
1

University “Politehnica” of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

Investigation on Language Identification Methods

Diploma Thesis

submitted in partial fulfillment of the requirements for the Degree of

Engineer in the domain Electronics and Telecommunications, study

program Technologies and Communication Systems

Thesis Advisors Student

Ş.l. Dr. Ing. Andi BUZO Mihai DOGARIU

Ș.l. Dr. Ing. Horia CUCU

2014

2

3

4

5

6

7

Table of Contents

List of Figures ... 9

List of Tables .. 11

List of Acronyms .. 13

Introduction ... 15

Chapter 1 Automatic Speech Recognition – Theoretical Aspects ... 17

1.1. Introduction to Automatic Speech Recognition ... 17

1.2 Language modeling .. 19

1.3 Language Model Evaluation .. 20

1.3.1 Perplexity .. 20

1.3.2 Out Of Vocabulary words ... 21

1.4 Phonetic modeling .. 21

1.5 Acoustic modeling .. 21

1.5.1 Acoustic features ... 22

1.5.2 Hidden Markov Model .. 24

Chapter 2 Language Identification – Theoretical Aspects .. 27

2.1. Introduction to Language Identification ... 27

2.2 Basic aspects of LID systems .. 28

2.3 Speech Information regarding Language Identification .. 29

2.3.1 Acoustic Information .. 30

2.3.2 Phonotactic Information ... 30

2.3.3 Prosodic Information .. 30

2.3.4 Morphological Information .. 30

2.3.5 Syntactic Information ... 31

2.4 Acoustic Information used in the Front-End ... 31

2.4.1 Mel Frequency Cepstral Coefficients (MFCCs) ... 32

2.4.2 Perceptual Linear Prediction (PLP) ... 32

2.4.3 Delta and Delta-Delta Features ... 32

2.4.4 Shifted Delta Cepstra (SDC) .. 32

2.5 Acoustic Information used in the Back-End ... 33

2.5.1 Gaussian Mixture Model (GMM) ... 33

2.5.2 GMM-UBM .. 33

2.6 Phonotactic Information in LID systems ... 34

2.6.1 Phoneme Recognition followed by Language Modeling (PRLM) 34

2.6.2 Parallel Phone Recognition followed by Language Modeling (PPRLM) 35

8

2.7 Prosodic, Morphological and Syntactic Information .. 35

Chapter 3 ASR Systems’ Implementation and their Performances 37

3.1 Working with CMU Sphinx .. 37

3.2 Resources gathering and analysis .. 38

3.2.1 Audio database ... 38

3.2.2 Text corpus ... 41

 3.2.2.1 Language models .. 41

 3.2.2.2 Fileids ... 45

 3.2.2.3 Transcriptions ... 45

 3.2.2.4 Phonetic dictionary ... 46

3.3 Experiments and results ... 46

Chapter 4 LID Systems’ Implementation and their Performances 51

4.1 Phoneme recognition method .. 51

4.2 Language specific word recognition method .. 57

4.3 Confidence score method .. 60

Conclusions ... 65

References .. 67

9

List of Figures

Figure 1.1 – General Block Diagram of an ASR Decoding System .. 18

Figure 1.2 – MFCC generation block scheme ... 22

Figure 1.3 – PLP generation block scheme .. 23

Figure 1.4 – 3-state left-to-right HMM diagram .. 24

Figure 2.1 – Basic block diagram of a LID system .. 29

Figure 2.2 – Levels of LID features ... 29

Figure 2.3 – Block Diagram of the Front-End System .. 31

Figure 2.4 – General Block Diagram of GMM-UBM Functionality ... 34

Figure 2.5 – Block Diagram of PPRLM LID ... 35

Figure 3.1 – Diarization process example ... 39

Figure 3.2 – Website page in different formats: the original page on the left-side, the downloaded

