemented BSS 
method, the final signal is selected as the one who yields the highest or lowest score. Thus, 
the BSS treats each signal individually and does not use common information between the 
received signals.  

The above remark led to the idea to use all the information from all the signals to obtain 
an enhanced best signal selection (eBSS). In other words we can use all signals for a 
multichannel speech enhancement to calculate an eBSS. Therefore, the eBSS should offer 
higher speech intelligibility than the BSS. 

Before discussing how to apply multi-channel speech enhancement methods for eBSS it 
is important to recall the main characteristics of the signals from ATM-VCS, described 
below: 

  they usually last no more than a few seconds; 

  in a VoIP environment they come with a different delay for each communication; 
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  for the SNR level of each channel we could not assume that it maintains its level 
from one communication to the next one;  

  some receivers use an automatic gain control circuit to maintain a fixed speech 
level, but this leads to a difficult analysis of the signals. 

The aim of the speech enhancement is to improve the signal that was corrupted by noise. 
For this, various algorithms work in frequency domain trying to estimate the background 
noise of each frequency bin. Going further, based on various subtraction techniques the 
enhanced signal is obtained, with a better SNR. However, this usually does not imply a 
higher intelligibility because of the additional musical noise and other processing artifacts. 
These were analyzed in several papers and the results from [Chen, 2012] showed the impact 
of SNR over- and under-estimation. Moreover, Chen and Loizou conclude in [Chen, 2012] 
that to increase the speech intelligibility better methods are needed to estimate the spectral 
SNR. 

Because in the air traffic control systems the speech intelligibility is very important eBSS 
should be obtained through an increase of speech quality without any constraints regarding 
SNR.  In our case, the additional noise from each channel depends on the transmission 
conditions between the aircraft and the radio receiver. Based on the long distance between the 
radio receivers (hundreds of kilometers) we can assume that the additional channel noises 
have a very low correlation. Considering that the signals were perfectly aligned we can obtain 
the eBSS by weighting and summing the input signals. Hence, with correct weightings the 
eBSS should offer higher speech intelligibility. However, if the weightings are not estimated 
correctly the eBSS could have a lower speech quality.  

In order to obtain the correct weightings we have to compute the power of the received 
signals and to estimate the power of the background noise of each channel. Then, the lower 
the estimated SNR errors are, the better eBSS solution is achieved.   

6.1   SNR ESTIMATION 

The SNR estimation represents an important topic for signal processing and is a 
prerequisite step in noise cancelation. For speech signals various methods estimate the noise 
power spectrum by exploiting the non-speech periods of the signal. However, the accuracy of 
these methods is influenced by how accurate the separation between speech and non-speech 
segments is. The higher the non-stationary of the noise is, the more difficult to estimate the 
speech/non-speech segments gets and then the noise power spectrum is less accurately 
estimated. 

  In the last years several methods improved the estimation of the spectral noise power. 
From these ones, the minimum statistics (MS) methods [Martin, 2001][Cohen, 
2003][Rangachari, 2006] are well-known. Usually the MS methods assume that even a small 
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fraction of non-speech appears in the total analyzed time-span. Then the spectral noise power 
is estimated as the minimum value from an analyzed interval. For non-stationary noises when 
the noise power changes rapidly the power of noise could be over- or under-estimated, or 
could be tracked with some delay. The shorter the time-span used is, the shorter the tracking 
delay gets. However, the probability of having only speech segments in the observed time-
span increases with the decrease of the time-span. In these cases the noise power will be 
overestimated leading to annoying artifacts, as residual noise and musical noise, after the 
speech enhancement stage. 

To overcome this issue some methods [Sohn, 1998][Cohen, 2003][Rangachari, 2006] 
recursively average the noisy power spectrum based on speech presence probability (SPP). 
The introduction of the soft-decision SPP instead the hard-Boolean-decision from VAD 
improves the estimation of the noise power, especially in low SNR conditions. However, the 
tracking delay could not be eliminated. Thus, recent methods were proposed in order to 
reduce the tracking delay of the estimated spectral noise power for non-stationary noise 
environments.  In [Hendriks, 2008] the subspace DFT approach brings some improvements in 
non-stationary conditions, with the cost of complex computations [Taghia, 2011], when 
comparing it to the MS methods. The minimum mean square error (MMSE)-based methods 
[Yu, 2009] and [Hendriks, 2010] represent an alternative solution, especially the last one 
which is robust to the variations of the noise level and less computationally demanding 
[Taghia, 2011].  

In [Narayanan, 2012] a new SNR estimation method based on computational auditory 
scene analysis (CASA) is proposed. Despite its superior estimation when compared to other 
algorithms it cannot be used for eBSS because of a long processing delay.  

6.1.1   SIGNAL MODEL 

The general approach to noise estimation processes the signals frame-by-frame. The 
DFT is used to transform the time-domain frames into frequency domain. If we consider the 
speech and noise to be additive then the noisy observation in the frequency domain, Y, is 
expressed as: 

      k k kY l S l N l   (6.1) 

where  kS l  and  kN l represent the frequency spectrum of the speech and noise of the l 

frame for the kth frequency bin. In this section, from now on, we will use the short form, 
without k and l, with the exception of the cases where the clarification is mandatory. 
Moreover we will use capital letters for the random variables, lower case letter for their 
realizations and hat symbol for the estimated values. 

