
 

University “Politehnica” of Bucharest 

Faculty of Electronics, Telecommunications and Information Technology 

 

 

 

 

Automation System based on  

Microcontrollers 

 

Diploma Thesis 

submitted in partial fulfillment of the requirements for the Degree of 

Engineer in the domain Electronics and Telecommunications, study 

program Technology and Telecommunication Systems 

 

 

 

Thesis Advisor     Student 

Prof. Ph. D. Corneliu BURILEANU        Elena Diana ȘANDRU 

 

 

 

2014 

  



 

  



 

 
 

  



 

  



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
Copyright © 2014, Elena Diana ȘANDRU 

 

All rights reserved. 

 

 

 

 

The author hereby grants to UPB permission to reproduce and to distribute publicly 

paper and electronic copies of this thesis document in whole or in part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

  



 

 

 

 

 

 

TABLE of CONTENTS 

 

 

 

 

 

LIST of FIGURES ............................................................................................................................. 11 

LIST of TABLES ............................................................................................................................... 13 

LIST of ACRONYMS ....................................................................................................................... 15 

INTRODUCTION ............................................................................................................................. 17 

CHAPTER 1 ...................................................................................................................................... 21 

NAO – Autonomous Humanoid Robot .............................................................................................. 21 

1.1 NAO’s General Characteristics ................................................................................................ 22 

1.2 Hardware Features and Mechatronic Design ........................................................................... 23 

1.3 Software Characteristics .......................................................................................................... 30 

CHAPTER 2 ...................................................................................................................................... 33 

Automatic Speech Recognition .......................................................................................................... 33 

2.1 Fundamentals of Speech Signal Formation ............................................................................. 34 

2.1.1 Mechanism of Speech Production ..................................................................................... 34 

2.1.2 Phonetic Characteristics .................................................................................................... 35 

2.2 ASR Architecture ..................................................................................................................... 37 

2.2.1 Acoustic Modeling ............................................................................................................ 38 

2.2.1.1 Acoustic features extraction ....................................................................................... 39 

2.2.1.2 HMM framework ....................................................................................................... 42 



 

2.2.2 Phonetic Modeling ............................................................................................................ 45 

2.2.3 Language Modeling .......................................................................................................... 45 

2.3 ASR Evaluation........................................................................................................................ 48 

CHAPTER 3 ...................................................................................................................................... 49 

Speech Recognition Application ........................................................................................................ 49 

3.1 Architectural Solution .............................................................................................................. 50 

3.2 Choregraphe Programming ...................................................................................................... 52 

3.3 NAO’s Behavior ...................................................................................................................... 55 

3.3.1 Deployment ....................................................................................................................... 55 

3.3.2 User Interface and Experience .......................................................................................... 65 

CHAPTER 4 ...................................................................................................................................... 67 

Client – Server Application................................................................................................................ 67 

4.1 Client-Server Architecture and Communication Protocol ....................................................... 68 

4.2 Java Mail .................................................................................................................................. 71 

4.3 The Server – Language, Phonetic and Acoustic Resources ..................................................... 72 

4.4 The Client Application ............................................................................................................. 73 

4.4.1 Implementation ................................................................................................................. 73 

4.4.2 User Experience ................................................................................................................ 80 

CONCLUSIONS ................................................................................................................................ 83 

REFERENCES................................................................................................................................... 87 

APPENDIX 1 ..................................................................................................................................... 89 

APPENDIX 2 ..................................................................................................................................... 91 

APPENDIX 3 ..................................................................................................................................... 97 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

LIST of FIGURES 

 

 

 

 

Figure 1.1 Aldebaran – Robotics NAO humanoid robot [3] .............................................................. 22 
Figure 1.2 NAO’s motors [5] ............................................................................................................. 25 

Figure 1.3 ATOM Z530 diagram [6] ................................................................................................. 27 
Figure 1.4 NAO’s electronics architecture ........................................................................................ 29 

Figure 1.5 NAOqi Platform ............................................................................................................... 30 

Figure 1.6 NAOqi library [7] ............................................................................................................. 31 

Figure 1.7 Broker-Modules-Methods [3] ........................................................................................... 32 
Figure 2.1 Schematic of speech apparatus [13] ................................................................................. 34 
Figure 2.2 ASR System Architecture [8] ........................................................................................... 38 
Figure 2.3 Uttered sentence “Campionatul mondial de fotbal 2014 are loc in Brazilia” .................. 39 

Figure 2.4 Spectrogram of the signal presented in figure 2.3 ............................................................ 40 
Figure 2.5 Block diagram for MFCC’s computation [8] ................................................................... 42 
Figure 2.6 Simplified architecture of the decoding process in an ASR ............................................. 42 
Figure 2.7 HMM – parameterized stochastic finite state automaton ................................................. 43 
Figure 3.1 Architectural solution ....................................................................................................... 51 

Figure 3.2 Box Library....................................................................................................................... 52 
Figure 3.3 Move To macro-block – icon and parameters .................................................................. 53 
Figure 3.4 Move To – Script editor.................................................................................................... 54 
Figure 3.5 Automation System Timeline Box ................................................................................... 55 

Figure 3.6 Automation System Frame Ruler ..................................................................................... 56 
Figure 3.7 Record KeyFrame ............................................................................................................. 56 
Figure 3.8 SendE KeyFrame .............................................................................................................. 57 

Figure 3.9 Send E-mail parameters .................................................................................................... 58 
Figure 3.10 Wait KeyFrame ............................................................................................................... 59 
Figure 3.11 RetrieveE KeyFrame ...................................................................................................... 60 
Figure 3.12 Retrieve E-mail parameters ............................................................................................ 60 
Figure 3.13 Retrieve E-mail initial output ......................................................................................... 61 
Figure 3.14Mergi un metru Box ........................................................................................................ 62 

file:///S:/Thesis/LICENTA/DiplomaThesis_DianaElenaSandru.docx%23_Toc392189971


 

Figure 3.15 Misca mana dreapta Box ................................................................................................ 62 
Figure 3.16 Stai jos Box ..................................................................................................................... 63 

Figure 3.17 Learn Face behavior ....................................................................................................... 64 
Figure 3.18 Cine sunt eu Box............................................................................................................. 64 
Figure 3.19 Choregraphe connecting to NAO [19]............................................................................ 65 
Figure 4.1 Client – Server architecture [20] ...................................................................................... 68 

Figure 4.2 TCP/IP model ................................................................................................................... 69 
Figure 4.3 Client – Server message ................................................................................................... 70 
Figure 4.4 Mail-enabled part of the application ................................................................................. 71 
Figure 4.5 MainApplication and TranscriberClient link .................................................................... 75 
Figure 4.6 E-mail message construction ............................................................................................ 77 

Figure 4.7 Start of the application and connect to the POP3 server .................................................. 80 
Figure 4.8 Application checks new e-mails ....................................................................................... 81 
Figure 4.9 Application detects a new e-mail ...................................................................................... 81 
Figure 4.10 Fetched e-mail details ..................................................................................................... 81 
Figure 4.11 Response of the server .................................................................................................... 82 

  



 

 

 

 

 

 

LIST of TABLES 

 

 

 

 

Table 1.1 List of NAO’s sensors ........................................................................................................ 23 

Table 1.2 Position of Motors [5] ........................................................................................................ 26 
Table 1.3 NAO’s DOFs [5] ................................................................................................................ 28 

  

 

 



 



 

 

 

 

 

 

LIST of ACRONYMS 

 

 

 

 

A 

ABS-PC = Acrylonitrile Butadiene Styrene  

Polycarbonate 

API = Application Programming Interface 

ASR = Automatic Speech Recognition 

 

C 

CPU = Central Processing Unit 

 

D 

DCM = Device Control Manager 

DFT = Discrete Fourier Transform  

DOF = Degree Of Freedom 

F 

FSR = Finite State Grammar 

FSR = Force Sensitive Resistors 

 

G 

GMM = Gaussian Mixture Models 

 

H 

HMM = Hidden Markov Model 

 

I 

IFT = Inverse Fourier Transform 

IMAP = Internet Message Access Protocol 



 

L 

LAN = Local Area Network 

LM = Language Model 

LPC = Linear Predictive Coefficients  

 

M 

MFCC = Mel-Frequency Cepstrum Coefficients  

MP = Mega Pixels 

MRE = Magnetic Rotary Encoder 

 

N 

NSR = Network-based Speech Recognition 

 

O 

OOV = Out Of Vocabulary 

 

P 

PA-66 = PolyAmide 66 

PC = Personal Computer 

PCM = Pulse Code Modulation 

PDF = Probability Density Function 

PLP = Perceptual Linear Prediction  

PNG = Portable Network Graphics 

POP3 = Post Office Protocol version 3 

 

S 

SER = Sentence Error Rate 

SMTP = Simple Mail Transfer Protocol 

SOC = System-On-Chip 

SSL = Secure Sockets Layer 

 

T 

TCP = Transmision Control Protocol 

 

W 

WAN = Wide Area Network 

WAV = Wave Audio File Format 

WEP = Wired Equivalent Privacy 

WER = Word Error Rate 

WPA = Wi-Fi Protected Access 

 

X 

XML = eXtensible Markup Language 

 



17 

 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

Our world is constantly changing and evolving and the technological developments are 

increasing spectacularly. Phrases such as “Century of Speed” or “Information Century” are well 

known nowadays; the reality is that we live in an era in which, at first, man became dependent on 

machines due to their ability to facilitate work. Currently, the population growth, the need for 

communication, globalization, scientific developments have led this man dependency on technology 

to another level. The challenge of having a society life, rest periods or the help needed with daily 

chores, pushed technology as indispensable in daily life. 

Soon, the lack of time has become a major problem, together with the human convenience, 

so they tried to simplify interaction with machines, to make it faster and easier. So did the idea of 

voice control and automatic speech recognition (ASR) appeared; nowadays, the speech recognition 

feature is available on more and more devices. Smartphones, tablets, wearable devices respond to 

the voice commands people spoke. This feature is gaining popularity and specialists predict that in 

the future every interaction with a machine will be based on vocal commands, due to its natural 

characteristics. 

At the same time, man is regarded as a social being, a being who likes to be surrounded by 

other people, or in the last decade of intelligent machines that behave humanly and resembles the 

human body. So, the development and evaluation of interactive humanoid robots that communicate 

with humans and are designed to participate in human society as partners was the next step of 

technological evolution. 



18 

 

Field of speech recognition has been extensively developed by the international scientific 

community, such as performing ASR systems have been implemented for many languages. The 

particularities of the Romanian language made very difficult the development of an efficient ASR; 

considerable effort to acquire the necessary resources for Romanian language was made by the 

Speech and Dialogue Research Laboratory team. Thus, an ASR was designed and implemented for 

our native language. 

NAO is a biped autonomous humanoid robot, developed by Aldebaran Robotics. It was first 

released in 2006 and with each generation, it evolved to become everybody’s friend, as Aldebaran-

Robotics says about it [3]. Aldebaran created NAO to be a true daily companion; its humanoid 

shape, its behavior and its face features recommends it as a great tool for smart houses and even 

more. NAO was built as a research humanoid robot, but the latest versions were improved in order 

to make it suitable for homes; the company tagline is “One NAO in every home”. 

Thus, combining two important technological trends nowadays, namely the Automatic 

Speech Recognition for Romanian language and NAO, the humanoid robot, is the strongest 

motivation for choosing the theme of this thesis. 

Following the observations made above, the main objective of this thesis is designing and 

implementing the architectural solution and the necessary applications for NAO to respond to voice 

commands spoken in Romanian language. In order to do this, a number of specific objectives were 

considered: 

 Understanding of the construction principles of the existing ASR, as 

well as the communication protocol between any client and the server on which ASR 

is implemented, and the creation of models (acoustic, phonetic, linguistic) for the 

proposed solution 

 Setting the optimum principle of the robot programming. 

 Developing the auxiliary application that links the robot and the 

server. 

This thesis is structured in four chapters; first two shows the theoretical aspects of an ASR 

and the engineering and programming particularities of NAO. The last two chapters reveal the 

author's contribution to the development of the practical part of this thesis. The personal 

contribution can be summarized as follows: 

 Creating an achievable architectural solution for the main objective; 

 Establishing the commands list for NAO, given the particularities and 

the performances of the ASR; 

 Deciding the proper solution to be implemented on the robot – a 

timeline behavior; 

 Designing and creating the Choreographe behavior 

(AutomationSystemSpeechRecognition.crg), application running on NAO and 

making it perform the following actions: record the vocal command, send it through 

e-mail (as an attachment) to a certain recipient, wait while the speech-to-text 

transcription is conducted, fetch the e-mail for the command sent as plain text, 

perform the indicated action; 



19 

 

 Deciding the use of a reliable programming language for the 

application development; 

 Designing and creating a Java application (MainApplicatin.java) with 

the following capabilities: access the e-mail server (corresponding to the recipient 

account), fetch the e-mail message that was previously send by the robot and save 

the attachment (representing in fact the vocal command), send data to the server 

(using the existing protocol), receive the transcription of the vocal command 

(transmitted data) and send via e-mail plain text message the speech-to-text sequence 

back to the robot; 

  Adapting the existing communication protocol to the server and the 

existing application to the MainApplication.java. 

 

 

 

 

 

 

 

  



20 

 

  



21 

 

 

 

 

 

 

CHAPTER 1 

 

NAO – Autonomous Humanoid Robot 

 

 

 

 

 A humanoid robot is in fact a robot having the shape similar to the human body. Various 

reasons can be declared regarding this feature, but the most important ones will be highlighted: the 

humanoid design has functional purposes (interact with human tools) and experimental purposes 

(study the bipedal locomotion and other features of the human body) [1]. 

 Recent research concentrated also on androids, humanoid robots that resemble perfectly the 

human body and also act like a human. These realistic robots are no longer related to the science 

fiction domain, as they were two decades ago.  

 The term “autonomous” refers to the ability of the robot to perform several tasks with a 

certain degree of autonomy; autonomy means independence of control. Furthermore, it represents a 

property of the relation between the designer and the autonomous robot. Self-sufficiency, learning 

or development, and evolution increase an agent’s degree of autonomy [2]. 

 NAO is a biped autonomous humanoid robot; its body consists of two arms, one head, a 

torso and of course, two legs. NAO’s construction along with the NAOqi operating system make 

NAO a versatile robot, used in several domain such as education or medicine. 

http://en.wikipedia.org/wiki/Autonomous_robot


22 

 

1.1 NAO’s General Characteristics 

 

 NAO is a 58-cm tall humanoid robot. It was first released in 2006 and with each generation, 

it became better and better, evolving to become everybody’s friend, as Aldebaran-Robotics says 

about it [3]. Aldebaran created NAO to be a true daily companion; its humanoid shape, its behavior 

and its face features recommends it as a great tool for smart houses and even more. 

 

 

 

Figure 1.1 Aldebaran – Robotics NAO humanoid robot [3] 

 

 As figure 1.1 shows, NAO resembles very accurate the human body. This innovative robot 

is lightweight, compact and can be also cataloged as a mobile robot. Two important characteristics 

that distinguish NAO from other existing humanoids are the very mobile joints and the pelvis 

kinematics design.  

 Another important feature is represented by the domains in which it can be used. NAO is 

currently used in the education field in over 70 countries, in 300 universities; the research domains 

that use NAO are also expanding nowadays. The next stage for NAO is to be included in every 

home, as a help for the parents, as a friend for the kids, as an interface with the new concept of 

smart homes. This robot was designed to be affordable without sacrificing quality and performance 

[4]. 



23 

 

1.2 Hardware Features and Mechatronic Design 
  

 NAO can be characterized by the following words: affordability, modularity and 

performance, from hardware point of view. NAO’s hardware platform has been built from the 

ground by the company engineers.  