format changed to .html on the right-side .. 42

Figure 3.3 – Website page brought in the .txt format .. 43

Figure 3.4 – Parsed website page in its final format .. 44

Figure 3.5 – Fileids file example .. 45

Figure 3.6 – Transcription file example ... 45

Figure 3.7 – Phonetic dictionary example .. 46

Figure 3.8 – Final ASR results .. 49

Figure 4.1 – Phonetic dictionary used for training ... 55

Figure 4.2 – Phonetic dictionary used for decoding .. 55

Figure 4.3 – Phonetic transcriptions ... 55

Figure 4.4 – Transcriptions for word recognition LID example .. 57

Figure 4.5 – Phonetic dictionary for word recognition LID example .. 58

Figure 4.6 – Lattice example .. 60

Figure 4.7 – Sausage example .. 60

Figure 4.8 – Results of the three methods ... 63

Figure 4.9 – Total results of the three methods ... 63

10

11

List of Tables

Table 3.1 – CMU Sphinx suggested databases size ... 38

Table 3.2 – Databases for Albanian ASR ... 40

Table 3.3 – List of Albanian acoustic models .. 40

Table 3.4 – Databases for English and Romanian ASR ... 41

Table 3.5 – News websites parsed content ... 44

Table 3.6 – List of Albanian LMs .. 45

Table 3.7 – Albanian ASR tested on SD1 .. 47

Table 3.8 – Albanian ASR tested on SD1+SD2 ... 47

Table 3.9 – Albanian ASR tested on SD3 .. 48

Table 3.10 – Albanian ASR tested on SD4 .. 48

Table 3.11 – Romanian and English Results .. 49

Table 4.1 – List of phonemes for: a) Romanian, b) Albanian, c) English 54

Table 4.2 – Phoneme decoding results reference ... 56

Table 4.3–Phoneme decoding results on a different audio database than the one used for training 56

Table 4.4 – Phoneme decoding results on trained database with interpolated LM 56

Table 4.5 – Phoneme recognition results summary ... 57

Table 4.6 – Word decoding results reference ... 58

Table 4.7 – Word decoding results reference, new LM ... 59

Table 4.8 – Word decoding results reference, new LM (less restrictive) .. 59

Table 4.9 – Word decoding results on different audio database (less restrictive) 59

Table 4.10 – Word recognition results summary .. 60

Table 4.11 – Confidence score based experiment’s results ... 62

12

13

List of Acronyms

ASR Automatic Speech Recognition

LID Language Identification

HMM Hidden Markov Model

MFCC Mel-Frequency Cepstrum Coefficient

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

PLP Perceptual Linear Prediction

SDC Shifted Delta Cepstra

LM Language Model

LPCC Linear Prediction Cepstral Coefficients

GMM Gaussian Mixture Model

UBM Universal Background Model

UBM-GMM Universal Background Model Gaussian Mixture Model

EM Expectation Maximization

MAP Maximum Aposteriori

PRLM Phoneme Recognition followed by Language Modeling

PPRLM Parallel Phoneme Recognition followed by Language Modeling

CMU Carnegie Mellon University

SpeeD Speech and Dialogue

14

15

Introduction

 Ever since prehistoric times speech has been the most used means of communications. This

was the case thousands of years ago and it still is the dominant way of communicating in the

modern society. In the early days of humanity the only possibility for 2 persons to communicate

was to address each other from a short distance. With the progress of technology human speech was

allocated a greater deal of importance and fast enough people started to take interest in how speech

is created and interpreted. At first these ideas were approached by sciences such as anatomy but

soon enough engineers started to investigate the methods in which they can synthesize speech or

even transport it over long distances.

 A major technological breakthrough was the invention of the telephone in 1876 by Graham

Bell, which allowed people to send informational messages in the form of speech over great

distances. These devices quickly became popular and are now amongst the most used small

appliances [1]. Even though many other forms of communication emerged (telegraphy, written

messages etc.) speech remained the most important and used means of communication.

 With the ongoing technological progresses throughout the last century computers evolved at

an astonishing rate. They gained high computational power and numerous capabilities which people

tend to exploit to the fullest, but all these led to more complex systems and harder to comprehend

for the regular user. As a response to this need certain interfaces were developed in order to ease the

communication between humans and machines. Up to this day this is still a highly debated problem

on which many organizations and researchers are focusing their attention. Given the fact that

technology is now addressed to regular users and not to power users, it is of great importance for

everyday users to operate machines without being previously trained for this specific task. It is

obviously simpler for a regular user to express his desire to a machine by simply talking to it instead

of using peripherals such as a keyboard or a mouse. Taking for example the case in which a user

wants to mute the speakers of a computer, it is easier for him to say mute sound instead of accessing

several command panels, using the mouse or keyboard in order to tick a box that performs the

desired task, all while paying attention to the display so he can be sure that he is not making any

mistakes.