Going further, if we consider that the speech and noise are independent and with zero 
mean we can write the following expression: 
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      2 2 2E E EY S N   (6.2) 

where E(∙) denotes the statistical expectation operator. Based on this the spectral power of 
speech and noise, 2

S  and 2
N  respectively, are: 

  22  ES S   (6.3) 

  22  EN N   (6.4) 

The a priori and a posteriori SNR, ξ and γ respectively, are: 

 
2

2
S

N





  (6.5) 

 
2

2
N

y



  (6.6) 

6.1.2   MINIMUM MEAN SQUARE ERROR-BASED NOISE POWER ESTIMATION 

 In the MMSE approach for noise power estimation the distributions of speech and noise 
spectral coefficients is assumed to be Gaussian, as expressed below: 

  
2

2 2

1 expS
S S

s
p s

  

 
  
 
 

 (6.7) 

  
2

2 2

1 expN
N N

n
p n

  

 
  
 
 

 (6.8) 

Combining these, the distribution of spectral noisy signal coefficients is obtained as: 

      

2

2 2

1 exp
1 1Y

N N

y
p n

    

 
  
   

 (6.9) 

For an easier handling we use the polar notation, the complex spectral noise and noisy 
speech coefficients can be expressed as: 

 jN De   (6.10) 

 jY Re   (6.11) 
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Now, the equation (6.8) is transformed into the polar coordinates based on the above 
notations, resulting: 

  
2

, 2 2, expD
N N

d dp d 
 

 
  

 
 (6.12) 

Next, based on the combination of (6.7) and the independence and additivity 
assumptions of the noise and speech the distribution of  | , | ,  Y Dp y d  can be expressed as 

follows: 

     2 2

| , 2 2

2  cos δ θ1 | , expY D
S S

dr r d
p y d 

  

   
  

 
 (6.13) 

The MMSE estimate of the noise power is obtained from the conditional expectation 

 2E | .N y  Applying Bayes’ rule we find 

      
   

2 2
| , ,2 0 0
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| , ,0 0

 | , , d d
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  



 



 

  
 

 (6.14) 

Replacing (6.13) and (6.12) into (6.14) and using [Gradshteyn, 2007 – Eqs. 6.643.2 and 
8.431.5] we can write: 

  
2

2 2 2
ˆ1 ˆE  | ˆ ˆ1 1 NN y y  

 
 

  
  

 (6.15) 

depending on the estimate 2ˆN  and ̂  of spectral noise power and a priori SNR, respectively. 
This form shows that these values have to be estimated in practice, where in general the 
speech signal is less stationary than the noise signal [Martin, 2001]. Assuming that the noise 
power from consecutive frames is correlated then we can use the previous noise power 
spectrum estimation for the current frame in (6.15), as below: 

    2 2ˆ ˆ 1N Nl l    (6.16) 

On the other hand, the a priori SNR is more difficult to estimate because the speech signal 
may vary significantly from one frame to another. Thus, in [Hendriks, 2010] a limited ML 
estimate for the a priori SNR in (6.15) is proposed and then a bias compensation, presented 
in next subsections. 

The final noise power spectral density is computed based on its previous value, the 
current noise periodogram via (6.15) and the smoothing factor α, which in [Hendriks, 2010] 
is set to 0.8. 
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         22 2ˆ ˆ 1 1  E  |N Nl l N y l          (6.17) 

Further on we see that the MMSE is unbiased only if the estimated spectral power of 
noise and speech are the same with their real values. For this we express the expected value 
from (6.15) with respect to Y, 2ˆN  and 2ˆS which leads to: 

     
22 2

2 2 2 2 2 2
2 2 2 2

ˆ ˆ ˆ ˆ ˆE E  | , , 
ˆ ˆ ˆ ˆ 

N S
Y N S S N N

S N S N

N Y  
    

   
 

     
 (6.18) 

if we assume that 2ˆN  and 2ˆS  do not depend on Y, and apply [Gradshteyn, 2007 – Eq. 

3.381.4]. If 2 2ˆS S   and 2 2ˆN N  , then from (6.18) results  

   2 2 2 2ˆ ˆE E  | , , Y N S NN Y     (6.19) 

which proves that the MMSE in (6.15) is unbiased. However, in practice 2 2ˆS S   and 
2 2ˆN N  , which imply the estimator to be biased because   2 2 2 2ˆ ˆE E  | , , Y N S NN Y     [Yu, 

2009][Hendriks, 2010]. 

 
 
MMSE as a VAD 

The MMSE can be seen as a VAD-based noise tracer in the cases when the a priori SNR 
is estimated by means of the limited ML estimate. 