 

A. CONSTRUCTION and ELECTRICAL Features 

NAO’s dimensions are: 574x275x311mm, while its weight is around 5.2 kg. The 

construction material is a combination between ABS-PC and PA-66; the Polycarbonate-ABS is 

widely used in industry and has the advantage of being flexible (ABS) but without losing strength 

(PC), while Polyamide 66 is a versatile thermoplastic [5]. Dimensions and weight influence directly 

the motion performance. 

BMI = 
           

           
  

   

    
       (1.1) 

As it can be seen in equation 1.1, NAO’s BMI is around 4.56 which makes it very light 

compared with other competitors (so it is less susceptible to breakdown). NAO is equipped with a 

Lithium-Ion battery, providing a 48.6Wh; front the autonomy point of view, it can be further 

improved. The data regarding this feature are the following: 60 minutes –  active use and 90 

minutes – normal use. 

B. SENSORS 

All humanoid robots are equipped with sensors; these devices help it to communicate to the 

environment, measuring some attributes of the surrounding areas. The sensors fall into two 

categories: 

 Proprioceptive – orientation, speed and position of the robot. 

 Exteroceptive – tactile, sound and vision sensors. 

Sensor type No. of sensors on NAO 

Camera 2 

Speaker 4 

Microphone 2 

FSR 8 

MRE 36 

Gyrometer 1 

Accelerometer 1 

Infrared sensor 2 

Ultrasonic sensor 4 

Contact sensor 9 
 

Table 1.1 List of NAO’s sensors 

 



24 

 

Table 1.1 lists the sensors that are integrated in NAO. In the following pages, all of them 

will be detailed. 

 Vision 

NAO is equipped with 2 cameras, characterized by MT9M114, System-On-Chip (SOC) 

image sensor; the resolution is about 1.22MP. The cameras have integrated both functions: 

recording and taking picture. The picture format in PNG, lossless image compression format, while 

for video recording the frames per seconds depend on resolution and in the case of video stream, 

strongly dependent on the speed of the communication standard (Gigabit Ethernet, 100Mb Ethernet, 

Wi-Fi). The main disadvantage of the vision feature is represented by the placement of the 2 

cameras (on the forehead). This leads to the vision impossibility in the case of very close objects. 

 Audio 

The audio feature includes 2 speakers and 4 microphones, all placed on the head. The 

frequency range for microphones is 150Hz-12kHz, while for speakers is up to 20kHz.  

 Sonar 

The robot has 2 ultrasound devices (emitter and receiver) situated in chest. They provide 

space information, the detection range being between 0.05 meters up to 3 meters, if an object is 

situated at 30 degrees from the robot chest (60 degrees all cone combining both devices). The 

assembly works at a frequency of 40 kHz. 

 IR 

Device IR is divided in two parts, the infrared (IR) emitter and the infrared sensor. It emits 

and detects at a wavelength equal to 940 nm, at an angle of +/- 60 degrees. 

 Inertial Unit 

NAO has a gyrometer and an accelerometer. These sensors are two important devices when 

we are talking about motion, helping us to find if the robot is in a stable position or in unstable one 

when is walking. The accelerometer measures the proper acceleration, while the gyrometer 

(gyroscope) measures orientation, based on the angular momentum principles. Both devices have 3 

axes and a precision from 1 to 5 %. 

 FSR 

Force Sensitive Resistors sensors are made from a material whose resistance is changing 

when applying a force, most of the time a conductive polymer. FSR are used to create pressure-

sensing areas, NAO having 4 of them on each foot. The force range of a FSR is 0-110 N. 

 Position 

The position sensors integrated in NAO are called Magnetic Rotary Encoder (MRE). The 

principle is the following: the magnetic sensor reads the position of the encoder, established by the 

position of the two or more magnetic poles. 

 



25 

 

 Contact 

The contact sensors are reunited into: Chest Button, Foot Bumper, Tactile Head and Tactile 

Hand. All these sensors let us know if the robot is touching something, in different parts of its body 

(such as foot, head or hand). 

 

C. ACTUATORS 

The actuators are the motors in charge with the movement of the robot. For the humanoid 

robots, the actuators act like muscles and joints. NAO’s motors are DC motors and figure 1.2 shows 

their location. The legend is the following one: Joint Name [Motor Type] [Reductor Type]. 

Everything will be detailed in table 1.2. 

 

 

 

Figure 1.2 NAO’s motors [5] 

 

 

 

 



26 

 

   Joint Name  Motor 

Head Joints HeadYaw Type 3 

 HeadPitch Type 3 

Arm Joints ShoulderPitch Type 3 

 ShoulderRoll Type 3 

 ElbowYaw Type 3 

 ElbowRoll Type 3 

 WristYaw Type 2 

 Hand Type 2 

Leg Joints HipYawPitch Type 1 

 HipRoll Type 1 

 HipPitch Type 1 

 KneePitch Type 1 

 AnklePitch Type 1 

 AnkleRoll Type 1 
 

Table 1.2 Position of Motors [5] 

 

NAO’s motor type can fall into 3 categories: 

 Type 1 – speed: 8300rpm ±10% and stall torque: 68mNm±8% 

 Type 2 – speed: 8400rpm ±12% and stall torque: 9.4mNm±8% 

 Type 3 – speed: 10700rpm ±12% and stall torque: 14.3mNm±8% 

It can be observed that Type 1 represents a powerful motor, able to sustain the entire body of 

the robot, that’s why this type is used for the legs; furthermore, its speed is not very big, the main 

reason being the fact that it must be able to provide stability, not speed. The head, the shoulders and 

the elbows are used very much in most of the actions and the motors used for these areas must 

confer a higher speed and a better torque compared to the ones used for wrists and hands. 

D. MOTHERBOARD 

NAO has two CPUs: one located in the head, which runs a Linux kernel and another one 

located in the torso. 

The first CPU, the one located in the head is equipped with an Intel ATOM Z530 processor, 

45nm Core dimension, with 512KB cache memory, based on x86 architecture. The clock speed is 

1.6GHz, and the Front Side Bus (the one connecting the CPU to the Northbridge) is 533MHz. The 

instruction set is 32-bit and the microcontroller supports the Intel System Controller Hub (Intel® 

SCH), being a single-chip component designed for low-power operation, but still a single-core 

processor for mobile devices offering enhanced performance. [6] 

 ATOM Z530 is a powerful microcontroller and the ratio between performances and price is 

very good. Its main advantages can be the fact that is power efficient and it also supports hardware 

acceleration of virtualized applications, being an ultra-low-voltage CPU. This microcontroller is 

based on the Bonnell microarchitecture, being able to execute up to two instructions per cycle. It 

http://en.wikipedia.org/wiki/Bonnell_(microarchitecture)


27 

 

translates the CISC instructions into simpler internal operations (RISC instructions) prior to 

execution. 

 

 

 

Figure 1.3 ATOM Z530 diagram [6] 

 

The second CPU is an ARM7TDMI microcontroller that controls the actuators, by 

distributing information to all actuators module microcontrollers. ARM7TDMI is a 32-bit 

embedded processor, widely used in nowadays designs. One of its advantages is the fact that 

supports 16-bit instructions via the ARM and Thumb instruction sets. 

The actuators module microcontrollers are Microchip 16-bit dsPICS and the communication 

between second CPU and them is performed through two RS485 buses: one that connect 

ARM7TDMI and the upper part and another one for the lower part of the body (throughput of 

460Kbps). 

The ARM7TDMI microcontroller communicates with the CPU board through a USB-2 bus 

with a theoretical throughput of 11Mbps. 

E. DOF 

The Degree Of Freedom (DOF) represents the number of independent parameters that define 

the robot design (state). NAO has 25 DOFs, divided as table 1.2 shows: 11 for the lower part (legs 

and pelvis) and 14 for the upper part (head, arms and hands): 

 

 

 

http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer


28 

 

 

Location No. of DOFs 

Head 2 

Arm 5 (in each) 

Leg 5 (in each) 

Hand 1 (in each) 

Pelvis 1 
 

Table 1.3 NAO’s DOFs [5] 

 

Each leg has 2 DOFs at the ankle, 1 DOFs at the knee and 2 DOFs at the hip, and each arm 

features 2 DOFs at the shoulder, 2 DOFs at the elbow, 1 DOFs at the wrist and 1 additional DOF 

for the hand’s grasping. The head can rotate about yaw and pitch axes [4].  

F. CONNECTIVITY 

NAO currently supports Wi-Fi and Ethernet, the most widespread network communication 

protocols. It is compatible with the IEEE 802.11b/g/n Wi-Fi standard and can be used on WPA (Wi-

Fi Protected Access) and WEP (Wired Equivalent Privacy) networks, requiring no Wi-Fi setup 

other than entering the password. Regarding Ethernet, the robot is fitted with a RJ-45 plug, 

accepting 3 adaptations: 10/100/1000 BASE T, (speeds of 10Mbps, 1000Mbps or 1Gbps and 

twisted pair cable - the pair of wires for each signal is twisted together to reduce radio frequency 

interference and crosstalk between pairs). 

Figure 1.4 sums up the entire hardware (from electronics point of view) structure of the 

robot, including the links between sensors/actuators and microcontrollers. The main components are 

the microcontrollers: 

 CPU Board located inside the head 

 ARM Microcontroller placed in the chest 

 dsPICs Microcontrollers present next to the actuators. 

The figure displays the area of influence of each component from the above. From example, 

the ARM microcontroller is in charge with commanding the dsPICs, which command further the 

motors. Linked to the CPU are the components regarding vision, audio, IR, connectivity and LEDS. 

dsPIC microcontrollers are related to the motors, MRE sensors, LEDs and to the infrared 

feature. 

http://en.wikipedia.org/wiki/Radio_frequency_interference
http://en.wikipedia.org/wiki/Radio_frequency_interference
http://en.wikipedia.org/wiki/Crosstalk


29 

 

 
 

Figure 1.4 NAO’s electronics architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

1.3 Software Characteristics 

 

NAO’s main software is called NAOqi; it runs on the robot and controls it. The main 

characteristic of the software is the fact that it is distributed, meaning each component can be 

executed locally (robot’s on-board system) or distributed between systems, while NAOqi Daemon 

is running on the main system. The limitations come when using actuators and sensors; the main 

system - Main Broker, must be executed on NAO [3]. 

The programming framework is called NAOqi Framework, allowing homogenous 

communication between different modules [7]. The notion module will be defined in the following 

paragraphs. NAOqi framework has three properties [3]: 

 Cross-platform – one can develop with it on Windows, MAC or Linux. 

 Cross-language – software can be developed in C++ or Python; the existing API can 

be called from any language. 

 Introspection – capabilities, monitoring and action on monitored functions performed 

by API; it knows all the functions available. Unload a library and the robot won’t be able to perform 

the functions linked to that library. 

NAOqi can be divided in three parts [7] as the figure 1.5 shows: 

 

 

 

 

 

 

 

 

 

1. NAOqi Operating System or OpenNAO – an embedded GNU/Linux (on-board) 

distribution developed to be executed on NAO. The operating system provides programs and 

libraries, being the software that gives life to the robot. 

2. NAOqi Library – is divided into objects; those objects contain some actions that 

NAO is able to perform. The main advantage of this library is the abstraction layer; its functionality 

allows the user to program the robot without accessing directly the hardware. Figure 1.6 shows the 

objects found in this library. It can be seen that DCM is also a part of the mainBroker. 

OpenNAO 

NAOqi Library 

DCM 

Figure 1.5 NAOqi Platform 



31 

 

 
 

Figure 1.6 NAOqi library [7] 

 

3. Device Control Manager or DCM – represents a set of libraries. The difference 

between it and NAOqi Library consists in the processor that receives the function calls; DCM sends 

directly to the ARM microcontroller of the robot. 

NaoQi is an Object Oriented Programming, which minimum object element is called 

Module (usually a class within a library). NaoQi is an event-based programming and the modules 

interact one to another using shared memory (ALMemory) [7]. The NAOqi executable which runs 

on the robot is a Broker, having two roles: providing directory services (allowing the user to find 

modules and methods) and providing network access (allowing the methods of attached modules to 

be called from outside the process). 

 When the broker starts, it loads a preferences file called autoload.ini, defining which 

libraries should be load. Each library contains one or more modules that use the broker to advertise 

their methods. Loading modules forms a tree of methods attached to modules, and modules attached 

to a broker, as figure 1.7 displays. For example, methods attached to AlMemory library are: 

insertData(), getData(), RaiseEvent(), etc.  

Another instance is the Proxy; it is defined as an object that will act as same as the module it 

represents. In order to have access to all the methods of a module, the user must create a proxy to 

that module.  

A more intuitive approach to program NAO is using the GUI software developed by the 

company, called Choregraphe, which comes with a series of behavior macro-blocks. Programming 

NAO using Choregraphe is discussed in Chapter 3, where the behavior running on the robot is 

developed and implemented. 

 



32 

 

 

 

Figure 1.7 Broker-Modules-Methods [3] 

 

  



33 

 

 

 

 

 

 

CHAPTER 2 

 

Automatic Speech Recognition 

 

 

 

 

 The process of Automatic Speech Recognition (ASR) can be defined as the independent, 

computer-driven transcription of spoken language into readable text in real time [9]. In the last 50 

years, the speech research concentrated on developing a machine able to understand fluently spoken 

speech and although the nowadays technology is far from understanding the entire speech, in any 

environment and spoken by any person, impressive progresses were made.  

 The final goal of ASR research is to allow the machine to recognize in real time, 

independently on the noise, vocabulary dimension, speaker characteristics and accent, with one 

hundred percent accuracy, all the words spoken by a person. In 1975, Baker put the basic of 

statistical framework for ASR – the DRAGON system, a system that makes systematic use of a 

general abstract model to represent each of the knowledge sources necessary for automatic 

recognition of continuous speech [10] , followed by a team from IBM in 1976 and another one from 

AT&T in 1983. 

 

 



34 

 

2.1 Fundamentals of Speech Signal Formation 

 

 Spoken language is used to communicate information from a speaker to a listener [11]. 

Studies showed that not only the speech production is important, but also the speech perception, a 

key element in the speech chain. 

 

2.1.1 Mechanism of Speech Production 

 

 Speech is the acoustic end product of voluntary, formalized motions of the respiratory and 

masticatory apparatus [12]. It represents the main form of communication between human beings 

and as it will be presented in this paper, even between human beings and machines. The speech 

signal, and moreover the vocal message are composed of elementary units called phones (analog 

sound patterns) representing the basis for spoken language representation, such as syllables and 

words. 

 

 

 

 

Figure 2.1 Schematic of speech apparatus [13] 

 From the content point of view, a vocal message can be characterized by a strict or a wide 

sense. The strict sense gives the message intelligibility, ideally being the same as the written 



35 

 

message, while the wide sense takes into consideration also the message intonation, offering in this 

way a more powerful meaning to the vocal message than the written message. 

 The human speech apparatus is situated between the lungs and the lips. The respiratory 

apparatus provides the necessary energy for speech production, under the form of waves of air 

pressure, when the airflow is pressed out of the lungs, then pushed out through the trachea. After 

that, it is modulated by the larynx before entering the vocal tract. 

 The larynx represents an ensemble of muscles and mobile cartilages which surrounds a 

cavity situated at the upper part of the trachea. Placed across the larynx are situated the vocal cords 

(2 pairs), the entire system manipulate the pitch and the volume (intensity) of the generated sound. 

The capability of the vocal folds to oscillate together or not, defines the speech sound as being 

voiced or un-voiced. The glottis represents the place where the vocal folds come together and its 

dimension is controlled by their contraction. In this way, the glottis modulates the air flux that 

passes through it. 

 The vocal tract is composed of the oral tract (mouth and pharynx) and the nasal tract (within 

the nose).  Here, the air will undergo further changes as it makes its way upwards towards the 

mouth. Different types of sounds can be generated by only controlling parts of the vocal tract, 

which represents in fact a succession of acoustic tubes and resonant cavities. 