 The advantages of a world in which machines can be voice controlled are obvious, in terms

of security, processing speed and user’s multitasking ability given by the possibility to work on

multiple tasks with parts of their bodies which would be otherwise involved in controlling the

machine. It would also offer more interaction between users and machines which, in term, would

lead to a greater degree of satisfaction of the end-user.

 In order to implement a system that can interface between humans and machines, based on

human speech, it is necessary to build a spoken language system which deals with speech

recognition and speech synthesis. But these 2 abilities are not enough if we want to have a versatile

spoken language system, because it would lack speech interpretation. An understanding component

is necessary in order to interpret the input speech, transform it in basic instructions for the machine,

execute them, give a reply and then interpret the response in such a way that the average user

understands it. After this it is the speech synthesis system’s duty to output the reply of the machine

in the form of speech.

 This thesis approaches 2 fields of interest out of which one is the first part of the spoken

language system, i.e. the Automatic Speech Recognition (which will further be called ASR) system.

The second part of the thesis regards Language IDentification (which will further be called LID)

systems.

 ASR systems’ objective is to transform spoken utterances into text. The performance of an

ASR system is strongly related to the targeted language, the number of speakers used for training,

the context in which the system was trained, the number of words in that language’s dictionary, the

level of the recording’s environmental noise etc. Regarding the targeted language a distinction can

be made between languages for which there is a small amount of resources and languages for which

there is a high amount of resources. A low-resourced language is a language spoken by a large

16

number of people but for which significant research work hasn’t been done. These are languages

that lack a significant amount of text resources and organized speech. For such languages the ASR

system creation is a daunting process because it involves not only the training and testing of the

system but also the resource accumulation. This is the case for Romanian and Albanian, two of the

languages targeted by this thesis. On the other hand, languages which presented interest for

previous researches have ASR systems with better performances and are more robust.

 Regarding language’s morphology a distinction between rich-morphology languages (e.g.

Romanian) and poor-morphology languages (e.g. English) can be made. This term refers to the

different morphological forms of words, mainly because of declination. For example, in English,

the present tense of the verb to write has only 2 morphological forms: “write” and “writes”, while in

Romanian it has 5 different morphological forms: “scriu”, “scrii”, “scrie”, “scriem”, “scrieți”,

“scriu”. In addition to this characteristic there is another aspect that must be taken into consideration

when analyzing a certain language and that is the agglutination. In an agglutinative language most

of the words are formed by joining morphemes together [2]. Each of these morphemes expresses a

definite meaning. Agglutinative languages like Turkish present composed words, such as taam‐uk‐
ul-igw‐aasy‐an‐il‐a meaning “cause each other to be unseated for (someone)” [3]. All these

particularities influence the size of the dictionary for a specific language and that is why English has

less words than German, for instance, where a great number of compound words can be found.

 Even though some ASR systems can be implemented with a higher number of words in the

dictionary it does not account for an easier task for the system. The meaning of the spoken

utterances is the one that makes the difference between two ASR systems trained with an equal

number of words in the dictionary. This is the case when we are to compare between an airplane

ticket disposer which is supposed to have as input parameters mostly proper names, i.e. the names

of the towns to which someone can travel and a system designed to recognize spontaneous speech

between more individuals. Given these two cases a better result would be for the airplane ticket

disposer because it has a lower linguistic uncertainty.

 In the second part of this thesis more attention is paid to the language identification

technique and its utility. LID systems are of great importance in countries which have more than

one official language in order to discriminate between them. In these countries more than one of the

official languages can be mixed inside the same phrase resulting in a code-switched speech. For

example, in South Africa there are up to 11 official languages.

 A LID system can be successfully implemented in many applications, especially with the

ongoing tendency towards globalization. It is easy to remark that societies have started to use terms

from foreign countries and it is not a peculiar habit anymore. Many societies use English words and

it has started to shift from a trend to a normal situation. Furthermore, the ease of traveling brings

more and more strangers to every country, strangers who do not particularly know the mother

tongue of that country. LID systems come to the aid of these people helping them to cope with the

language barriers. They can be a valuable asset to countries with more than one official language

and in countries with strong external language influences. Languages such as English and Mandarin

are already being given the proper attention but there are not enough resources to develop similar

systems for low-resourced languages. Even though there might be enough researchers interested in

developing such systems they are still confronted with the dismaying task of gathering a proper

amount of text and audio corpus in order to train a robust enough system.