The MMSE solution from (6.15) combines the noisy observation and the previous 
estimated spectral noise, where both of them are weighted. The weightings depend on the a 
priori SNR ̂ and vary between 0 and 1. Hence a soft decision is implied to the solution 

between 2
N  and 2y . However, if a limited ML estimate is used for the a priori SNR, as in 

[Hendriks, 2010], the soft decision will become a hard decision, which will be shown further. 

The limited ML estimate of the a priori SNR is expressed as: 

        ˆ ˆ ˆmax 0, max 0, 1mll l l      (6.20) 

where 

    
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
 (6.21) 
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One argument for the limited ML estimate is that it leads to the computation of the bias 
in an analytic form as in (6.18). Replacing (6.20) into (6.15) results in the following MMSE 
estimator: 

      
 

22 2
2

2 2 2

1        , 1
E  |

                   , 1 .
N N

N

l y l
N y

y y l

 



    
 

 (6.22) 

The above solution can be interpreted as a VAD-based detector. Now there are no 
weightings and the hard decision is taken by direct comparison between the previous estimate 
of the noise power and the noisy observation. 

 
Bias compensation   

As was shown before, the MMSE estimate from (6.15) is unbiased only when the 
estimated values match the true values. However, in practice the estimated values differ from 
the true values and the MMSE estimate is biased. Thus, in order to compensate this we 
compute the bias using [Gradshteyn, 2007 – Eq.3.381.1] and we obtain: 
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 (6.23) 

where  

  
0

2, d
x

tx e t t    (6.24) 

is the incomplete gamma function from [Gradshteyn, 2007 – Eq. 8.350.1]. Assuming the 
spectral noise power is known, 2 2ˆN N  , then the expectation resulted from (6.22) is smaller 

than the true noise variance; when 2
S  is small with respect to 2

N , 2
N  is underestimated 

with B > 1, [Hendriks, 2010]. Therefore, the estimate spectral noise power is compensated by 
the next formula: 

  22ˆ E  | .N N y B   (6.25) 

 
 
Safety net 

In high non-stationary noises the spectral noise power could be significantly different 
from one frame to another. If the noise level suffers an abrupt increase in the next frame, it is 
possible for the spectral noise power tracker to consider this as a speech occurrence. Hence, 
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the estimate spectrum noise power will not be updated correctly. To overcome this situation, 
a safety-net buffer is used [Hendriks, 2010]. The buffer is filled with the last 0.8 seconds of 

noisy speech periodograms, 2y . The final value which estimates the spectral noise power is 

chosen as the maximum value between the current estimation and the minimum value from 
the safety-net buffer, as expressed below: 

         2 22 2ˆ ˆmax , min 1 ,  ,  N Nl l y l M y l       
 (6.26) 

where M is the number of frames from the safety-net buffer. 

This solution assures that the estimate noise power would not stagnate in case of rapidly 
changing noise levels. However, the tracking delay in these cases could not be eliminated.   

 

6.1.3   UNBIASED ESTIMATOR BASED ON SPEECH PRESENCE PROBABILITY 

In the previous section we noticed that the ML estimate can be used for the a priori 
SNR. In this case, the MMSE estimator in (6.15) becomes (6.22) and can be seen as a VAD-
based spectral noise power estimator because it updates the estimated noise only when 

   2 2ˆ 1 .Ny l l   Thus, the resulting estimator is biased. In order to solve this issue, the 

biased compensation in (6.23) is used. 

Introducing a speech presence probability (SPP) instead of the hard-decision implies a 
soft-decision with an unbiased estimator; thus, the bias compensation will not be used. 
Therefore, the MMSE estimator based on the SPP is expressed by: 

          2 2 2
0 0 1 1E  | | E  | , | E  | ,N y P y N y P y N y      (6.27) 

where non-speech is assumed by 0  and speech presence by 1.  

 

Estimation of the SPP 

Under the same assumption as in the previous subsection, which stated that the noise and 
speech coefficients have Gaussian distribution, we express the a posteriori SPP with Bayes’ 
theorem as: 
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The a posteriori SPP cannot be computed without any knowledge about the a priori 
probability models and the likelihood functions of speech absence  

0|Yp y  and speech 

presence  
1|Yp y . In order to solve this issue, we use the following equation: 

    1 01P P    (6.29) 

Moreover, when no observation is available we can assume an equal probability for presence 
or absence of speech. Hence, we leave them as    1 0 0.5P P   . These values are 

considered a worst case assumption [McAulay, 1980]. Contrary to [Cohen, 2003], the fixed 
starting values are not based on any observation. 

An indication about how well the observation y suits the modeling parameters is offered 
by the likelihood functions   

0Y|p y  and  
1Y|p y  in (6.28) for non-speech and speech 

presence. Using the assumption that y is complex Gaussian distributed we express the 
likelihood under the speech presence as: 
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 (6.30) 

and the likelihood under speech absence as: 
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  (6.31) 

We can notice that there is a difference between the distribution  Yp in (6.9) and the 

distribution 
0|  Yp  in (6.30). In (6.9)  represents the true local SNR, while in (6.30) the a 

priori SNR 
1
  represents a model parameter for speech presence.  