 

2.1.2 Phonetic Characteristics 

 

 The vocal message can be decomposed in small and distinct sounds named phones. The 

phone is the basic unit of phonetic speech analysis and represents the smallest unit in speech signal 

by which two words can be different (physical or perceptual). For example, the difference in 

meaning between the Romanian words “cad” and “car” is the result of the exchange between the 

phones [d] and [r]. 

 The main problem in learning a new language or creating an acoustic model for it appears 

due to the fact that one cannot establish a rigorous letter-phone correspondence. In the same time, a 

phone can be represented by several letters while a letter can correspond to more than one phone.  

 A standardized classification of phonemes in Romanian language (as in any other language) 

does not exist; in what follows will be presented a possible classification. Phones can be divided 

into three categories, depending on the way they were produced by the vocal tract: 

 Consonant – the speech sound formed with the partial or complete enclosure of the human 

vocal tract. It can be divided into the following subclasses: 

 Nasal consonant – for their pronunciation both oral and nasal cavities are used (at the 

same time). 

 Fricative consonant – can be split into: 

o Unvoiced 

o Voiced – implies the vibration of the vocal cords. 



36 

 

 Obstructive consonant – for their pronunciation, the air is obstructed upstream of the 

larynx during the “retention time” and then it is suddenly released. Can also be split 

into: 

o Unvoiced 

o Voiced - implies the vibration of the vocal cords. 

 Liquid consonant – combines lateral and vibrant sounds. 

 Semivowel – the speech sound similar to a vowel (phonetically point of view) but 

characterized as being non-syllabic, meaning it is rather the syllable boundary than the 

syllable nucleus. 

 Vowel – the speech sound articulated with an open human vocal tract. It is characterized as 

being syllabic. 

 Oral – the nasal tract is not involved in the pronunciation. 

 Nasal - for their pronunciation both oral and nasal cavities are used (at the same 

time) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

2.2 ASR Architecture 
 

 The task of a speech recognition system is to return a sequence of words when at its input is 

applied an acoustic signal. The systems based on Hidden Markov Model see this task as a noisy 

channel and the acoustic signal is a version of the words sequence affected by the noise. This affects 

the recognition performances.  

 The problem can be formulated as follows: determine the way the noisy channel affects the 

source and after that determine the source sequence by finding the best match between the original 

sequence and the sequences memorized in the system, passed through the noisy channel. Therefore, 

the problem of speech to text conversion can be summarized as: “Given the input acoustic sequence 

X, what is the most likely sequence of words  ̂ in the language L?”   

The sequence X represents a sequence of individual observations, or otherwise said, consecutive 

samples, where each index    is a time interval: 

    ,   ,…,    (2.1) 

 The sequence W represents a sequence of words and    is an individual word: 

    ,   ,…,    (2.2) 

 In this moment the task can be quantified using the arg max function, which selects the 

argument that maximizes the probability of the word sequence. So, the most probable sequence ( ̂) 

is the one with the highest a posteriori probability (P (W|X)) (knowing the input acoustic sequence 

X).  

 ̂ =         P(W|X) (2.3) 

 Using Bayes criterion for computing the a posteriori probability, the equation becomes: 

 ̂ =        
          

    
 (2.4) 

 In the equation 2.4, the term P(X) is the probability of the input acoustic sequence, 

independent of the word sequence W, therefore it can be neglected. The new equation will be: 

 ̂ =                    (2.5) 

 The problem of speech to text conversion is even simpler now: instead of estimating the 

word sequence given the input acoustic sequence, we should estimate two quantities: the a priori 

probability of the word sequence W (P(W)) and the likelihood of the acoustic information given the 

word sequence (P(X|W)). 



38 

 

 

Figure 2.2 ASR System Architecture [8] 

 

 The figure 2.2 exhibits the architecture of ASR system. Based on the language model, the 

probabilities of the words in a given set can be estimated.   The language model should introduce 

constraints due to the fact that in any language some phone sequences appear more often than 

others. The acoustic model helps estimate the probability of the acoustic sequence, given a word 

sequence. In any language, the number of distinct words can be approximated as large and this is 

why in the acoustic model the basic unit is not the word, but the phone.  

 As the figure 2.2 shows, these two models can be built separately, but they work together to 

decode an input acoustic sequence as stated in the equation 2.5. Besides this, a third model must be 

implemented in order to connect the language and the acoustic models, meaning the phonetic 

model. In fact, the phonetic model is a phonetic dictionary, associating to each word in the existing 

vocabulary its phonetic representation.  

 

2.2.1 Acoustic Modeling 
   

 The Acoustic Model (AM) can be described as the nucleus of the ASR and not only once the 

term recognition was related directly with this model. It uses acoustic models trained before and the 

input acoustic sequence parameters in order to decide the basic unit language (phone) which was 

pronounced by the speaker. 



39 

 

 In this manner, AM is composed of a set of phones models and in the decoding stage of the 

process are linked to form words in the first place and word sequences after. Acoustic modeling is 

based on the Hidden Markov Models (HMM), which provides an effective way to integrate, in an 

unified manner segmentation, time mapping, matching shapes and context.  

 

 

 2.2.1.1 Acoustic features extraction 

 

 As figure 2.2 shows, HMM does not use the input acoustic speech waveform (time-domain) 

in order to perform the recognition, but a series of features extracted from the original sequence. 

The Feature Extraction and Voice Extraction block perform these operations. 

 The digital signal represents a signal composed of a sequence of discrete values. A digital 

vocal sound is in fact a representation of the changes in pressure during the speech. 

 

 

Figure 2.3 Uttered sentence “Campionatul mondial de fotbal 2014 are loc în Brazilia” 

  

Figure 2.3 shows the time-domain waveform of a vocal sound [the code can be found in 

Appendix 1]. The time-domain waveform is composed from several consecutive samples, strictly 



40 

 

related to the sampling frequency (for this particular signal the sampling frequency is    = 44.1kHz) 

and to the signal length. 

A time domain representation shows the variations of the signal over time. In speech 

recognition domain (and not only), the frequency representation is used because it offers more 

information (regarding phase and how much of the signal lies within a frequency) and is easier to 

work with.  

The most common frequency-domain representation is the one based on Discrete Fourier 

Transform (DFT). A way to plot the DFT is by using the spectrogram, a 2-dimension representation 

in time-frequency domain. 

 

 

Figure 2.4 Spectrogram of the signal presented in figure 2.3 

 

 The point (x,y) represents the power of the signal at frequency y and the time moment x. 

The red color indicates the formants. The audio signal and thus the vocal signal are un-stationary 

signal, but they have the great property to be stationary during small amounts of time. This 

characteristic represents the main reason for the vocal sound to be divided in frames of 20 to 30 ms. 

The assumptions that a 30 ms frame is stationary is stated. These frames are generated at about 10 

ms, leading to a 10-15 ms overlap between consecutive frames. 

 The border between consecutive frames would introduce important artifacts in spectral 

domain so a Hamming window is applied to the signal before DFT. To sum up, the time-domain 



41 

 

signal is subjected to a framing followed by a windowing process and the result is a stationary 

signal. 

 The voice parameters used in the recognition domain can be: 

 Linear Predictive Coefficients (LPC) – based of least-squared methods assumed on 

all-pole model (autoregressive model) [14] 

 Mel-Frequency Cepstrum Coefficients (MFCCs) 

 Perceptual Linear Prediction (PLP) - uses three concepts the critical-band spectral 

resolution, the equal-loudness curve and the intensity-loudness power law. The 

auditory spectrum is then approximated by an autoregressive all-pole model [15]. 

MFCCs were introduced by [16] and have the big advantage of being uncorrelated, 

compared to the spectral coefficients, highly correlated one to another (neighboring coefficients). 

 The human auditory system perceives the sounds in a logarithmic manner and the acoustic 

features are not linearly distributed on the frequency scale. Thus, MFCCs are based on a linear 

cosine transform of the logarithmic power spectrum on a nonlinear Mel frequency scale. Firstly, the 

cepstrum is computed by finding the IFT of the logarithm of the estimated spectrum of the speech 

signal. Also, cepstrum is a homomorphic transform, the convolution of two signals in time-domain 

is the sum of their cepstra in the cepstrum-domain. 

 The main difference between cepstrum coefficients and Mel-frequency cepstrum 

coefficients is closely related to the spacing of the frequency bands: linear spacing for normal 

cepstrum and equally spacing on mel scale for MFCC, as the following equation shows: 

                   
 

   
    (2.11) 

 The figure 2.5 exhibits the way MFCCs are computed. The procedure is quite simple: the 

speech signal is passed through framing and Hamming windowing (as stated above), then DFT is 

applied in order to obtain spectrum. The Mel scale is divided into equal frequency bands and to 

each frequency band corresponds a triangular band pass filter. The powers of the spectrum are now 

mapped on Mel-scale and the logarithm of the power at each Mel-frequency is computed. The last 

step is to apply the DCT (Discrete Cosine Transform) at the resulting list of log powers. The MFC 

coefficients represent the amplitudes of the final spectrum.  

 Usually, only 12 to 20 coefficients are extracted after the computations. Commonly, ASR 

use a 39-dimension feature vector composed of 12 MFCCs plus the energy, and their first and also 

second derivative. 

 

 

  



42 

 

 

Figure 2.5 Block diagram for MFCC’s computation [8] 

 

2.2.1.2 HMM framework 

 

 As was stated at the beginning of this sub-chapter, the acoustic modeling is based of HMM. 

We discuss further about the HMM framework used in ASR. The processes that take place in an 

ASR starting with the application of the input acoustic signal and ending with the return of the word 

sequences are presented in the next figure: 

 

Figure 2.6 Simplified architecture of the decoding process in an ASR 



43 

 

 We previously discussed about the MFCCs (cepstral coefficients extractions) so now we 

will focus on the Gaussian densities or otherwise named Gaussian Mixture Models (GMMs). 

 GMM is a parametric probability density function represented as a weighted sum of 

Gaussian component densities [17]. GMM parameters are estimated based on the training data and 

are highly capable to represent a large class of sample distributions. GMM uses a discrete set of 

Gaussian functions and each is defined by its covariance and mean matrix.  

 A HMM is a probabilistic finite state automaton, consisting of states connected by 

transitions. The term “hidden” derives from the fact that the states are not directly observable. 

Instead of the state sequence, an acoustic feature vector sequence is observed. A HMM is built in a 

hierarchic process, that starts from the words, decomposed into phones. To each phone a HMM is 

associated. 

 

 

Figure 2.7 HMM – parameterized stochastic finite state automaton 

 

 Figure 2.7 shows that HMM has the following parameters: 

 A set of States : Q =            

 A set of Transition Probabilities : A =               , where    = p(       is the 

probability of transitioning from state i to state j. 

 A set of Observation Probabilities : B =          p(       which represents the probability 

of  an observation    to be generated by the state i. 

In speech recognition is not allowed the transition from one state to any other state, although 

the definition of the HMM states that. It is important to maintain the natural flow of the speech 

which is sequential so important constraints are attached to backward transitions. The auto-loop is 

not restricted, allowing a sub-phonetic unit to repeat in order to cover a variable amount of the 

acoustic input [8]. The actual model used in speech recognition system is the one presented in 

figure 2.7; it allows only auto-loops and/or transition to a successive state. 



44 

 

Besides the above parameters, an additional set can be introduced – the initial state 

probabilities   , defined as the probability of one state to be the first from a state sequence. 

Parameters    and A can be estimated during the training process. 

The output of the HMM are acoustic features and can take a wide range of real values. If 

there is a finite number of possible observations, then the probability of observing state    can be 

considered a discrete function (although it is in fact a Gaussian PDF). 

There are three main problems in working with HMM: 

 Evaluation 

 Decoding 

 Estimation 

The evaluation problem implies computing the probability to generate a sequence of 

observations, given the model and the sequence of observations. The modern ASR systems are 

based on HMM, taking into account two assumptions: firstly, the observations are independent and 

secondly, the state sequence is considered to be a first-order Markov process; these assumptions 

significantly diminish the computational complexity. Thus, the total probability to generate a 

sequence of observations equals the sum of all the states that might lead to the given sequence        

X = (           . To easily compute this, the Forward Algorithm is used: 

     ) = p (                       (2.12) 

In equation 2.12, λ represents a wider set of parameters, composed of A,    and PDF.      ) 

is the probability of observing the sequence of observations X and being in state     at moment t. 

Because we assumed the observations to be independent, the recursive formula for this probability 

is the equation 2.13. 

     ) = ∑                   
 
    (2.13) 

The decoding problem can be formulated: find the most likely state sequence to have 

generated a sequence of observations, given the model and the sequence of observations. The 

Viterbi Decoding is applied; the Forward Algorithm would be very complex from the 

computational point of view – a similar structure algorithm is considered.  

The Viterbi Algorithm returns the most probable sequence of states and the summation is 

not done at every step (as it was performed in the Forwarding Algorithm), but instead, a max 

operation is performed in order to remember the best path.  

 The estimation problem is the most complicated of the three issues stated above. We have 

no a priori knowledge about which state generated each sequence of observations. The simplest and 

efficient criterion is the maximum likelihood estimation in which the parameters are established in 

such way to maximize the probability of the observations sequence to be generated by the model. 

The used algorithm is the Baum-Welch algorithm; each step is composed by two parts: 

 Step E - a state-time alignment is performed, by assigning an occupancy probability 

of each state for each time moment (given the sequence of observations). 



45 

 

 Step M – the parameters are estimated by a weighted average of the occupancy 

probabilities of the states. 

To sum up what was discussed in the 2.2.3 sub-chapter, ASR systems use HMMs with 

GMMs as output PDFs to model speech units (phones most of the time). The modeling is performed 

based on a series of perceptual acoustic features (MFCCs) derived out of the original time-domain 

input acoustic speech signal. The HMM parameters are estimated using Baum-Welch algorithm. 

The Viterbi algorithm is used to decode the sequence in order to find the most probable sequence of 

states given the sequence of observations. Usually, each speech unit has one HMM; the global 

HMM is formed by concatenating all basic HMMs.  

 

2.2.2 Phonetic Modeling 

 

 The Phonetic Model (PM) also introduces restrictions in the decision process, knowing that 

not all phones combinations are possible. It was previously stated that the word is not the basic unit 

in an ASR. There can be highlighted two reasons for this measure: firstly, each recognition task can 

have new words, for which there isn’t sufficient training resource and secondly, the number of 

words in any language in very large.  

 Thus, it is important to perform a correspondence between each word and its phonetic 

representation.  Most of the times, the PM is a pronunciation dictionary that performs the mapping 

word-phones sequence. This phonetic dictionary is a link between the Acoustic Model and the 

Language Model. 

 

2.2.3 Language Modeling 

 

 The Language Model (LM) is a very important part of the speech recognition system 

because it introduces supplementary restrictions starting from the premise that not any word 

sequence is possible. These restrictions can include sets of grammar rules or statistical information 

regarding the word sequence, reducing in this way the number of possible combinations of word 

sequences. 

 LM is used during decoding process of the input acoustic sequence, having the role to 

estimate the probabilities of all word sequences from the searching space. In fact, the goal is to 

estimate as accurate as possible if a word sequence can be a sentence in that specific language. 

Furthermore, this can be summarized as making decisions regarding the order of the words and 

attaching probabilities such that natural word choices to be easier recognized. 

 One approach can be computing P(W) based on counting how many times the word 

sequence W occurred – disadvantageous from computational point of view. Another approach – the 

used one – is based on determine the probability of a word sequence by computing the probability 



46 

 

of each word, based on a number of previous words, namely the N-gram Model. The probability of 

a sequence     ,   ,…,   can be expressed as: 

P(W) = P(  ,   ,…,   ) = P(  )P(  |  )…P(  |  ,…     )  (2.6) 

 According to the equation 2.6, the task of estimating the probability of a word sequence W 

is divided into smaller task which estimate the probability of each word, knowing the previous word 

sequence. N, from N-gram Model indicates the number of previous words which affects the 

probability of current word. This number is chosen based on the amount of data used for training. 