 This thesis aims to take on the challenge of proving that with the proper information one can

collect both text and speech in order to build an ASR system to which a LID system will be added

with satisfying results. Given the fact that Romanian and Albanian are both low-resourced

languages it makes it even harder to find appropriate text and speech. Furthermore, with a very low

number of people in our country understanding Albanian it will be shown that it is still possible to

build ASR and LID systems for a language of which one knows very little about, but with some

additional help.

17

Chapter 1. Automatic Speech Recognition – Theoretical Aspects

1.1. Introduction to Automatic Speech Recognition

 The aim of an ASR system, also known as a speech-to-text system is to translate an audio

signal, a speech signal, into a written sentence. The speech signal is presumed to be a sequence of

words, naturally uttered by a person. In the modern society spoken language is the most common

means of communication and people make use of it on a daily basis with very few exceptions.

 An ASR system is designed with the purpose to aid the interaction between humans and

machines. An ideal ASR system would be so trust-worthy that humans could rely on it to make only

voice interaction with machines and reduce any other sort of interaction to a minimum or even to

totally dispose of it. As an example, an ASR system can be imagined to help surgeries, that would

be so precise and with such a strong understanding capability that a doctor could rely on it to

perform a surgery without checking the displays of the machines and suffering less from human

error factors. This is an ideal case in which the ASR would be very robust, would answer in the

same manner no matter who the speaker is and would be independent of environmental noise. This

is not yet the case but researchers are making progresses in this direction in order to create new

ASRs and optimize the ones that already exist.

 ASR systems are taking on the challenging task to implement hands-free and eyes-free

interactions between humans and machines and thus helping many industries such as previously

mentioned, medicine, journalism, where journalists could easily write an entire article in a matter of

minutes, literature, where authors could make a better use of the time spent on writing and many

others. A natural expansion of ASR systems is the reverse process, i.e. the text to speech system,

together with which a speech to speech assembly can be implemented. This is a very modern

subject with many applications mostly in the entertainment industry where the end users show

greater satisfaction than for previous interaction systems. Speech to speech systems often require an

algorithm to provide meaning to the recognized words and interpret them in such a manner that the

response, which is the responsibility of the text to speech system, provides a logical sequence of

words that best fits the context of the input speech. This strongly depends on the message that the

intermediate assembly between the speech to text and text to speech systems receives at its input.

Therefore, a simple translation from speech to text is not sufficient for an ASR system as it is also

supposed to give a minimum meaning to the text that it outputs. Having this in mind, it is desired to

have a logical succession of words in the text form as close as possible, if not identical, to the

succession of words contained in the input speech.

 The above stated problem helps us to accommodate a better interpretation for the ASR

taking into account the fact that it is amongst the first fields in which statistical modeling of large

data quantities became a standard. In a probabilistic manner, the problem of ASR can be put this

way: What is the most likely sequence of words W* in the language L, given the speech utterance X? [4]

 In a formal representation it results:

 (| (

 This equation states W* is the most probable word sequence with the highest posterior

probability, given the speech utterance. According to the Bayes rule one gets the posterior

probability and the most probable word sequence:

 (| (

 (
 (

 Given the fact that p(X), the probability of the utterance to be stated is independent of the

sequence of words W, we can ignore it, leaving us with:

 (| ((

18

 At this moment the problem of giving an estimate of the sequence of words having given the

speech utterance can now be interpreted as two distinct problems with a lower degree of

complexity:

1) estimating the prior probability of the word sequence p(W)

2) estimating the likelihood of the acoustic data given the word sequence p(X | W) [4]

 Each of the two problems can be solved by means of building a language model to compute

the first probability and an acoustic model to compute the second probability, respectively. Both of

these models can be built independently of each other but they will only be used together to make a

valid decoder as stated in Equation 1.3 [4]. Therefore, the practical challenge of speech recognition

is how to build accurate language models p(W), and acoustic models p(X | W). Improving the

accuracy of the acoustic model poses great difficulties because for a language with large dictionary,

as it is in this case, the acoustic model cannot cover the entire range of spoken words. That is why it

is necessary to train the system based on sub-words units, meaning phonemes. Creating a robust

phonetic model for a language gives the possibility to recognize words that the system did not

encounter in the training process, similar to a person decoding a message heard for the first time in

his/her life. Usually, the phonetic model consists of giving a phonetic representation for every word

found in the vocabulary of that language. Having a phonetic transcription of every word, the

decoder will try to map every spoken phoneme in such a way that it will form a meaningful entity

found in the vocabulary taking into account the probability for that word to occur in a certain

context, probability given by the language model.