The a posteriori SPP can be obtained by replacing (6.30) and (6.31) into (6.28) [Cohen, 
2001] as: 
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 (6.32) 

where in [Gerkmann, 2012] it is assumed that    0 1P P  . Similarly to (6.15), the 

spectral noise power estimate used in (6.28), (6.30) and (6.31) is employed by its previous 
value, as presented in  (6.16).   
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Derivation of  2
0 | ,E N y   and  2

1 | ,E N y   

If we consider the a posteriori SNR expressed by: 
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y
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
  (6.33) 

then equation (6.32) can be solved and the solution will depend on 
1

  and   1 | P y  as 

follows: 
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 (6.34) 

If we choose the optimal a posteriori SNR, proposed in [Gerkmann, 2012] to satisfy  

  11010log 15 dB   (6.35) 

then the a posteriori SNR satisfies ˆ 1   for already  1 | P y >0.075. Therefore, the ML 

estimate of the a priori SNR in (6.20) can be rewritten as: 

 ˆ ˆ 1ml    (6.36) 

when  1 | P y  is large enough due to voice activity. Then we can calculate the optimal 

estimator under speech presence as: 

    2 2 2
1

ˆ ˆ ˆ ˆE  | , , E  | , 1ml
NN y N y        (6.37) 

For the speech absence Y = N resulting: 

    2 2 2 2
0E  | , E  |N y N n n y   . (6.38) 

Now we can use (6.37) and (6.38) to rewrite (6.28) as follows: 

      2 2 2
1 0E  | | | N y P y n P y y      (6.39) 

We notice now that the MMSE estimator based on SPP has a soft weighting. The final 
spectral noise power is computed using the smoothing formula (6.17). 
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Avoiding stagnation 

We noticed earlier that the VAD-based MMSE estimator uses a safety-net buffer to keep 
the updating process of the spectral noise power alive when the noise level faces large 
variations. For the unbiased MMSE estimator based on the SPP similar situations may occur. 
When the 2ˆN  is underestimated, the a posteriori speech presence probability  1 | P y  in 

(6.32) will be overestimated. This leads to a underestimation of   0 | P y   Under these 

circumstances, in (6.39) we can notice that a delay will appear in the noise power estimation. 
Moreover, if 2ˆN is seriously underestimated, then  1 | P y  will tend to 1 and  0 | P y  to 0. 

In this case, the noise power would not be updated. 

To prevent this stagnation, [Gerkmann, 2012] proposes limiting  1 | P y . First we 

compute the smoothed  1 | P y  as: 

       
_ _

10.9 1 0.1 | l l P y l        (6.40) 

If  1 | P y  is greater than 0.99, than we assume that the estimator stopped the update 

process, thus the  1 | P y  will be set to maximum 0.99, as follows: 
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 (6.41) 

With this implementation, the memory is reduced when comparing it with the previous 
safety-net approach. 

 

 

6.2  DISTRIBUTED MULTI-CHANNEL SPEECH ENHANCEMENT 

Over time, the speech enhancement topic caught the attention of numerous researchers. 
The foundation of this field is represented by the single channel speech enhancement 
techniques. They usually aim to increase speech quality by reducing the background noise 
and distortions. In this sense, various techniques based on spectral subtraction [Boll, 1979], 
Kalman filter [Tanabe, 2008], Bayesian estimation [Hao, 2009] [Udrea 2010][Ikuta, 2011], 
wavelet [Lun, 2010] were proposed. 
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The development of electronics technology influenced the speech domain and more and 
more applications increased the number from one to two, or several microphones. When two 
microphones are used, one of them  needs to capture a reference noise. In cases of multiple 
microphones we can discriminate between microphone arrays and distributed configurations. 
While for the microphone arrays the known geometric configuration plays a major role, the 
distributed configurations, where the microphones are placed throughout a large area with 
unknown geometric or spacing information, cannot use such a priori knowledge. Thus, the 
microphone array speech enhancement methods such as [Ven, 1988] and [McCowan, 2001] 
would not work for distributed configurations. However, general models were developed for 
these configurations as well, such as [Lotter, 2003] [Trawicki, 2012], as an extension from 
the single channel, dual channels and microphone arrays. 

 

6.2.1   SYSTEM AND MODELS 

The configuration is called distributed microphones because the microphones are spread 
over large areas like airports, train stations, restaurants, offices etc. In these places, the noise 
level is generally the same and it propagates in all directions. This is called diffuse noise and 
has low correlation between microphones [McCowan, 2001]. Thus, for M distributed 
microphone configuration, each microphone i would receive the corrupted with additive 
noise, attenuated and delayed clean signal. Considering that there is a time delay estimation 
block which will perfectly align the signals, the following equations model results: 

      i i iy t c s t n t   (6.42) 

where   0,1ic   is the attenuation factor and  in t  the additive noise, which affect the clean 

signal   s t . From a frame by frame processing in frequency domain, this is expressed as: 