The bigger the amount of training data is, the higher the order of the language model can be.  

 The frequent N-gram is the trigram, meaning the probability of the current word depends on 

two previous words. In order to build a N-gram model, one must count the number of occurrences  

of each N-word combinations in a sufficiently large text corpus. For example, in order to estimate 

the probability of occurrence of the sequence          (using the maximum likelihood principle) 

P(         ) = 
                  

∑                  
 

 (2.7) 

 The goal of a language model is to predict the next word based of previous known words, 

taking into account the redundancy of a language. Any N-gram must be evaluated in order to 

determine its performances and a series of metrics have been introduced: 

 N-gram hits 

An important issue that can appear in building and using N-grams is the data sparseness and 

an used method to undergo this disadvantage is the Back-Off method. The Back-off method 

supposes the usage of several language models in order to create an interpolated version of 

all (due to robustness of lower order N-grams).  For example, if unigram, bigram an trigram 

are available, an interpolated language model can be built as a linear combination of the 

known language models. 

The trigram hits measures the ratio between how many times the model could use the both 

previous words and how many times it had to back-off (to a bigram or even unigram) in 

order to find the probability of the n-gram: 

trigram hits [%] = 
                       

               
 x 100  (2.8) 

 Perplexity 

A language model can be evaluated regarding the value of the probability it assign to a word 

sequence. Ideally, it should assign a high probability to a good sequence and a low 

probability to a not so good sequence.  

The perplexity is the reciprocal of the geometrical average probability assigned to each word 

from the word set W, by the language model: 

PP(W) = √∏
 

               
 
   

 
  (2.9) 



47 

 

Generally, a lower value of perplexity is correlated to a better performance of the language 

model, leading to less confusion in speech recognition. 

 Out of Vocabulary Words (OOV) 

Although in most of the situations the vocabulary is closed (the test-set contains only words 

from the vocabulary), in real life there are many words which are not in the vocabulary and 

consequently they cannot be predict by the language model. The OOV rate represents the 

percentage of the words which are not in the vocabulary. Because the perplexity of these 

words is infinite, it cannot be summed up in the total perplexity and the best way to evaluate 

a language model is by specify the OOV rate along with the perplexity: 

OOV[%] = 
               

               
 x 100 (2.10) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

2.3 ASR Evaluation 

 

 Evaluating an ASR system is in fact a comparison between the reference (the correct word) 

and the word provided by the system. The standard metric is the Word Error Rate; in order to 

compute WER one must compute the minimum distance between the resulted word and the 

reference.  

WER [%] = 
                                                    

                                       
 x100  (2.14) 

The equation 2.14 gives the formula of WER as the ratio between the sum of number of 

word substitutions, insertions and deletions (necessary to map between reference and word provided 

by the system). 

There are cases when Sentence Error Rate (SER) is more useful: 

SER [%] = 
                                                

                                     
 x100  (2.15) 

 

 

  



49 

 

 

 

 

 

 

CHAPTER 3 

 

Speech Recognition Application 

 

 

 

 

 Nowadays, the speech recognition feature is available on more and more devices. 

Smartphones, tablets, wearable devices respond to the voice commands people spoke in order to 

find what they want and need. This feature is gaining popularity and specialists predict that in the 

future every interaction with a machine will be based on vocal commands. 

 Unfortunately, the ASR needs a high calculus power that most of the time cannot be 

implemented on such device. NAO is gifted with an ASR for English language, but implementing 

one for Romanian language is a complicated task and requires features that NAO does not have 

(such as calculus power). 

 NAO was built as a research humanoid robot, but the latest versions were improved in order 

to make it suitable for homes; the company tagline is “One NAO in every home”. NAO will be a 

very pleasant interface between human and smart houses, connecting it to the operating system that 

controls the house feature being the next step. 

 Nevertheless, the first phase is programming NAO to perform a series of actions as a result 

of vocal commands spoken in Romanian language. 



50 

 

3.1 Architectural Solution 

 

 The main objective of this diploma thesis is for a user to command the humanoid robot 

NAO using vocal commands, pronounced in Romanian language. So, the purpose is developing a 

solution for the text-to-speech transcription inside or independent on the robot. Currently, it does 

not exist an ASR for Romanian language available for any user. Because of the language 

specifications, it is a very hard task to develop such system. Considerable effort to acquire the 

necessary resources for Romanian language was made by the Speech and Dialogue Research 

Laboratory team.  

As it was discussed previously, an ASR requires a high calculus capacity for signal 

processing and all the functions that are implemented inside it. Due to this important drawback, the 

solution proposed for vocally command NAO is a NSR system. A Network-based Speech 

Recognition system involves the following: 

 Acquisition of the vocal signal in performed at Client level 

 Decoding of the vocal signal in performed at Server level 

The next phase in finding the architectural solution is to establish the connection between 

the robot and the server. The server used in this project is described in the Chapter 4. Worth 

mentioning now about it is the fact that the communication protocol is based on sockets (and also 

XML messages). The choice was to maintain the same protocol with the server and design the client 

part (as part of the Client – Server Architecture). 

The Client level was divided into two distinct parts: 

 The Robot, as the input and the output of the entire system. At its level, the 

acquisition of the vocal signal is done and the purchased file is send to a Java 

application; after the speech-to-text transcription, the transcript of the vocal 

command is received by the Robot and the proper action is performed.  

 The Java application, as the client part from the Client – Server application. It must 

establish the connection with the server, send the file, receive the transcription and 

send it to the Robot. 

The architectural solution proposed by the author is presented in figure 3.1 and it involves 

two types of communication: one through LAN (between the Robot and the Laptop) and another 

one through WAN (between the Laptop and the Server). 

 The flow of the diagram is the following one: the user pronounce a command, the robot 

records it and then sends the resulted .wav file using the e-mail to a specified recipient. A Java 

application performs a pooling action, interrogating periodically the server that hosts the e-mail 

account the .wav file has been sent to and when a new e-mail is received (containing the acoustic 

signal as an attachment), that e-mail it fetched, the attachment saved and the connection with the 

server is established.  

The audio data is sent to the server (as a bytes stream), the speech-to-text transcription is 

performed and the resulted text data is received by the application. The transcription of the vocal 



51 

 

command is sent back to the robot using the e-mail (plain text). The respective account in now 

fetched by the robot, the transcription is extracted and NAO performs the action indicated by the 

command. 

 

Figure 3.1 Architectural solution 

 

The contribution of the author is concentrated on two plans:  

 The Robot - NAO: Establish the list of orders, implement the behavior timeline for NAO in 

order to properly respond to the commands. 

 The Custom Application: Interrogate the e-mail account for new e-mails, fetch the new e-

mail and save the attachment on the computer, communicate with the server in order to send 

the audio file, get the response (the transcription) and sent it back to the robot as plain text e-

mail.  

The Custom Application (MainApplication.java) will be discussed in Chapter 4.  During this 

chapter the discussion concentrates on the contribution regarding NAO.  

The author of this thesis established a simple commands list composed of five commands 

that mostly imply simple movements of NAO. The list was designed in such way that the words to 

be as different as possible one from another in order for the ASR to not introduce errors while 

transcription is performed. The list is the following: 

 “Stai jos” 

 “Mergi un metru” 

 “Mișcă mâna dreaptă” 

 “Cine sunt eu?” 

 “Ridică-te în picioare” 

On the other hand, NAO must: record the vocal command, send it via e-mail, wait for the 

response, retrieve the e-mail received from the application and perform the previously command. 

The entire flow forms a behavior, the AutomationSystemSpeechRecognition.crg file that is loaded 

on the robot. This behavior is developed using Choregraphe software. 



52 

 

 

3.2 Choregraphe Programming 

 

Choregraphe is a multi-platform desktop application that allows creating animations and 

behaviors, testing them on a simulated robot, or directly on a real one, monitor and control NAO 

[18]. Choregraphe allows creating very complex behaviors, without writing code lines, due to the 

macro-blocks that are already implemented; same time, these functions are open-source and can be 

modified as the user wants. 

Choregraphe makes the interaction with NAOqi easier. The user can create quickly 

animations and programs for NAO that would be way longer to do with NAOqi alone. Choregraphe 

is an easy and intuitive GUI software. Predefined functions are stored in libraries, and are grouped 

based on the module they use, as figure 3.2 shows; the macro-blocks in Box Library (Standard or 

Advanced). The script of the macro-block is available to the user and the programming language is 

Python. 

 

 

Figure 3.2 Box Library 

 

Python gained more and more popularity, being widely used nowadays. It is a high-level 

programming language, supporting several paradigms (such as object-oriented, functional and 

procedural programming) and offers the possibility to express in fewer code lines.  

The macro-blocks can be dragged and dropped from the Box Library to the working space – 

Flow Diagram panel, where they are represented by an icon, as it can be seen in figure 3.3. Some 

macro-blocks can have some input parameters that may be changed by the user as is the case of 

Move To function. For example, the Move To function makes the robot move on a certain direction 

over a certain distance; it gives the possibility setting the robot to move forward or backward (X or 



53 

 

Y) on a certain distance and at a given angle (Theta). It can be also be secured to stop if an obstacle 

appear during the movement at a certain Security distance. 

 

Figure 3.3 Move To macro-block – icon and parameters 

 

Choregraphe is an open-source software suite, meaning the script of the function is available 

to the user, using the Script Editor. The user can modify the function in order to program NAO to 

perform the wanted action. Debugging is available when loading the behavior on the robot, in the 

Debug window. 

Figure 3.4 represents the script behind the Move To macro-block; one class is defined 

MyClass and several methods are defined. The names of the methods are actually given by the 

template of the software; when trying to create a new box, from the beginning, the same methods 

appear. As it can be seen, this function uses AlMotion and AlNavigator modules and a very 

important feature must be highlighted: the UnLoad method is available in every function and 

represents unload of the behavior after it ended. 

The macro-block or the Box is a fundamental object in Choregraphe and it can be very 

simple or very complex (multi-level Box). There are three types of boxes [18]: 

 Script Box: it only includes a script. 

 Flow Diagram Box: it includes a script and flow diagram (group of boxes linked 

with each other and linked with at least an input) 

 Timeline Box: it includes a script and a timeline (allows enabling synchronization of 

the Boxes with the movements and the time, being based on a time ruler, composed 

of frames) 



54 

 

 

 

 

 

 

 

 

Figure 3.4 Move To – Script editor 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



55 

 

3.3 NAO’s Behavior 

 

The first plan on which the author of the thesis worked for the physical implementation of 

the paper was designing a behavior for the robot, having the required specifications. The behavior 

was developed using Choregraphe software and is found under the form of a project, a single 

compressed file with a CRG extension.  

 

3.3.1 Deployment 

 

The project (NAO behavior) developed using Choregraphe software program is called 

AutomationSystemSpeechRecognition.crg and it was implemented in order to have several 

functionalities: record the vocal command spoken by the user, send an e-mail to 

asrserverspeed@gmail.com with the acoustic signal file attached, wait while the .wav file in 

converted into text, fetch the e-mail account naoaldebaranrobot@gmail.com for the response e-

mail, perform the action indicated by the vocal command. 

The particularities of the entire flow made the choice of the Box to be a Timeline Box. The 

prototype of a Timeline Box can be found under the Template box library, or it can be created 

directly on the Flow Diagram panel, right click → Add a new box → set the Type as Timeline. The 

first step is ready, the Automation System Timeline Box is created. In order for the behavior to be 

functional, the Timeline Box must be connected to the output and to the input; drag the mouse from 

the onStart input of the behavior to the onStart input of the Timeline Box to create a link. Same 

mechanism is performed for the end part of the behavior (onStopped). Figure 3.5 displays the Flow 

Diagram panel with the Automation System Timeline Box linked to the start and the end. 

 

Figure 3.5 Automation System Timeline Box 

Further, double-clicking the Timeline Box accesses the inner Timeline and the Timeline 

panel. Due to the particularities highlighted above, the Frame Ruler was divided into four parts. The 

Frame is the unit of the Timeline and each one has a number which corresponds to its position in 

the Timeline [19]. 

mailto:asrserverspeed@gmail.com
mailto:naoaldebaranrobot@gmail.com


56 

 

Figure 3.6 exhibits the Frame Ruler of Automation System; the Timeline consists of only 

one layer (SpeechRecognition) and the Frame Ruler is partitioned in four KeyFrames: Record, 

SendE, Wait, RetrieveE. Each KeyFrame represents a part of the behavior and can be composed of 

one or several macro-blocks, composing in fact four Flow Diagrams. The speed of the frame is one 

frame per second and it can be modified by the user. Each KeyFrame will be discussed separately. 

 

Figure 3.6 Automation System Frame Ruler 

 

A. Record 

Record represents the first KeyFrame of the Timeline and it lasts 8 seconds (frames). Its 

main role is to record the vocal command spoken by the user. A closer look at the Record shows 

what is displayed in figure 3.7. 

 

 

Figure 3.7 Record KeyFrame 

 

The Record can be described as a Flow Diagram Box composed of two linked Boxes: 

 Tactile Head – a  Flow Diagram Box, acting as a trigger. It detects touch on the head 

tactile sensors (one of the three: front, middle, rear). In this particular behavior, the 



57 

 

signal is sent farther if the front tactile sensor was touched. Actually, the robot starts 

recording only if the front of its head is touched. 

 Record Sound – a Flow Diagram Box, composed of two Script Boxes: Get File 

Name and Record Sound File. The recorded file is a .wav file, named Record.wav, 

composed of signals coming from all four microphones NAO is being fitted to: front, 

sides and rear microphones. Due to the fact that the list of commands is formed of 

short commands, the record duration is set at 5 seconds. 

The working principle of this KeyFrame is the following: the input signal activates the 

Tactile Head function, the Robot waits for the user to touch the front part of its head. When the 

sensor acquires the needed information (the front part of the head is touched), the signal is sent to 

the output of this function and becomes the input signal for Record Sound macro-block. From this 

moment, NAO records for 5 seconds (and the user starts speaking) and saves the file in the memory.  

 

B. SendE 

The second KeyFrame is the one that involves sending the e-mail to the specified recipient 

in order for the Java application running on the laptop to interrogate the account, fetch the new e-

mail and save the attachment, namely the Record.wav audio file. SendE lasts 6 seconds and figure 

3.8 displays the linked component Boxes: 

 Send E-mail – a Script Box, in charge with sending the e-mail. 

 Play Sound – a Flow Diagram Box; by accessing the inner Flow Diagram of the 

macro-block two instantiated Script Boxes are found: Get Attached File and Play 

Sound File. The purpose of this part is to let the user know that the e-mail was sent. 

 

Figure 3.8 SendE KeyFrame 

 

 

 



58 

 

The working principle can be summarized as follows: after the Record KeyFrame is 

finished, the SendE KeyFrame is loaded. The onStart signal is received by the Send E-mail Script 

Box. The figure 3.9 reveals the parameters that were set in order for the e-mail to be sent properly. 

 

 

 

Figure 3.9 Send E-mail parameters 

 

 The protocol in charge with connecting to the server that hosts the e-mail service is SMTP 

(more details about it will be highlighted in Chapter 4), the address of the server being 

smtp.gmail.com and the port number 587. The e-mail is sent from naoaldebaranrobot@gmail.com, 

the recipient is asrserverspeed@gmail.com and the subject: Demand. NAO sends an empty e-mail, 

the important part being the attachment. One of the author contributions regarding this part of the 

application is represented by changing the box script of Send E-mail and insert the code line that 

sets the memory path where the Record.wav is saved: os.path = “/home/nao/ 

recordings/microphones/Record.wav”. 

After the e-mail is transmitted, NAO plays a sound, to announce this fact to the user. The 

onStopped signal of Send E-mail represents the onStart signal that activates Play Sound. The file to 

be played was loaded from the computer. 