 
     , , ,i i iY l k c S l k N l k   

         , ,, , ,  ij l k j l k
i i iR l k e c A l k e N l k    

(6.43) 

where l is the frame number and k is the frequency bin. Further in this subsection we will use 
the simplified notation form as: 

 ij j
i i iR e c Ae N    (6.44) 

where the clean and noisy amplitude are represented by A > 0 and iR , iN  is the spectral 

noise, while   and i  stand for the clean and noisy spectral phases. The aim of the 

distributive multi-channel speech enhancement is to estimate the clean signal   s t as accurate 

as possible, denoted by the clean amplitude A and spectral phase .   
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[Lotter, 2003] and [Trawicki, 2012] assume Gaussian and Rayleigh distributions for 
noise and speech likelihood, expressed by:  

 

2

2 2

1( | , ) exp
i i

j
i i

i
N N

Y c Ae
p Y A




 

   
 
 

 (6.45) 
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 (6.46) 

where 2
iN  and  2

S  represent the noise and speech spectral variances. Further we will use the 

diffuse noise assumption, which means that the noise from each microphone is uncorrelated. 
Therefore, the conditional joint distribution of the noisy spectral observation  1, , MY Y is 

computed by multiplying the independent noisy spectral observation, as expressed below: 
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

 
 (6.47) 

 
 

6.2.2  SPECTRAL AMPLITUDE ESTIMATION 

Based on the previous models the MMSE estimate of the short-time spectral amplitude 
(STSA) is obtained as: 

  
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 (6.48) 

Introducing in (6.48) the statistical models from (6.46) and (6.47), we obtain the 
following solution for ˆ

STSAA : 

    

1
22

0 1

1

ˆ 1.5 exp 1 ,
2 2 21

S
STSA M

ii

v v vA v I vI




                             
 (6.49) 

with 
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(6.50) 

where i  represents the a priori SNR, and  0I   and  1I   are the first kind modified Bessel 

function of 0th and 1st order. As we can see in (6.50), v  is computed as the weighting SNR 
sum of the noisy observations, which is then normalized by the a priori SNR sum. For the 
particular case of 1M  , we obtain the single channel STSA estimator in [Ephraim, 1984]. 

 

6.2.3   LOG-SPECTRAL AMPLITUDE ESTIMATION 

Due to the perception characteristic of the ear a log-MMSE estimate was proposed in 
[Ephraim, 1985]. If we apply the previous STSA estimate to it, we obtain the log spectrum 
amplitude (LSA) estimate: 

      1 1exp ln A |  , , exp |  , , ,ˆ
LSA M ME Y Y E Z Y YA        (6.51) 

where 
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and   
1| , , 1|  , ,

MZ Y Y ME A Y Y       represents the moment generation function: 
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Introducing in (6.53) the statistical models from (6.46) and (6.47), we obtain the 
following solution for  

1| , , MZ Y Y  : 
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where 
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and  represents the confluent hypergeometric function equation [Gradshteyn, 
2007 - Eq. 9.210]. 

Finally, the multichannel LSA estimator is obtained after differentiation and followed by 
exponentiation of (6.54) and the ˆ

LSAA  solution is: 
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 (6.56) 

where v  is the same as in (6.50). For the particular case of 1M  , we obtain the single 
channel LSA estimator in [Ephraim, 1985]. 

 

6.2.4   SPECTRAL PHASE ESTIMATION 

The estimation of the spectral phase plays an essential role in the final true source 
reconstruction. Less accuracy for the estimated spectral phase leads to more distortions of the 
optimal STSA and LSA estimators. Thus, to avoid having the estimated spectral phase alter 
the optimal STSA and LSA estimator, we use the constrained optimization formulation, 
regarding to the minimum: 

 
ˆ

2ˆ ˆmin ,   subject to 1.  
j

j j j

e
E e e e



      
 (6.57) 

Using the Lagrange multiplier optimization method, (6.57) is rewritten as follows: 

  2

1,
min , ,  1  subject to 1, j

Mg
E e g Y Y g g


       

 (6.58) 

with 

 ˆ ,j
R Ig e g jg    (6.59) 

where ρ represents the Lagrange multiplier. 

Based on (6.58) we find the solution of the constrained MMSE spectral phase as: 

 1tan  ˆ .I

R

g
g

   
  

 
 (6.60) 

where we make use of the following relationship: 
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Substituting in (6.61) the attenuated spectral amplitude and variance as i iA c A  and 
2 2

iS i Sc  , respectively, we obtain the solution for ̂  as: 
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 (6.62) 

For the particular case of 1M  , with the multichannel STSA and LSA estimators in (6.49) 
and (6.56) respectively, we obtain the popular single channel spectral phase estimator from 
[Ephraim, 1984]. 

6.3   IMPLEMENTED EBSS 

6.3.1   PROPOSED EBSS DESCRIPTION 

Based on the state-of the art [Gerkmann, 2012] unbiased MMSE using speech presence 
probability SNR estimation, an eBSS solution was developed. Assuming that the signals are 
perfectly aligned, the idea of eBSS is to compute the power of each noisy signal and to 
estimate their SNR. Then, the enhanced eBSS solution would be computed as a weighted sum 
of all the input signals in time domain. Thus, the speech quality improvements of this 
approach depend on the SNR estimation accuracy and on the chosen weightings.  

Computing the power of the signals is necessary to adjust all the signals to the same 
level. Hence this is the first weighting operation and each l frame of  jth signal will be 
adjusted by the following weight: 

    
 1

1,
1 ,

M
ii

j
j

P l
w l

P l M
   (6.63) 

where M is the number of channels and  iP l  is the computed power of the lth frame of 

channel i.  

After estimating the SNR of each first-order weighted channel, a second weighting 
operation must be performed. The higher the SNR is estimated on a channel, the higher the 
second weighting gets. Thus, the second weightings are expressed as: 
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where  2
iN l  represents the estimated noise power spectrum of ith channel of frame l, 

computed as in [Gerkmann, 2012]. Using (6.63) and (6.64) we obtain the final weighting of 
the lth frame: 

      1, 2,j j jw l w l w l  (6.65) 

Usually, the processing frames are overlapped, thus for two consecutive frames the 
overlap samples have to be multiplied by one of the two frames weightings. The effect of the 
two consecutive highly different weightings is reduced if the linear smoother combination is 
applied, as expressed below: 

 
 

(6.66) 

where FSizeN  is the frame size, OVLN  represents the number of overlapping samples for the 

frame-by-frame processing of the noisy signal  y k  of the jth channel. Then, the final eBSS 

signal is computed as the average of all weighted signals: 

  
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M
ii
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M
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6.3.2   EXPERIMENTAL RESULTS 

 Several simulated experiments were performed based on the above eBSS description. In 
order to evaluate the speech quality improvements, the Perceptual Objective Listening 
Quality Assessment (POLQA) standard was used with the Mean Opinion Score (MOS). 
Therefore, the POLQA-MOS was calculated for separated noisy signals and for the multi-
channel speech enhancement eBSS.  

The signals used in this experiment were selected from the [Noizeus] database, which 
was already used in this thesis, for TDE experiments in chapter 3. This speech corpus 
contains 8 different noisy variants for each clear signal, this corresponding to M = 8 
channels. Further, the eBSS was computed based on a frame-by-frame processing, with an 
overlap factor of 50% and 256 samples per frame configuration. 

The POLQA-MOS for the eBSS and for the 8 noise corrupted instances at SNR = 0 dB 
of the clean signal are shown in Table 6.1. Another multi-channel speech enhancement was 
also evaluated, which used equal weightings. In fact, this is obtained as the time-domain 
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average of all noisy instances.  We can notice that the eBSS increases the POLQA-MOS 
when comparing it with each noisy instance. However, the average signal leads to a better 
intelligibility score.  

TABLE 6.1 – POLQA-MOS EVALUATION 

Signal POLQA-MOS 
airport 1.61 
babble 1.59 
car 1.66 
exhibition 1.67 
restaurant 1.65 
station 1.61 
street 1.72 
train 1.61 
eBSS 2.46 
equal weightings 2.62 

  

We were expecting the eBSS to perform better than the average signal, because eBSS 
does not use fixed weightings and because it adapts them according to the variations of the 
background noise. The fact that the average signal yields a higher score than eBSS means 
that the eBSS is not accurate enough. This can be explained by the noise power spectrum 
estimation errors, the first and second improper weightings and the linear smoothing. 

As further steps, modifying the weightings calculation could represent a solution to 
improve eBSS. Thus, the first and second weightings in (6.63) and (6.64) could be adapted as 
follows: 
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respectively. This way, the transition from power spectrum to amplitude operations should be 
corrected. 

Another alternative is represented by the SNR estimator. In this experiment the unbiased 
MMSE estimator was used, based on speech presence probability [Gerkmann, 2012]. While it 
assumes that the spectral power distribution is Gaussian for voice, other papers such as 
[Lotter, 2003] and [Trawicki, 2012] assume the voice spectral power distribution to be 
Rayleigh. 
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An unexploited option of the thesis experiments so far is represented by the 
implementation of the recently proposed distributed multi-channel speech enhancement 
[Trawicki, 2012]. 
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7   CONCLUSIONS 

7.1   GENERAL CONCLUSIONS 

The main objective of this thesis was to develop a Best Signal Selection (BSS) method 
for air traffic control systems a in VoIP environment. This main target can be split into the 
following tasks: time delay estimation (TDE) and voice activity detection (VAD). For the 
VoIP environment, the TDE is an important issue due to the fact that the received signals 
arrive with variable delay for each new communication. Thus, the delays have to be estimated 
as accurately as possible in order to align the signal for further processing. The second task, 
VAD, has been correlated in this thesis with speech intelligibility in order to derive BSS 
solutions.  

Regarding the TDE for BSS topic from the air traffic management and control systems it 
has shown that only the generalized cross-correlation (GCC) TDE method can provide a 
useful real-time solution. Other methods, such as adaptive filtering, adaptive eigenvalue 
decomposition, difference functions or wavelet-based TDE methods are not appropriate for 
this kind of applications. 