 

mailto:naoaldebaranrobot@gmail.com
mailto:asrserverspeed@gmail.com


59 

 

C. Wait 

 

The speech-to-text transcription is time consuming, as well as the sending and fetching e-

mails. For this waiting time, a third KeyFrame was introduced, namely Wait. Figure 3.10 exhibits 

the component macro-blocks. The Wait function is worth mentioning; it waits a certain time before 

sending a signal on the output. The waiting duration is a parameter set by the user and it depends on 

the time needed for the application MainApplication.java to run and send back the transcription to 

the robot. Tests were conducted at a peak hour for internet access, so the speed was low and the 

waiting time was up, the parameter was set at 46 seconds. Usually, this time is shorter (about 20 

seconds). Figure 3.10 displays the construction of this particular frame 

 

 

Figure 3.10 Wait KeyFrame 

 

 

D. RetrieveE 

The fourth KeyFrame is the complex part of the behavior. During this part, NAO fetches the 

e-mail containing the transcription of the vocal command and depending on the command, it 

performs the proper action: 

 Stands up 

 Walks one meter 

 Sits down 

 Moves the right hand 

 Recognizes the person standing in its front. 



60 

 

 

Figure 3.11 RetrieveE KeyFrame 

 

 Retrieve E-mail: a Script Box that fetches the last e-mail from the server. The 

parameters to be set are available in figure 3.12. 

 

 

Figure 3.12 Retrieve E-mail parameters 



61 

 

For reading the e-mail, the protocol is POP3; the address for the server hosting the e-mail 

service is pop.gmail.com and the port number 995. The user can use between enabling and disabling 

SSL. The choice of the author was to enable SSL and retrieve only the last e-mail. Details of the 

account were set (E-mail address and Password). 

In order to implement the entire list of commands, a Choice Script Box is used, namely List 

of Commands; in fact a case implemented with if – elif instructions. The input of this function is a 

String, while at the beginning, the output of Retrieve E-mail was an Array containing what figure 

3.13 displays. 

 

 

Figure 3.13 Retrieve E-mail initial output 

 

The author’s contribution can be highlighted in this section; besides setting the proper 

parameters, the two functions must be made compatible. This means changing the output from 

Array to String. The script of the Box was modified as the next paragraph shows: 

 

nbMess = self.pop.stat()[0] 

messageToRead = nbMess 

 

if(self.getParameter("Last mail only")): 

messageToRead = 1 

 

restmp = [] 

for i in range( messageToRead ): 

restmp = [] 

msg = "\n".join( self.pop.retr( nbMess - i )[1] ) 

mp = MailParser() 

em = mp.parseMessage( msg ) 

content = mp.findMainText( em ) 

restmp.append(content[1]) 

 

res= content[1] 

 

 List of Commands: a Switch Case Box which tests the input value and stimulates the 

output matching the input.  If there is no matching output, the default output 

(onDefault) is stimulated. 

 

1. “mergi un  metru” 

The first command is “walk a meter”; the Flow Diagram Box Mergi un metru is linked to 

the output corresponding to this input. The Box is a multilevel diagram and its content is shown in 

figure 3.14. 



62 

 

 

Figure 3.14Mergi un metru Box 

 

Firstly it is checked if the robot is standing up; a Stand Up Box is linked to the input and its 

both outputs are further linked to a Move To Box. The two wires signify a successful and a failure 

action of standing up; if the robot is sitting down, it will first stand up and then it will walk a meter. 

Otherwise, if the robot is already standing up, the output signal will be transmitted to the failure 

output (NAO tries to stand up and considers the incapacity as a failure) and it walk a meter.  

The Stand Up Box allows setting the number of tries before sending the output signal on the 

failure branch; it was set to 3 times.  

 

2. “mișcă mâna dreaptă” 

The second command is “move the right hand” and is implemented using a child Box as 

shown in figure 3.15.  The input of this Script Box is linked to the output of the Switch Case Box 

corresponding to the input “mișcă mâna dreaptă”. 

Figure 3.15 also shows the tree of the implemented behavior; the timeline Automation 

System has only one layer, named SpeechRecognition. Currently the navigation is done inside 

RetrieveE KeyFrame, inside the Misca mana dreapta Box.  

 

 

Figure 3.15 Misca mana dreapta Box 



63 

 

3.  “ridică-te în picioare” 

The third command is “stand up”; as for the two commands described before, the Script Box 

Ridica-te in picioare for this one is also linked to the output corresponding to the input “ridică-te în 

picioare”. The number of tries is set to 5 and the failure output for the Box is not taken into account. 

The child Box for the parent Box is GoTo Posture and is described in the next paragraph. 

 

4. “stai jos” 

The “sit down” command is similar to the third command; it is designed with the help of a 

Script Box as it can be observed in figure 3.16. The child Box is GoTo Posture; it permits the user 

to set the speed of the action as well as the type of the action NAO should perform. For this 

command, the name of the action is Sit and the speed is 80%. 

 

 

Figure 3.16 Stai jos Box  

 

5. “cine sunt eu” 

The last command represents a more complex command and is based on NAO ability to 

recognize images. In order to recognize a face, NAO must learn that particular face before. For this, 

the implementation of an additional behavior was necessary as figure 3.17 exhibits. 

The input of the Learn Face function is a String representing the name of the face NAO must 

learn. The name is sent through e-mail (the modified version of Fetch E-mail function, as described 

above) and the learn process takes between 8 and 10 seconds. 

Figure 3.18 displays the Flow Diagram Box named Cine sunt eu; it is composed of four 

Boxes divided in two separate cases. The first Box is Face Reco. Box having as output a String 

value, namely the name of the person NAO recognized or no name if NAO did not learn previously 

the face.  



64 

 

 

Figure 3.17 Learn Face behavior 

 

The output of the Face Reco. Box is the input of a Switch Case with two possible actions. 

The first one, when the person standing in front of NAO is the author of this paper, meaning the 

output of the Box is “Diana”, the recognition was successful so NAO will say the name of the 

person (Diana). The second one, when the person standing is not learned by the robot, it will say the 

next text “I do not recognize this person. I must learn the person before recognizing the face.” 

 

Figure 3.18 Cine sunt eu Box 

 

6. onDefault 

There are situations when, because of the environmental noise or because other factors, the 

text-to-speech transcription is not done performed correct. In this situation, the content of the 

fetched e-mails does not reassembly any of the five commands. In this case, NAO will pronounce a 

text, helping the user in its further actions: “I could not understand what you said. Can you please 

reload and repeat?”. For this, a Say Flow Diagram Box is used, formed of the localized text (the one 

from above) and the Say Text Box.  



65 

 

3.3.2 User Interface and Experience 

 

Choregraphe itself represents a GUI software program; it is an intuitive and easy to work 

with program. The internet connection is very important, so firstly, a user must verify this aspect. 

The second phase is to obtain an IP address for NAO in the same LAN the computer is; for this a 

series of steps are presented in the documentation [19]. 

After launching Choregraphe, the user must connect to NAO using this software program. 

Under the tab Connection → Connect to, a window with all the available robots for connection is 

opened, as figure 3.19 displays: 

 

 

Figure 3.19 Choregraphe connecting to NAO [19] 

 

Mainly, there are two possibilities to connect to a robot; the first one, identify it using its IP 

address and then double-click on its pictogram or, the second one, when for some reasons the 

software does not displays the robot pictogram, by directly typing the robot IP in the Use fixed 

IP/hostname tab. For all the robots, the connection port is 9559. Now, the user must press Connect 

to and if the connection was successful, a message appears. 

The project must be opened first (File → Open project → 

AutomationSystemSpeechRecognition.crg) and after this, the Play icon must be pressed. At this 

moment, the behavior is successfully loaded onto the robot. The Frame Ruler starts to measure the 

seconds and a red bar shows the user the frame that is currently loaded. 

Before loading the behavior onto the robot, the user must open NetBeans IDE 8.0 and run 

the Java project, as it is specified in paragraph 4.4.2. If the MainApplication.java is properly 



66 

 

working and the behavior AutomationSystemSpeechRecognition.crg is successfully loaded, the user 

can start interacting with the robot. 

In order to start recording, NAO’s head must be touched on the front part; the user starts 

speaking the vocal command after this action and the robot records using the four microphones it 

has. In the next step, the attachment is sent via e-mail and this it is made known to the user by an 

audio sound played by the robot. NAO waits while the audio signal is processed by the server and 

the text transcription is sent back to it. 

The last part of the behavior is the action itself; the e-mail is fetched and depending on the 

command uttered by the user, NAO will stand up, sit down, walk a meter, move the right hand or 

recognize the person standing in front of it.  

  



67 

 

 

 

 

 

 

CHAPTER 4 

 

Client – Server Application 

 

 

 

 

 The second plan on which the author of the thesis worked for the physical implementation of 

the paper was designing and implementing an application able to make the link between the robot 

and the server on which the ASR is running. Since the main client (the robot) could not 

communicate directly with the server, a client–server architecture had to be developed, 

independently on the robot.  

 The protocol of communication between any client and the server running the ASR was 

previously developed and will be presented in this chapter. The protocol is based on sockets and 

.xml files transmission and a complex Java application was designed previously writing this paper 

[8]. 

 The author contributions consist in implementing a Java application, using a set of protocols, 

with the following flow: access the e-mail server, fetch the e-mail message that was previously send 

by the robot and save the attachment (representing in fact the vocal command), send data to the 

server (using the existing protocol), receive the transcription of the vocal command (transmitted 

data) and send via e-mail plain text message the speech-to-text sequence back to the robot. 



68 

 

 

4.1 Client-Server Architecture and Communication Protocol 

 

 The application developed for the automatic speech recognition presented in this paper was 

written in Java programming language and follows the client-server architecture. The client-server 

model acts like a distributed application partitioning tasks between the server (service provider) and 

the client (service caller) [20]. 

 

 

Figure 4.1 Client – Server architecture [20] 

 

Figure 4.1 presents a simple client – server architecture; clients are represented by PCs and 

the connections between them and the server is through TCP connections. The client PCs represents 

in fact the interface between the users and the server; using them, the clients can request services 

and visualize responses received from the server. On the other hand, the server represents in fact a 

powerful computer running a series of specific programs, its main task involves waiting and 

responding to clients’ demands. In our case, the server provides both access to the services and 

hardware resources used to process and transcript the vocal sound. The clients initialize connection 

to the server and request services. The client connects to the server through the internet. 

Given the distributed structure of this kind of architecture, in order to communicate the 

client and the server, a connection must be established. For this, it is necessary that every 

application on the system to be uniquely identified at internet through an IP address and a port. 

Thus, each program is associated with a specific port on the server and each client that connects to 

that port can communicate with the server. For our application, the client connects to the server 

using the IP 141.85.252.230 and the port 5004. 

Figure 4.2 presents the TCP/IP model, composed of 4 layers: Link, Internet, Transport and 

Application and in the next paragraph the way the client and the server communicate in the 

developed application will be presented, in terms of the protocols involved. 



69 

 

 

Figure 4.2 TCP/IP model 

 Application Layer – the developed application uses at this layer a protocol 

previously designed [8]. The entire protocol can be summarized as a request – 

response protocol between the client and the server. 

When trying to establish a connection with the server, the client must provide a socket 

address composed of IP address and the port (previously mentioned). After a successful connection, 

the client must authenticate using the username and the password.  

<authenticateRequest username="diana.sandru" password="mewn$#11p"/> 

After verifying the credentials, the server will respond with one of the two possible 

messages:  

<authenticateResponse result="OK"/> 

 

<authenticateResponse result="Failed"/> 

<protocolErrorResponse description="authenticateResponse expected..."/> 

 

If the authentication was successful, the client will interrogate the configurations that server 

supports  <getSupportedConfigurationsRequest/> and the server will send a message with all 

the services supported by it <getSupportedConfigurationsResponse>.  

For our application, the language is Romanian <language name="Romanian">  and the 

domain identificator is 14 <domain id="14">. Information about the encoding and the frequency 

of the vocal data that can be sent to the server is provided: 

<audioStreams encodings="PCM_SIGNED " audioFrequencyBands="narrow, wide"/> 

Data must be encoded signed Pulse Code Modulation, a method to modulate the impulses in 

code, following the next flow: the analog audio stream is sampled and them it is quantized (regular 

– same number of bits for each sample or irregular – based on compression laws A and µ, in order 

to decrease the quantization noise). In our application, the data to be send to the server is stored into 

a WAV file, meaning it was encoded 16-bit signed PCM. The main advantage of the format is the 



70 

 

fact that compression is not performed upon the audio stream; the quantization is regular (16 bits / 

sample) and none of the audio information is lost.  

In the next step, the client requests a port for the stream transmission 

<getAudioDataPortRequest/>, and the server responds with the port number 

<getAudioDataPortResponse port="500001"/>. The client initiates a transcription request with 

all the options it needs and starts to send the acoustic signal received from the robot in the form of a 

stream of bytes. 

The sever saves in the memory the received data, processes it and sends the answer back to 

the client in the form of a stream of bytes, representing the transcription of the acoustic signal, 

announcing in advance the client about the transcription start: 

<startTranscriptionAck/> 

 The response includes the bestProcessedText, the bestRawText and also the duration of the 

initial stream along with information regarding the speaker: <getTranscriptionResponse>. When 

the transcription is completed, the server acknowledges the client <stopTranscriptionAck/>.  

The client closes the connection and an ACK response is received from the server. 

 Transport Layer – the used protocol is TCP protocol; it segments the messages 

from the Application layer in smaller parts, called segments The main advantage of 

TCP (compared to UDP) is the fact that the received messages are reassembled at the 

destination in the same order they were send from the source and TCP guarantees 

that data was received. 

 Internet Layer – the used protocol is the IP protocol; it takes the segments and 

encapsulates them in packets. The next step is to assign IP address and select the best 

route to the destination (client or server). 

 Link Layer 

Data exchange between the client and the server is transported using xml (XML), which 

represents a markup language, meaning a way to identify structures in a document. XML involves a 

set of rules for encoding the data in such way both human and machine can read it, being in fact a 

meta-language. XML was design to carry data and it doesn’t have a predefined set of tags because it 

was conceived to structure and carry data. 

Figure 4.3 displays an example of message exchanged between the client and the server, 

written in xml, version 1.0, encoded UTF-8 (each character is encoded with one to four octets). The 

markup is analyzed and the structured information is passed to the application by the XML parser. 

 

 

Figure 4.3 Client – Server message 



71 

 

4.2 Java Mail 

 

 The application developed for the automatic speech recognition was written in Java 

programming language, class-based, object-oriented in order to have as few as possible 

interdependencies when programming [21]. The aim of the application was to fetch the e-mail 

message that was previously send by the robot and save the attachment (representing in fact the 

vocal command), send data to the server (using the existing protocol), receive the transcription of 

the vocal command (transmitted data) and send via e-mail plain text message the speech-to-text 

sequence (output of the ASR) back to the robot. 

 Working with e-mails made the author of the thesis use the JavaMail library. The JavaMail 

API provides a platform-independent and protocol-independent framework to build mail and 

messaging applications, providing facilities to send and read e-mails via SMTP, POP3 and IMAP. 

This framework represents a software frame on which changes are performed in order to achieve 

the desired functionalities.  

 The JavaMail reference implementation jar file used was javax.mail.jar, that also includes 

the SMTP, IMAP and POP3 protocol providers. The protocols used for this application will be 

discussed in the next subchapter. The JavaMail API was designed to satisfy the following 

development and runtime requirements [22]: 

 Lightweight classes and interfaces make it easy to add basic mail-handling tasks to any 

application. 

 Supports the development of robust mail-enabled applications. 

In figure 4.4 it is presented the mail-enabled part of the entire application. The jar file 

javax.mail.jar was used along with the JDK 1.7 found in NetBeans IDE 8.0, the open source 

application development medium. NetBeans is used to interact with the user and display message 

content and some verification messages during the running. 

 

Figure 4.4 Mail-enabled part of the application 



72 

 

 4.3 The Server – Language, Phonetic and Acoustic Resources 

 

 The client – server architecture implies two instances: the client and the server. While the 

client instance was developed entirely by the author of the paper, the services offered by the server 

were previously developed by Speech and Dialogue Research Laboratory. Though, the resources 

necessary for the ASR construction must be presented. 

Because the robot has to react to a limited set of five orders, formed of maximum three 

words each, the resources for the service the server must offer were limited; a control – command 

recognition task was implemented: 

 The Language model 

The text corpus for this application is not a wide corpus, being composed of only 13 words: 

“cine”, “sunt”, “eu”, “ridică”, “mâna”, “dreaptă”, “mergi”, “un”, “metru”, “stai”, “jos”, “ridică-te”, 

“în”, “picioare”. Due to the fact that the vocabulary for this recognition tasks has a well-defined 

succession order for the words, a Finite State Grammar language model is used. 

A FSR is a graph model in which nodes represent words of vocabulary recognition task and 

the arcs of the graph represent the transitions between words. Such language model explicitly 

specifies all sequences of words allowed by the grammar recognition task. Moreover, to each arc 

may be assigned a cost, indicating the likelihood that a word is preceded by another. 

 The Acoustic model 

The acoustic model was created with the utilitarian Sphinxtrain included in CMUSphinx. 

HMMs with five states (from which three emissive) were used in order to model the phones; phones 

depend on the context. 

 The Phonetic model 

The phonetic dictionary is larger than 13; it contains almost 64000 distinct words and 96654 

pronunciation forms, for all the language models existing on the server and it was created 

previously, by the Speech and Dialogue Research Laboratory. 

The server used for this project has the following characteristics: 

 Processor: Quad-Core Intel® Xeon® 

 16 GB RAM, 

while the server application is the part of the architecture that processes the acoustic signal received 

from the client and returns the transcription. The access to the server implies creating an 

independent execution wire for each client. The server runs in command line and accepts 

connection on TCP port 5004. Each client that wants services transmits the vocal signal under the 

form of bytes stream using the socket allocated by the server. 

 

 



73 

 

4.4 The Client Application 
 

The client part of the application was developed by the author of the paper using design 

specification of the JavaMail framework, offered by Oracle [23] and integrating the communication 

protocol with the server established previously. 

 

4.4.1 Implementation 

 

The application developed using NetBeans IDE 8.0 (JDK 1.7) software program is called 

MainApplication.java [the code can be found in Appendix 2] and it was implemented in three 

steps: 

 First step was implementing an application able to interrogate periodically the e-

mail, fetch new e-mails and download the attachments (if existing) in a predefined 

memory path; 

 Second step represented the communication with the server; using the existing 

protocol and application (TranscriberClient.java), the contribution of the author was 

rethinking the application developed by [8] in order to obtain what was useful for 

MainApplication.java [the code can be found in Appendix 3]; 

 Third step was adding the application the feature that enables it to send via e-mail to 

the robot the transcription received from the server, in order the command to be 

further fetched by the robot. 

In order to obtain the wanted functionalities, a series of packages (java.io, javax.mail, 

java.util, javax.mail.internet, javax.xml) and classes were included in the project. 

The java.io package is primarily focused on input and output to files and network streams.  

import java.io.File; 

import java.io.IOException; 

 

However, this package does not contain classes to open network sockets which are 

necessary for network communication. Once you have opened a socket (network connection) 

though, one can read and write data to and from it 

java.io's InputStream and OutputStream classes. This is the reason why in TrascriberClient, the 

entire package import java.io.* is included together with import java.net.Socket; import 

java.nio.file.*; and further more inherited by  MainApplication. 

import java.security.NoSuchAlgorithmException; 

 

A series of utilities are also used in order to set the properties (in order to be able to read the 

e-mail encrypted) or to set the date of the sent e-mail. 

import java.util.Properties; 



74 

 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import java.util.Date; 

 

The choice of every class from javax.mail package will be explained later, during the 

application presentation. 

import javax.mail.Authenticator; 

import javax.mail.Address; 

import javax.mail.Folder; 

import javax.mail.Message; 

import javax.mail.MessagingException; 

import javax.mail.Multipart; 

import javax.mail.NoSuchProviderException; 

import javax.mail.PasswordAuthentication; 

import javax.mail.Part; 

import javax.mail.Session; 

import javax.mail.Store; 

import javax.mail.Transport; 

import javax.mail.internet.AddressException; 

import javax.mail.internet.InternetAddress; 

import javax.mail.internet.MimeMessage; 

import javax.mail.internet.MimeBodyPart; 

 

Additional to parser inherited from TranscriberClient application, an exception class was 

generated automatically, along with the Transformer Exception, a class that specifies an exceptional 

condition that may appear during the transformation process. 

import javax.xml.parsers.ParserConfigurationException; 

import javax.xml.transform.TransformerException; 

 

import org.xml.sax.SAXException; 

 

The following diagram (figure 4.5) exhibits the attributes and operations of MainApplication 

and also the link between it and TranscriberClient. The attributes of MainApplication are the 

saveDirectory – used to indicate the memory path were the attachment is saved and the two 

parameters that compose the socket used to connect to the server, liveTranscriberServerAddress – 

IP address and liveTranscriberServerPort – port number. MainApplication is composed of three 

operations (setSaveDirectory, mainLoop, sendEmail) along with the main function. 

First operation from MainApplication sets the directory where the attached files will be 

stored; it is a single parameter function – dir is the memory path of the directory. 

    public void setSaveDirectory(String dir) { 

        this.saveDirectory = dir; 

    } 

 

The first phase of the implementation was developing a loop to perform the polling action, 

interrogating periodically the e-mail account for new e-mails, at intervals of one second 

Thread.sleep(1000). This parameter can be modified by the user. The void function mainLoop 

was created, having as parameters the one necessary to configure the account 



75 

 

asrserverspeed@gmail.com, the account were the vocal command spoken to the robot is sent to, 

such as: host server for the account, port number, the user name and the password. 

public void mainLoop(String host, String port, 

            String userName, String password) 

 

Figure 4.5 MainApplication and TranscriberClient link 

 

In order to be able to connect to the server, properties of the object had to be added 

dynamically. Thus, properties object has been created as an object of java.util.Properties library. 

For the connection to the server, POP3 protocol was chosen between it and IMAP. The 

choice was performed based on the two Internet standard protocols to retrieve e-mails 

characteristics: 

 POP3 : Post Office Protocol version 3 - downloads all e-mails from the server and 

stores them on the computer. The e-mails are removed from the server and only 

stored locally in the e-mail client program. 

 IMAP : Internet Message Access Protocol - syncs the e-mail client program with the 

server. E-mails continue to stay on the server and they can be seen from many e-mail 

client programs or devices. 

Because the application was developed to continuously interrogate the e-mail for new 

commands, download the attachment and send to the server for transcription, POP3 was used in 

order not to send the same attachment over and over again; the fetched e-mail must be marked as 

read. For Gmail, the server address is pop.gmail.com and the port number 995. 

mailto:asrserverspeed@gmail.com


76 

 

The following code lines describe the POP3 server, by initializing the following: 

        properties.put("mail.pop3.host", host); - The POP3 server to connect to. 

        properties.put("mail.pop3.port", port); - The POP3 server port to connect to, 

because the connect() method doesn't explicitly specify one. 

Also, the disable top property is set true, The POP3 server port to connect to, if the connect() 

method doesn't explicitly specify one. 

        properties.put("mail.pop3disabletop", "true"); 

 

Further, the SSL settings of the connection are set (in order to provide protection to the 

connection): the POP3 socket is created, specify the port to connect when the socket factory is used 

and also set the mail.pop3.socketFactory.fallback to false, meaning even if the creation of the socket 

will fail using javax.net.SocketFactory class, it must be retried using the same class. 

        properties.setProperty("mail.pop3.socketFactory.class", 

                "javax.net.ssl.SSLSocketFactory"); 

        properties.setProperty("mail.pop3.socketFactory.fallback", "false"); 

        properties.setProperty("mail.pop3.socketFactory.port", 

                String.valueOf(port)); 

  

After the settings have been done, a session object must be created in order for the 

application to connect to the POP3 store. The Session class represents a mail session and is not sub-

classed. It collects together properties and defaults used by the mail API's. The getDefaultInstance 

method is used to create a Session object, and the parameters are the Authenticator and the 

Properties. The Authenticator is set to null, letting anyone to create a Session object, and the 

Properties are the one initialized above. 

        Session session = Session.getDefaultInstance(properties, null); 

 

The polling is set using an infinite loop, a while (true) instruction. First step in 

connecting to the message store; Session class acts as a factory for Store and Transport objects that 

implement specific access and transport protocols. So, the Session object’s getStore method is used 

to connect to the default POP3 store. This method returns a Store object subclass that supports the 

POP3 access protocol. 

Store store = session.getStore("pop3"); 
            store.connect(host, userName, password); 

 

If the connection is successful, the Inbox folder from the Store is opened (reference to it is 

obtained), and then Message objects are fetched (as arrays, using the getMessages() method). The 

Store class defines a database that holds a Folder hierarchy and the messages within. The Store also 

defines the access protocol used to access folders and retrieve messages from folders. The Folder 

class represents a folder containing messages. 

            Folder folderInbox = store.getFolder("INBOX"); 

            folderInbox.open(Folder.READ_ONLY); 

                         

            Message[] arrayMessages = folderInbox.getMessages(); 

  



77 

 

Although the useful part from the e-mail is the attachment, optionally we can display the 

details regarding the sender, the subject, the date, the address of the sender. For that, several 

methods are used to extract from the message array (which is in fact the retrieved e-mail), the 

needed information: getFrom(), getSubject(), getSentDate(), getContent(). Figure 4.6 displays the 

results returned by each method and what information can be extracted from it. 

 

Figure 4.6 E-mail message construction 

 

Using an If instruction it will be checked if the message contains any attachments. If it does, 

the attachments are extracted, but not before counting their number, and then saved in the memory 

at the place indicated by the setSaveDirectory method.  

if (contentType.contains("multipart")) {          

                    Multipart multiPart = (Multipart) message.getContent(); 

                    int numberOfParts = multiPart.getCount(); 

                    for (int partCount = 0; partCount < numberOfParts; 

partCount++) { 

                        MimeBodyPart part = (MimeBodyPart) 

multiPart.getBodyPart(partCount); 

                        if 

(Part.ATTACHMENT.equalsIgnoreCase(part.getDisposition())) { 

                            String fileName = part.getFileName(); 

                            part.saveFile(saveDirectory + File.separator + 

fileName); 

 

In order to obtain the attachment, we define an object part, related to the MimeBodypart 

class from javax.mail.internet package. MIME, namely Multipurpose Internet Mail Extensions, 

represents a standard aimed to extend the format of e-mails to support non-text attachments, 

message body with more parts. This class represents a MIME body part. It implements 

the BodyPart abstract class and the MimePart interface. MimeBodyParts are contained 

in MimeMultipart objects. MimeBodyPart uses the InternetHeaders class to parse and store the 

headers of that body part.  

The extraction of the attachment is performed only if the disposition is true; 

Part.ATTACHMENT shows the fact that this part must be presented as an attachment, leading to the 



78 

 

next statement: If the disposition for the part is to be presented as an attachment, it will be saved to 

the memory. 

The first step is now complete, the account was interrogated, the e-mail was retrieved and 

the attachment was saved. The next step represents the communication with the server and is 

implemented using the application TranscriberClient inside MainApplication. For this, a static 

reference is defined as link to the application private static TranscriberClient _client; 

Actually, a new object TranscriberClient is defined in the main function, using the attributes 
liveTranscriberServerAddress, liveTranscriberServerPort 

_client = new TranscriberClient(liveTranscriberServerAddress, 

liveTranscriberServerPort); 

Using a Try instruction, the server is called with the extracted attachment (using the 

reference to the application and the method testCaseScenario1); if the entire protocol described in 

section 4.1 is functional, the response from the server is the transcription of the vocal command, 

which actually represents the text of the e-mail that will be sent back to the robot. 

mailMessage = _client.testCaseScenario1(14,saveDirectory + File.separator 

+ fileName); 

 

The last step is to send an e-mail to the address naoaldebaranrobot@gmail.com, account that 

is interrogated by the robot, containing as plain text the transcription from the server. Inside a Try 

instruction, the method sendEmail is called, along with the needed parameters. For e-mail sending, 

the protocol used is SMTP, namely Simple Mail Transfer Protocol, a protocol that for Gmail has the 

following attributes: server smtp.gmail.com and port 587.  

sendEmail(host2, port2, mailFrom, password2, mailTo, 

                                        subject2, mailMessage); 

In a similar way to the settings applied for the POP3 server, a properties object is created for 

SMTP and the SMTP port and server to connect to are set: 

  properties.put("mail.smtp.host", host); 

        properties.put("mail.smtp.port", port); 

 

Also, other two properties are set true: mail.smtp.auth and mail.smtp.starttls.enable. The first 

property attempts to authenticate the user using AUTH command, and the second one enables the 

use of the STARTTLS command to switch the connection to a TLS (SSL)-protected connection 

before issuing any login commands.  

  properties.put("mail.smtp.auth", "true"); 

        properties.put("mail.smtp.starttls.enable", "true"); 

 

This time, the session is created using the Authenticator class, representing an object that 

knows how to obtain authentication for a network connection. In order to use this class, a subclass 

is created, and an instance of that subclass in registered with the session when it is created. When 

authentication is required, the system will invoke a method on the subclass 

(getPasswordAuthentication). 

mailto:naoaldebaranrobot@gmail.com


79 

 

Authenticator auth = new Authenticator() { 

            public PasswordAuthentication getPasswordAuthentication() { 

                return new PasswordAuthentication(userName, password); 

            } 

        }; 

  

        Session session = Session.getInstance(properties, auth); 

 

The new e-mail is created using the MimeMessage class, a class that represents a MIME 

style email message. In order to create new MIME style messages, an empty MimeMessage object 

is instantiated (MimeMessage class provides a default constructor that creates an empty 

MimeMessage object) and then it is filled with appropriate attributes and content later by invoking 

the parse methods:  setFrom, setRecipients, setSubject, setSentDate, setText. Date is set using the 

Date utility class, and the Recipients are set using an array of addresses. 

 

  Message msg = new MimeMessage(session); 

  

        msg.setFrom(new InternetAddress(userName)); 

        InternetAddress[] toAddresses = { new InternetAddress(toAddress) }; 

        msg.setRecipients(Message.RecipientType.TO, toAddresses); 

        msg.setSubject(subject); 

        msg.setSentDate(new Date()); 

        msg.setText(message); 

 

In order to transmit the e-mail, the class Transport and the send method are used. In the end 

the session and the Inbox folder are closed. 

        Transport.send(msg); 

 

The main function is void, public and static and few initializations and method calls are 

performed. The IP and the port for the server connection are set (in order to form the socket), the 

_client is created and the directory for saving the attachment is set. An object from 

MainApplication class is created and then the mainLoop method is called with the characteristic 

parameters. 

The TranscriberClient application is composed of two operations along with the main 

function. The main class is TranscriberClient with four attributes (server’s IP and port, file to be 

sent name and the number of the domain). 

In the main function, an object of the class is created and the testCaseScenario1 method is 

called with the previously set parameters. 

public static void main(String _args[]) throws Exception { 

        String _liveTranscriberServerAddress = "141.85.252.230"; 

        int _liveTranscriberServerPort = 5004; 

         

        TranscriberClient _client = new 

TranscriberClient(_liveTranscriberServerAddress, _liveTranscriberServerPort);  

        

 String _response = _client.testCaseScenario1(DOMAIN, FILE); 

    } 

 



80 

 

 

The testCaseScenario1 is String type and return the transcription of the vocal stream.  

_response = _transcription.getBestRawText(); 

 

The contribution of the author of this paper with respect to this part of the application can be 

summed up as follows: 

 Understand the communication protocol and then simplify it to fit the demands of 

MainApplication; this implied the reduction of the communication protocol only to 

Romanian language (English and Albanian were left apart) and to domain number 14 

(the interest domain for the application). 