 Therefore, in chapter 3 of this thesis, the traditional GCC-TDE methods were evaluated. 
Moreover, the evaluation was extended by applying the accumulated cross-power spectrum 
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technique for all well-known GCC functions in case of a multi-frame processing scheme. The 
experiments were performed using the standard Noizeus database.  

The analysis showed that, after proper calibration, the ρCSP and the ρCSPC methods 
provide the lowest error rate, with a little advantage for the first one. CPS-m, CC, CSP and 
HB have reasonable error rate results. Under the same circumstances, the other methods like 
Eckart, ROTH, SCOT, HT (ML) and Wiener do not provide acceptable error rate results. 
Regarding the processing time, the normal cross correlation is the faster method, as it does 
not compute any weighting. On the opposite side, ρCSPC has to perform many time-
consuming operations to calculate the weighting function, which results as the slowest one. 
Among the three schemes presented in chapter 2 and 3, the first one, which analyzes the 
signals using one large frame, is the slowest, but it offers the highest accuracy. The second 
scheme, which works over multiple frames of fewer samples averaging the final estimate in 
time domain, is a little faster, but does not provide any usable accuracy results. The third 
scheme works on smaller frames, similar to scheme 2, but it accumulates the cross-power 
spectrum in frequency domain. This leads to a good accuracy and it is also the fastest 
processing scheme. 

The results in chapter 3 could be used for a better decision regarding the implementation 
of GCC methods, based on the application demands. It was also proved that acc-ρCSP could 
be successfully used for the TDE issue, to realign the received signals in the VoIP 
environments of the ATM-VCS.  

Moreover, for expected delays which are comparable with the available analysis 
window, it is recommended to use a single large frame implementation. But if the expected 
delays are much smaller than the available analysis window, a faster solution is the 
accumulation scheme of the cross-power spectrum in frequency domain. Each of these 
schemes can be efficiently implemented to provide solutions for realigning noisy signals in 
applications such as speech enhancement, echo canceling, seismic and medical processing, 
radar and sonar localization, and pattern detection.  

Regarding the BSS solutions, the correlation between speech intelligibility and VAD 
scores of different algorithms was analyzed in chapter 5. The experimental results showed 
that wavelet-based VAD [Wu, 2006] and long-term spectral flatness measure (LSFM) VAD 
[Ma, 2013] could be used to obtain new accumulated speech activity measures. These new 
measures are proposed in this thesis as solutions for the BSS problem.  

In chapter 5 a new proposal for the VAD and BSS solution was also analyzed, the 
smoother sub-band spectral flatness measure (3SFM). This new feature, which combines 
LSFM and maximum values sub-band SNR (MVSS) from [Jiang, 2010], can be tuned for 
VAD or for accumulated speech activity measure. Besides the previous two proposals for the 
BSS problem, the 3SFM also provides a good correlation between speech intelligibility and 
VAD score; therefore, it could be used in ATM-VCS. 

Besides the main objective, a secondary one attracted my interest. This is the enhanced 
BSS (eBSS), which should be obtained from a multi-channel speech enhancement  approach. 
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It should offer a more intelligible signal than the normal BSS, based on all received signals. 
Considering that the input signals are aligned, a solution for eBSS was proposed in chapter 6, 
based on the state of the art SNR estimation [Gerkmann, 2012], followed by two weighting 
and smoothing operations. Despite the fact that the proposed eBSS solution increased speech 
intelligibility, measured by POLQA-MOS, the increase was not as high expected. Thus, this 
task remains open for improved solutions.  

7.2   PERSONAL CONTRIBUTIONS 

My personal contributions can be found in chapters 3, 5 and 6 of this thesis and are 
summarized as follows: 

a)  Two new GCC-TDE methods for multi-frame analysis were proposed, acc-ρCSPC 
and acc-ρCSP. They are based on cross power-spectrum phase (CSP) combining 
previous efficient methods that use accumulating cross power spectrum, whitening 
and coherence; 

b)  The accumulation principle for multi-frame analysis TDE was extended for the rest of 
8 well-known GCC functions, such as normal correlation, Eckart, Roth, SCOT, HB, 
CPS-m, HT, and Wiener; 

c)  The GCC-TDE methods implemented in various schemes were characterized in detail, 
with regards to the accuracy and error rate, relative error and standard deviation of 
relative error; 

d)  The processing time results and implementation aspects in different schemes of all 11 
well-known GCC-TDE methods were presented, compared and discussed; 

e)  A solution to realign signals from air traffic management and control systems in VoiP 
environment was developed, for further BSS or eBSS, based on the acc-ρCSP; 

f)  The correlation between VAD scores and speech intelligibility was analyzed; 

g)  Three BSS solutions were proposed the accumulated speech activity envelope, the 
accumulated long-term spectral flatness measure and the accumulated smoothed sub-
band spectral flatness measure. These measures can be used to decide between 
several signals, which offers the best speech intelligibility; 

h)  A new VAD algorithm was proposed, smoothed sub-band spectral flatness measure, 
based on maximum values of sub-band SNR and long-term spectral flatness measure. 
From this VAD the third BSS solution was derived;  

i)  An eBSS solution for air traffic management and control systems in VoIP environment 
was proposed, based on acc-ρCSP TDE, unbiased SNR estimation based on speech 
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presence probability with fixed priors, followed by two weighting and smoothing 
operations.  