 Pick the best scenario from four existing ones, the one that fitted better the 

MainApplication.java – namely testCaseScenario1 

 Change the type of the method testCaseScenario1 from void to String, such that the 

client declared in MainApplication to return exactly the transcription of the vocal 

command 

 Determine that the best response received from the server is  

 _response = _transcription.getBestRawText(); 

 

4.4.2 User Experience 

 

The application is not accompanied by a Graphics User Interface because the main output of 

the entire system is represented by the robot and the actions it performs as a result of the speech-to-

text transcription. However, a series of messages were printed on the screen during the running of 

the application such that the user to be able to see the current status of each phase. 

The application MainApplication.java must be running when the behavior is loaded onto the 

robot. For that, few steps must be followed by the user: check if the connection to the internet is 

open NetBeans IDE 8.0 (an older version may cause problems with the application), load the entire 

project LiveTranscriberClients, search for the MainApplication.java under the Source Packages → 

org.etti.speech.transcriber.client and press the Run File icon for it. After loading the necessary 

resources, an Output panel will appear and this will be the place where the messages will be printed. 

The first phase in the main function is creating the client object for TranscriberClient; after 

performing this task, a message will be printed on the screen as figure 4.7 displays: 

 

Figure 4.7 Start of the application and connect to the POP3 server 



81 

 

After the connection to the POP3 server was successful, a „Ready...” message is displayed. 

The next phase represents the Inbox folder checking for new messages. The step is presented to the 

user with the help of a message „Email checking...”. 

 

 

Figure 4.8 Application checks new e-mails 

 

The polling action is performed, as figure 4.8 displays, and the application interrogates the 

account at 1 second in order to detect the e-mail sent by the robot, having attached the vocal 

command that has to be transmitted. 

 

 

Figure 4.9 Application detects a new e-mail 

 

While the polling is done, the robot records the command, attaches the .wav file to the e-

mail and sends it to the account that is periodically interrogated by the application. When a new e-

mail is detected, the user is announced, as figure 4.9 shows. 

Before initializing the connection to the server, another message is displayed; it contains the 

message details, as it can be seen in figure 4.10: 

 The sender: Nao Aldebaran naoaldebaranrobot@gmail.com 

 The subject: Demand 

 The date: Sunday, 29 June, 15:23 

 The content: No content, only the attachment, retrieved using the class 

javax.mail.internet.MimeMultipart 

 

 

Figure 4.10 Fetched e-mail details 

mailto:naoaldebaranrobot@gmail.com


82 

 

 

The connection to the server is established, a series of messages are shown but the user is 

interested only in the response the server sends back to the client part. Figure 4.11 shows the 

response returned by the server, as an XML message. 

 

 

Figure 4.11 Response of the server 

 

The last step is to send the robot an e-mail containing the transcription of the vocal 

command. When the e-mail was successfully sent, a message appears, „Email sent.”. When e-mail 

account will be further fetched by the robot, as its behavior implies and NAO will perform the 

command spoken earlier by the user. 

In the same time, the MainApplication.java will be still running, and after sending the e-

mail, the polling action will be resumed. No new e-mail will be found, unless the behavior in loaded 

again onto the robot and a new command in spoken to it, so the message displayed will be as figure 

4.8 shows, printed at an time interval of one second, until the application is stopped. 

  



83 

 

 

 

 

 

 

CONCLUSIONS 

 

 

 

 

The main objective of this thesis was to design and implement the architectural solution, as 

well as the necessary applications for NAO to respond to voice commands spoken in Romanian 

language. To achieve this goal, three main targets had to be considered: understand the construction 

principles of the existing ASR, as well as the communication protocol between any client and the 

server (on which ASR is implemented), determine the optimum language for the robot 

programming and implement NAO’s behavior, and also developing the auxiliary application needed 

for connecting the robot and the server. 

The solution proposed by the author of this paper was displayed in figure 3.1 (Chapter 3) 

and implied the development of two applications: AutomationSystmSpeechRecognition.crg 

(behavior loaded onto the robot) and the MainApplication.java (application running on the PC and 

connecting the robot and the server hosting the ASR). 

This thesis presents the steps that were employed by the author of this paper in order to 

achieve the main goal. Chapter 1 presents a brief description of NAO’s hardware and software main 

characteristics, as a theoretical support. The relation between the microcontrollers and the devices 

they command was highlighted, together with the software versatility of the robot and the 

programming languages it accepts. The author of this paper had to determine NAO’s working 

principle in order to be able to develop the behavior. 

Chapter 2 described the architecture of an automatic speech recognition system and its 

fundamental constitutive parts. As a starting point, the mechanism of speech formation was 



84 

 

described, followed by the resources and instruments necessary building acoustic, phonetic and 

language models. 

The contribution of the author is highlighted in Chapters 3 and 4, where the development of 

the proposed solution and its implementation are presented (as figure 3.1 exhibits). Chapter 3 

focuses on the robot; the proposed solution is a NSR system (acquisition of the vocal signal in 

performed at Client level and decoding of the vocal signal in performed at Server level). NAO is in 

fact as the input and the output of the entire system. At its level, the acquisition of the vocal signal 

is done and the purchased file is send to a Java application; after the speech-to-text transcription, the 

transcript of the vocal command is received by the robot and the proper action is performed.  

The author of this thesis established a simple commands list composed of five commands 

that mostly imply simple movements of NAO. The list was designed in such way that the words to 

be as different as possible one from another in order for the ASR to not introduce errors while 

transcription is performed. The project (NAO behavior), developed using Choregraphe software 

program is called AutomationSystemSpeechRecognition.crg and it was implemented in order to 

have several functionalities: record the vocal command spoken by the user, send an e-mail to 

asrserverspeed@gmail.com with the acoustic signal file attached, wait while the .wav file in 

converted into text, fetch the e-mail account naoaldebaranrobot@gmail.com for the response e-

mail, perform the action indicated by the vocal command. 

Chapter 4 is dedicated to the Client – Server application. The author contributions consist in 

implementing a Java application (MainApplication.java), using a set of protocols, with the 

following flow: access the e-mail server, fetch the e-mail message that was previously send by the 

robot and save the attachment (representing in fact the vocal command), send data to the server 

(using the existing protocol), receive the transcription of the vocal command (transmitted data) and 

send via e-mail plain text message the speech-to-text sequence back to the robot. 

In order to implement the last application, two important elements have been used: a series 

of protocols (for e-mail sending and reading – POP3 and SMTP; for communication with the server 

– implemented with XML messages) and JavaMail, a platform-independent and protocol-

independent framework to build mail and messaging applications, providing facilities to send and 

read e-mails. 

The personal contribution of the author can be summarized as follows: 

 Creating an achievable architectural solution for the main objective; 

 Establishing the commands list for NAO, given the particularities and the 

performances of the ASR; 

 Deciding the proper solution to be implemented on the robot – a timeline behavior; 

 Designing and creating the Choreographe behavior 

(AutomationSystemSpeechRecognition.crg), application running on NAO and 

making it perform the following actions: record the vocal command, send it through 

e-mail (as an attachment) to a certain recipient, wait while the speech-to-text 

transcription is performed, fetch the e-mail for the command sent as plain text, 

perform the indicated action; 

mailto:asrserverspeed@gmail.com
mailto:naoaldebaranrobot@gmail.com


85 

 

 Deciding the use of a reliable programming language for the application 

development; 

 Designing and creating a Java application (MainApplicatin.java) with the following 

capabilities: access the e-mail server (corresponding to the recipient account), fetch 

the e-mail message that was previously send by the robot and save the attachment 

(representing in fact the vocal command), send data to the server (using the existing 

protocol), receive the transcription of the vocal command (transmitted data) and send 

via e-mail plain text message the speech-to-text sequence back to the robot; 

  Adapting the existing communication protocol to the server and the existing 

application to the MainApplication.java. 

  

The solution proposed by the author of this paper is a practical and reliable solution, but it 

was designed as a proof of concept, further development being required. The testing phase was 

complex and performed continuously, in order to improve the entire architecture. Both applications 

reach their goal 100% of the time; but during some tests the robot was not able to perform the 

spoken command because of the incorrect transcription performed by the server. Further 

improvements are needed for the ASR mechanism. 

The automatic speech recognition domain is still a trending research domain and moreover, 

its applicability became necessary in the era we live. Development of a proficiency ASR for 

Romanian language is a must, in order to be integrated in devices and to be used at a national scale. 

NAO represents an excellent research tool; unfortunately, the robot acquisition was done in 

February 2014, so the available period to understand its construction principle, the link between the 

hardware and the software parts, as well as the programming tools and available programming 

languages was too short. A major drawback in working with such an innovative and new tool was 

the lack of documentation; besides the official documentation provided by Aldebaran Robotics, 

fewer articles were found in the literature, because it represents a pretty new field of research, 

accessible to a limited number of researchers. 

Further improvements can be developed on different directions: 

 The development of a more complex behavior, allowing NAO to continuously record 

and then send the .wav file to the server, implying a bigger data flux, 

 The recognition should be independent on the speaker such that any person could 

command NAO; this means a more general acoustic model must be created (obtained 

be gathering resources from a non-homogenous group of people). 

 The connection between NAO and the server on which ASR is running should be 

made directly, through sockets. 

 The implementation of an ASR directly on NAO; it implies the development of such 

an architecture considering NAO’s resources, but eases the architectural solution of 

the entire system, by eliminating the client-server architecture. 

 The integration of NAO inside the operating system of a smart house; the response to 

the vocal commands will be actions linked to the house feature (open/close the light, 

raise the temperature, etc.). 



86 

 

  



87 

 

 

 

 

 

REFERENCES 

 

 

 

 
 [1] http://en.wikipedia.org/wiki/Humanoid_robot - accessed on 13.06.2014 

[2] Pfiefer, R., Scheier, C., “Understanding Intelligence”, Bradford Books, 2011 

[3] http://www.aldebaran.com/ -accessed on 14.06.2014 

[4] Gouaillier, D., Hugel, V., Blazevic, P., Kilner,C., Monceaux, J., Lafourcade, P., Marnier, 

B., Serre, J., Maisonnier, B., “Mechatronic design of NAO humanoid”, 2009 IEEE International 

Conference on Robotics and Automation, Kobe, Japan, 2009 

[5] NAO Datasheet 

[6] https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z540-z530-z520-

z510-z500-45-nm-technology-datasheet.html - accessed on 16.06.2014 

[7] Sanchez, T., “Artificial vision in the NAO humanoid robot”, Ph. D. Thesis, University 

Rovira I Virgili, 2009 

  [8] Cucu, H., “Towards a speaker-independent, large-vocabulary continuous speech 

recognition system for Romanian”, Ph.D. Thesis, University Politehnica of Bucharest, 2011 

[9] Stuckless, R., “Developments in real-time speech-to-text communication for people with 

impaired hearing”, In M. Ross (Ed.), “Communication access for people with hearing loss”, pp. 

197-226, MD: York Press, Baltimore, 1994 

 [10] Baker, J., “The DRAGON system – an overview”, IEEE Transactions on Acoustics, 

Speech and Signal Processing, pp. 24-29, vol. 23, no. 1, 1975 

[11] Huang, X., Acero, A., Hon, H.-W., “Spoken Language Processing Guide to Theory, 

Algorithm, and System Development”, Prentice Hall, 2001 

[12] Flanagan, J.L., “Speech Analysis Synthesis and Perception”, Springer-Verlag Berlin 

Heidelberg, 1972 

http://en.wikipedia.org/wiki/Humanoid_robot
http://www.aldebaran.com/
https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z540-z530-z520-z510-z500-45-nm-technology-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z540-z530-z520-z510-z500-45-nm-technology-datasheet.html


88 

 

 [13] 

http://en.wikipedia.org/wiki/Speech_production#mediaviewer/File:Illu01_head_neck.jpg – accessed 

on 11.06.2014 

 [14] O'Shaughnessy, D., “Linear Predictive Coding”, IEEE Potentials, pp. 29-32, vol. 7, 

1988 

[15] Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech”, Journal of 

the Acoustical Society of America, vol. 87, no. 4, pp. 1738-1752, 1990 

[16] Davis, S.B., Mermelstein, P., "Comparison of Parametric Representations for 

Monosyllabic Word Recognition in Continuously Spoken Sentences" in IEEE Transactions on 

Acoustics, Speech, and Signal Processing, 28(4), pp. 357–366, 1980 

[17] Reynolds, D.A., Rose, R.C., “Robust Text-Independent Speaker Identification using 

Gausian Mixture Models”, IEEE Transactions on Acoustic, Speech and Signal processing, vol. 3, 

pp. 72-83, 1995 

[18]https://community.aldebaran.com/doc/1-

14/software/choregraphe/choregraphe_overview.html – accessed on 01.07.2014 

[19] NAO – Documentation & Software 

[20] http://en.wikipedia.org/wiki/Client%E2%80%93server_model – accessed on 

26.06.2014 

[21] http://www.oracle.com/technetwork/java/javamail/index.html – accessed on 29.06.2014 

[22] https://javamail.java.net/nonav/docs/api/ – accessed on 29.06.2014 

[23] Oracle America, Inc., “JavaMail API Design Specification”, version 1.5, 2013 

  

http://en.wikipedia.org/wiki/Speech_production#mediaviewer/File:Illu01_head_neck.jpg
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.O%27Shaughnessy,%20D..QT.&searchWithin=p_Author_Ids:37267294000&newsearch=true
http://books.google.com/books?id=yjzCra5eW3AC&pg=PA65&dq=cosine+mel+pols&lr=&as_brr=3&ei=ytJmSZGLNI6ukAThwuGxCA#PPA65,M1
http://books.google.com/books?id=yjzCra5eW3AC&pg=PA65&dq=cosine+mel+pols&lr=&as_brr=3&ei=ytJmSZGLNI6ukAThwuGxCA#PPA65,M1
https://community.aldebaran.com/doc/1-14/software/choregraphe/choregraphe_overview.html
https://community.aldebaran.com/doc/1-14/software/choregraphe/choregraphe_overview.html
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://www.oracle.com/technetwork/java/javamail/index.html
https://javamail.java.net/nonav/docs/api/


89 

 

 

 

 

 

 

APPENDIX 1 

 

 

 

 
 [y, Fs] = wavread('Proposition.wav'); 

  

t=0:1/Fs:length(y)/Fs-1/Fs; 

figure(1) 

plot(t,y); xlabel('T[s]'); ylabel('A'); 

  

  

figure(2) 

spectrogram(y(:,1),256,250,256,Fs,'yaxis'); 

 

  



90 

 

  



91 

 

 

 

 

 

 

APPENDIX 2 

 

 

 

 
package org.etti.speech.transcriber.client; 

 

import java.io.File; 

import java.io.IOException; 

 

import java.security.NoSuchAlgorithmException; 

 

import java.util.Properties; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import java.util.Date; 

  

import javax.mail.Authenticator; 

import javax.mail.Address; 

import javax.mail.Folder; 

import javax.mail.Message; 

import javax.mail.MessagingException; 

import javax.mail.Multipart; 

import javax.mail.NoSuchProviderException; 

import javax.mail.PasswordAuthentication; 

import javax.mail.Part; 

import javax.mail.Session; 

import javax.mail.Store; 

import javax.mail.Transport; 

import javax.mail.internet.AddressException; 

import javax.mail.internet.InternetAddress; 

import javax.mail.internet.MimeMessage; 

import javax.mail.internet.MimeBodyPart; 

import javax.xml.parsers.ParserConfigurationException; 

import javax.xml.transform.TransformerException; 

 

import org.xml.sax.SAXException; 

  

/** 

 

 * 

 * @author Diana Sandru 

 * 

 */ 

public class MainApplication { 

    private String saveDirectory; 



92 

 

    private String liveTranscriberServerAddress; 

    private int liveTranscriberServerPort; 

     

    private static TranscriberClient _client; 

  

    /** 

     * Sets the directory where attached files will be stored. 