7.3   FUTURE WORK 

The author of this thesis is interested in continued the work which was not concluded. 
Thus, regarding the TDE issue, the future work will involve analysis of CPS-m and acc-CPS-
m. Better accuracy results are expected after a proper calibration for m; therefore, a study 
around this value is needed. 

The VAD problem remains open for further developments, which can be used in air 
traffic management and control systems from VoIP environment, and also for other 
applications. The research and development work in this area could also provide a better BSS 
solution.  

Regarding the multi-channel speech enhancement, the proposed eBSS solution in chapter 
6 did not lead to the anticipated results. Therefore, it is expected that the current eBSS 
solution will be improved by adjusted weighting and smoothing methods. The distributive 
multi-channel speech enhancement approach was not experimentally exploited until now, so 
it naturally demands further attention.  

Finally, I have to admit that work on this thesis triggered my interest for research in the 
field of digital signal processing. Thus, besides the above concrete future tasks, I will happily 
embrace further research in this field.    
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separated variants. Another key finding is that the TDE based on accumulation of cross-power 
spectrum is at least twice as accurate as the TDE based on time domain averaging. 

 

 

2. [Marinescu, 2013b] Marinescu, R.S., Buzo, A., Cucu, H., Burileanu, C,. “Fast Accurate Time 
Delay Estimation Based on Enhanced Accumulated Cross-Power Spectrum Phase”, 21st 
European Signal Processing Conference (EUSIPCO 2013), Marrakesh-Morocco, Sep. 2013. 

 
The problem of time delay estimation (TDE) has many approaches and a large field of applications, 
making it an important research issue. For specific air traffic control systems, time delay estimation is a 
primary step for speech enhancement. In this paper we introduce two new TDE methods, based on 
cross power-spectrum phase (CSP), combining previous efficient methods that use accumulating cross 
power spectrum, whitening and coherence. We show that the proposed methods bring an accuracy 
improvement of more than 5%, while being 5% to 20% faster. 

 

 

3. [Marinescu, 2013c] Marinescu, R.S., Buzo, A., Cucu, H., Burileanu, C., “Extensive Evaluation 
Experiments for the Accumulated Cross-Power Spectrum Methods for Time Delay 
Estimation”, 7th International Conference on Speech Technology and Human-Computer 
Dialogue (SpeD 2013), Cluj-Napoca – Romania, Oct. 2013. 

 
In numerous real time signal processing applications, time delay estimation (TDE) is still a hot topic. A 
recently proposed solution, based on Generalized Cross Correlation (GCC) method, is evaluated further 
in this paper. Experimental results show that among traditional variants of GCC methods the 
accumulated ρ-cross power spectrum phase proposed by us is the most accurate. Another important 
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aspect is that the computing time of this method is comparable with those of other popular GCC 
methods. 

 

 

4. [Marinescu, 2013d] Marinescu, R.S., Buzo, A., Cucu, H., Burileanu, C.,  “Applying the 
Accumulation of Cross-Power Spectrum Technique for Traditional Generalized Cross-
Correlation Time Delay Estimation”, International Journal On Advances in 
Telecommunications – IARIA, accepted invited paper, Sep. 2013. 

 
In many real time applications, time delay estimation requires a special solution. Despite the various 
approaches which were proposed over the years, the topic remains hot for digital signal processing 
because of its large field of applications and implementation forms. Among different classes of 
methods for this issue, general cross-correlation method is wildly used. It offers good results and does 
not need an adaptation time, like those based on adaptive filtering. In this paper, we make a survey and 
compare the most popular generalized cross-correlation methods. We extend the analysis, by applying 
the accumulation of cross-power spectrum technique, for all well known generalized cross-correlation 
methods. The comparisons are provided by detailed numerical and simulation analysis, using several 
metrics. Based on the accuracy rate, error rate, standard deviation of relative error and computing time 
we provide new considerations for traditional generalized cross-correlation methods. 

 

 

5. Marinescu, R.S., Burileanu, C., “Voice Activity Detection for Best Signal Selection in Air 
Traffic Management And Control Systems”, ICASSP 2014, submitted paper 

 
The Best Signal Selection (BSS) in air traffic management and control systems has to decide among 
several signal instances of the same source which one offers the highest speech intelligibility. In these 
systems, the source signal is not available, thus, objective speech quality tests could not be used. 
However, information with regards to the speech quality could be obtained from the score of voice 
activity detection (VAD) algorithms. In this paper the correlation between speech quality and the score 
of VAD algorithms is analyzed. The results showed that the VAD score-based methods do not saturate 
for higher SNR, as the Perceptual Evaluation of Speech Quality (PESQ) does. A new VAD algorithm 
as a solution for the best signal selection problem is also proposed. 
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