     * @param dir absolute path of the directory 

     */ 

    public void setSaveDirectory(String dir) { 

        this.saveDirectory = dir; 

    } 

  

    /** 

     * mainLoop contains the loop that performs the pooling action and it is  

     * composed of: download new e-mails & save attachment, send the attachment 

to the server and  

     * the send the received transcription via e-mail 

     *  

     * These parameters are used to configure the e-mail address  

     * containing the e-mails received from the robot 

     * @param host 

     * @param port 

     * @param userName 

     * @param password 

     *  

     */ 

    public void mainLoop(String host, String port, 

            String userName, String password) throws InterruptedException { 

        Properties properties = new Properties(); 

  

        // Set POP3 server properties 

        properties.put("mail.pop3.host", host); 

        properties.put("mail.pop3.port", port); 

        properties.put("mail.pop3disabletop", "true"); 

  

        // SSL settings 

        properties.setProperty("mail.pop3.socketFactory.class", 

                "javax.net.ssl.SSLSocketFactory"); 

        properties.setProperty("mail.pop3.socketFactory.fallback", "false"); 

        properties.setProperty("mail.pop3.socketFactory.port", 

                String.valueOf(port)); 

  

        Session session = Session.getDefaultInstance(properties, null); 

                             

        System.out.println("Ready..."); 

         

        while (true) { 

            try { 

            // Connect to the message store 

            Store store = session.getStore("pop3"); 

            store.connect(host, userName, password); 

  

            System.out.println("Email checking..."); 

         

            // Open the inbox folder 

            Folder folderInbox = store.getFolder("INBOX"); 

            folderInbox.open(Folder.READ_ONLY); 

                         

            // Fetch new messages from server 

            Message[] arrayMessages = folderInbox.getMessages(); 

             

            System.out.println("New emails: " + arrayMessages.length); 



93 

 

  

            for (int i = 0; i < arrayMessages.length; i++) { 

                Message message = arrayMessages[i]; 

                Address[] fromAddress = message.getFrom(); 

                String from = fromAddress[0].toString(); 

                String subject = message.getSubject(); 

                String sentDate = message.getSentDate().toString(); 

  

                String contentType = message.getContentType(); 

                String messageContent = ""; 

  

                // Store attachment file name, separated by comma 

                String attachFiles = ""; 

  

                if (contentType.contains("multipart")) { 

                    // if content contains attachments 

                    Multipart multiPart = (Multipart) message.getContent(); 

                    int numberOfParts = multiPart.getCount(); 

                    for (int partCount = 0; partCount < numberOfParts; 

partCount++) { 

                        MimeBodyPart part = (MimeBodyPart) 

multiPart.getBodyPart(partCount); 

                        if 

(Part.ATTACHMENT.equalsIgnoreCase(part.getDisposition())) { 

                             

                            // Extract the attachment 

                            String fileName = part.getFileName(); 

                            part.saveFile(saveDirectory + File.separator + 

fileName); 

                            

                            String mailMessage = " "; 

         

                            // Call the server with the extracted attachment 

                            try { 

                                mailMessage = 

_client.testCaseScenario1(14,saveDirectory + File.separator + fileName); 

                            } catch (ParserConfigurationException ex) { 

                                

Logger.getLogger(MainApplication.class.getName()).log(Level.SEVERE, null, ex); 

                            } catch (TransformerException ex) { 

                                

Logger.getLogger(MainApplication.class.getName()).log(Level.SEVERE, null, ex); 

                            } catch (SAXException ex) { 

                                

Logger.getLogger(MainApplication.class.getName()).log(Level.SEVERE, null, ex); 

                            } catch (NoSuchAlgorithmException ex) { 

                                

Logger.getLogger(MainApplication.class.getName()).log(Level.SEVERE, null, ex); 

                            } 

                             

                            // Set the outgoing e-mail message information 

                            String host2 = "smtp.gmail.com"; 

                            String port2 = "587"; 

                            String mailFrom = "asrserverspeed@gmail.com"; 

                            String password2 = "diplomathesis2014"; 

                            String mailTo = "naoaldebaranrobot@gmail.com"; 

                            String subject2 = "Response"; 

                             

                            // Send the outgoing e-mail message - back to the 

robot 

                            try { 

                                sendEmail(host2, port2, mailFrom, password2, 

mailTo, 



94 

 

                                        subject2, mailMessage); 

                                System.out.println("Email sent."); 

                            } catch (Exception ex) { 

                                System.out.println("Failed to sent email."); 

                                ex.printStackTrace(); 

                            } 

                             

                        } else { 

                            messageContent = part.getContent().toString(); 

                        } 

                    } 

                }  

  

                // Print out details of each fetched e-mail message 

                System.out.println("Message #" + (i + 1) + ":"); 

                System.out.println("\t From: " + from); 

                System.out.println("\t Subject: " + subject); 

                System.out.println("\t Sent Date: " + sentDate); 

                System.out.println("\t Message: " + messageContent); 

 

            } 

  

            // Disconnect 

            folderInbox.close(false); 

            store.close(); 

        } catch (NoSuchProviderException ex) { 

            System.out.println("No provider for pop3."); 

            ex.printStackTrace(); 

        } catch (MessagingException ex) { 

            System.out.println("Could not connect to the message store"); 

            ex.printStackTrace(); 

        } catch (IOException ex) { 

            ex.printStackTrace(); 

        } 

            // Pooling action done at intervals of 1 second 

            Thread.sleep(1000); 

        } 

    } 

  

    /** 

     * Function to send the response by e-mail to the robot 

     *  

     * @param host 

     * @param port 

     * @param userName 

     * @param password 

     * @param toAddress 

     * @param subject 

     * @param message 

     * @throws AddressException 

     * @throws MessagingException  

     */ 

    public void sendEmail(String host, String port, 

            final String userName, final String password, String toAddress, 

            String subject, String message) throws AddressException, 

            MessagingException { 

  

        // Set SMTP server properties 

        Properties properties = new Properties(); 

        properties.put("mail.smtp.host", host); 

        properties.put("mail.smtp.port", port); 

        properties.put("mail.smtp.auth", "true"); 

        properties.put("mail.smtp.starttls.enable", "true"); 



95 

 

  

        // Create a new session with an authenticator 

        Authenticator auth = new Authenticator() { 

            public PasswordAuthentication getPasswordAuthentication() { 

                return new PasswordAuthentication(userName, password); 

            } 

        }; 

  

        Session session = Session.getInstance(properties, auth); 

  

        // Create a new e-mail message 

        Message msg = new MimeMessage(session); 

  

        msg.setFrom(new InternetAddress(userName)); 

        InternetAddress[] toAddresses = { new InternetAddress(toAddress) }; 

        msg.setRecipients(Message.RecipientType.TO, toAddresses); 

        msg.setSubject(subject); 

        msg.setSentDate(new Date()); 

        // Set plain text message 

        msg.setText(message); 

  

        // Sends the e-mail 

        Transport.send(msg); 

  

    } 

     

 

    public static void main(String[] args) throws InterruptedException { 

         

        // Set the ingoing e-mail message information 

        // For the account on which the pooling action will be performed 

         

         

        String liveTranscriberServerAddress = "141.85.252.230"; 

        int liveTranscriberServerPort = 5004; 

         

        _client = new TranscriberClient(liveTranscriberServerAddress, 

liveTranscriberServerPort); 

         

        System.out.println("Start..."); 

             

        String host = "pop.gmail.com"; 

        String port = "995"; 

        String userName = "asrserverspeed@gmail.com"; 

        String password = "diplomathesis2014"; 

  

        String saveDirectory = "S:/Thesis/Attachments";  

  

        MainApplication receiver = new MainApplication(); 

        receiver.setSaveDirectory(saveDirectory); 

        receiver.mainLoop(host, port, userName, password); 

  

    } 

} 
 

  



96 

 

  



97 

 

 

 

 

 

 

APPENDIX 3 

 

 

 

 
package org.etti.speech.transcriber.client; 

 

import java.io.*; 

import java.net.Socket; 

import java.nio.file.*; 

import java.security.NoSuchAlgorithmException; 

import javax.xml.parsers.*; 

import javax.xml.transform.*; 

import javax.xml.transform.dom.DOMSource; 

import javax.xml.transform.stream.StreamResult; 

import org.etti.speech.io.*; 

import org.etti.speech.transcriber.struct.*; 

import org.etti.speech.transcriber.util.XMLBuilder; 

import org.etti.speech.transcriber.util.XMLParser; 

import org.w3c.dom.Document; 

import org.w3c.dom.Element; 

import org.xml.sax.SAXException; 

 

/** 

 * //http://www.mkyong.com/java/how-to-read-xml-file-in-java-dom-parser/ 

 * //http://www.mkyong.com/java/how-to-create-xml-file-in-java-dom/ 

 *  

 *  

 * @author cucu 

 */ 

public class TranscriberClient { 

    public static final String FILE = "S:/Thesis/Attachments/Record.wav"; 

    public static final int DOMAIN = 14; 

     

    private final String liveTranscriberServerAddress; 

    private final int liveTranscriberServerPort; 

     

    public TranscriberClient(String _liveTranscriberServerAddress, int 

_liveTranscriberServerPort){ 

        liveTranscriberServerAddress = _liveTranscriberServerAddress; 

        liveTranscriberServerPort = _liveTranscriberServerPort; 

    } 

     

    public static void main(String _args[]) throws Exception { 

        String _liveTranscriberServerAddress = "141.85.252.230"; 

        int _liveTranscriberServerPort = 5004; 



98 

 

         

        TranscriberClient _client = new 

TranscriberClient(_liveTranscriberServerAddress, _liveTranscriberServerPort);  

        

 String _response = _client.testCaseScenario1(DOMAIN, FILE); 

    } 

     

//------------------------------------------------------------------------------

------- 

    public String testCaseScenario1(int _asrDomainId, final String 

_audioFileName) throws IOException, InterruptedException, 

ParserConfigurationException, TransformerConfigurationException, 

TransformerException, SAXException, NoSuchAlgorithmException { 

        Socket _socket = new Socket(liveTranscriberServerAddress, 

liveTranscriberServerPort);  

        XMLOutputStream _outputStream = new 

XMLOutputStream(_socket.getOutputStream()); 

        XMLInputStream _inputStream = new 

XMLInputStream(_socket.getInputStream()); 

        System.out.println("Successfully connected to LiveTranscriberServer"); 

 

        DocumentBuilder _documentBuilder = 

DocumentBuilderFactory.newInstance().newDocumentBuilder(); 

        Transformer _transformer = 

TransformerFactory.newInstance().newTransformer(); 

        _transformer.setOutputProperty(OutputKeys.INDENT, "yes"); 

        _transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-

amount", "4"); 

        Document _requestDocument; 

 

    //Send an autheticateRequest 

        _requestDocument = XMLBuilder.createAuthenticateRequest("diana.sandru", 

"mewn$#11p"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(_outputStream)); 

        _outputStream.send(); 

        System.out.println("\n//------------------------------------\nCLIENT:"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(System.out)); 

 

    //Receive the authenticateResponse xml and print it on the screen 

        _inputStream.receive(); 

        System.out.println("\nSERVER:"); 

        _transformer.transform(new 

DOMSource(_documentBuilder.parse(_inputStream)), new StreamResult(System.out)); 

 

    //Send a getSupportedConfigurationsRequest 

        _requestDocument = XMLBuilder.createGetSupportedConfigurationsRequest(); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(_outputStream)); 

        _outputStream.send(); 

        System.out.println("\n//------------------------------------\nCLIENT:"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(System.out)); 

 

    //Receive the getSupportedConfigurationsResponse xml and print it on the 

screen 

        _inputStream.receive(); 

        System.out.println("\nSERVER:"); 

        _transformer.transform(new 

DOMSource(_documentBuilder.parse(_inputStream)), new StreamResult(System.out)); 

 

    //Send a getAudioDataPortRequest 



99 

 

        _requestDocument = XMLBuilder.createGetAudioDataPortRequest(); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(_outputStream)); 

        _outputStream.send(); 

        System.out.println("\n//------------------------------------\nCLIENT:"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(System.out)); 

 

    //Receive the getAudioDataResponse XML, get the port and print XML document 

on the screen 

        _inputStream.receive(); 

        Document _responseDocument = _documentBuilder.parse(_inputStream); 

        Element _responseElement = _responseDocument.getDocumentElement(); 

        int _audioDataPort = 

Integer.parseInt(_responseElement.getAttribute(ProtocolConfig.ATTRIBUTE_PORT)); 

        System.out.println("\nSERVER:"); 

        _transformer.transform(new DOMSource(_responseDocument), new 

StreamResult(System.out)); 

 

    //Connect to the audioDataSocket 

        Socket _audioDataSocket = new Socket(liveTranscriberServerAddress, 

_audioDataPort); 

        final OutputStream _audioDataOutputStream = 

_audioDataSocket.getOutputStream(); 

         

    //Send a getTranscriptionRequest 

        _requestDocument = 

XMLBuilder.createGetTranscriptionRequest(_asrDomainId, "PCM_SIGNED", "wide", new 

TranscriptionOptions(true, true, true, true, true)); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(_outputStream)); 

        _outputStream.send(); 

        System.out.println("\n//------------------------------------\nCLIENT:"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(System.out)); 

         

    //Receive a startTranscriptionAck. Print it on the screen 

        _inputStream.receive(); 

        System.out.println("\nSERVER:"); 

        _transformer.transform(new 

DOMSource(_documentBuilder.parse(_inputStream)), new StreamResult(System.out)); 

         

    //Start sending audio data. Asynchronously! 

        new Thread(){ 

            @Override 

            public void run(){ 

                Path _audioFile = Paths.get(_audioFileName); 

 

                try (InputStream _inputStream = 

Files.newInputStream(_audioFile)){ 

                    byte[] _buffer = new byte[8192]; 

                    int _length, _totalLength = 0; 

                    while ((_length = _inputStream.read(_buffer)) != -1) { 

                        _audioDataOutputStream.write(_buffer, 0, _length); 

                    } 

                    _audioDataOutputStream.close(); 

                } catch (IOException _exc) { 

                    _exc.printStackTrace(); 

                } 

            } 

        }.start(); 

 

        String _response = null; 



100 

 

    //Receive several getTranscriptionResponses. Print them on the screen 

        boolean _receivedDoneTranscriptionAck = false; 

        while (!_receivedDoneTranscriptionAck){ 

            _inputStream.receive(); 

            _responseDocument = _documentBuilder.parse(_inputStream); 

            _responseElement = _responseDocument.getDocumentElement(); 

            _receivedDoneTranscriptionAck = 

_responseElement.getNodeName().equals(ProtocolConfig.ACK_DONE_TRANSCRIPTION); 

            System.out.println("\nSERVER:"); 

            _transformer.transform(new DOMSource(_responseDocument), new 

StreamResult(System.out)); 

            if (!_receivedDoneTranscriptionAck){ 

                Transcription _transcription = 

XMLParser.getTranscription(_responseElement); 

                _response = _transcription.getBestRawText(); 

            } 

        } 

         

    //Send a correctedTranscriptionRequest 

        _requestDocument = XMLBuilder.createSetCorrectedTranscriptionRequest(1, 

"correctedRawText", "correctedProcessedText"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(_outputStream)); 

        _outputStream.send(); 

        System.out.println("\n//------------------------------------\nCLIENT:"); 

        _transformer.transform(new DOMSource(_requestDocument), new 

StreamResult(System.out)); 

         

    //Receive a setCorrectedTranscriptionAck. Print it on the screen 

        _inputStream.receive(); 

        System.out.println("\nSERVER:"); 

        _transformer.transform(new 

DOMSource(_documentBuilder.parse(_inputStream)), new StreamResult(System.out)); 

         

        return _response; 

    } 

} 

 