 Another important aspect regarding the decoder is that it does not operate with the direct

wave form of the input speech, but it models it first, extracting a series of parameters that will be

later discussed in Section 1.4.1. Having these in mind we present a general block diagram of the

decoding part of the ASR system in Figure 1.1.

Figure 1.1 General Block Diagram of an ASR Decoding System [5]

19

 Each of the main blocks in Figure 1.1 will be treated separately in the following part of this

paper and so will be the training part of the speech recognizer in which language modeling and

acoustic modeling will be debated.

1.2 Language modeling

 A good way of judging a speech recognizer is to see how well it responds to speech which it

hadn’t had the chance to train its models on. This is called managing sparse data, because it is

impossible to keep records of every possible word sequence that can exist in a certain language.

Language modeling is one of the two most important features when talking about speech

recognizing in that it gives relevant information about recognizing and understanding natural

speech.

 The goal of spoken language identification can only be achieved if certain parameters

regarding language modeling are taken into account. Such parameters are the syntax and semantics

of the language (which determine the correct sequence of words from the grammatical point of view

and an evaluation of that sequence’s meaning) and knowledge of that language’s pragmatics (what a

speaker is most likely to say in different contexts, given what they already said). A clear

differentiation between these two is impossible because they often interleave when creating a

language model [6]. Syntax, semantics and pragmatics offer redundancy from the information point

of view. Such redundancy can and is exploited with the use of statistical modeling concepts on

which speech recognition heavily relies.

 The Language Model (LM) is what gives a best estimation of the likelihood of the sequence

of words W = w1, w2, w3, … to appear in the form of a sentence in the source language [4]. The

LM comes to help the acoustic model in the decision making process of decoding a speech input.

For example, the two fragments “compact would author’s “ and “contact with others” are very

similar to one another from the acoustic point of view, which makes the task of the acoustic model

very difficult in taking a decision on what was spoken without having any other information

regarding the message that these two fragments contain. However, the language model offers this

much needed information giving different likelihood probabilities to the two fragments in question.

This way, the LM will give “compact would author’s” a much lower probability to be part of

natural speech, if not even null, than the one assigned to “contact with others”. It is obvious that the

first syntax is almost impossible to be encountered in natural free speech while the second one

could be uttered in many situations. There are numerous other examples of such confusions that the

acoustic model could be faced with. Many of these can be solved by statistical decisions provided

by the LM of that language. LM lets the recognizer make the right decision when two different

sentences sound the same [7].

 The problem that LM responds to can be rephrased in mathematical terms as the chain rule

of probability:

 ((((| (| (

 As it can be seen from Equation 1.4 the probability of a sequence of words W to appear in

the recognized speech is a product of the probabilities assigned to words to appear after a certain

sequence of words. Equation 1.4 can also be written as:

 (∏ (|

 (

 The probability (| is interpreted as follows: “The probability of the

word to appear after the sequence of words in this precise order”. It can be

observed from this that the probability to obtain a word depends on the history of its

predecessors. However, it is not recommended to take into consideration the entire history of the

utterance because some histories may appear only once or have a large number of words in the

entire sequence so that it is not worth the amount of resources that need to be allocated in order to

record such a history. This can be resumed to a simple balance between number of terms in the

20

history and memory allocation. Therefore, it is necessary to limit the number of preceding words

from the history to m or to put it in another manner, only the last m words contribute to the

probability of choosing the next word. This method is a Markov assumption, stating that:

 (∏ (|

 (

 This leads to applying the N-gram language model, which is the most common practice in

speech recognition techniques used for language modeling. N-grams represent a LM built while

taking into consideration only the last N words in a sequence in order to determine the probability

of the next word. The most used are single words (unigrams), 2-grams (bigrams) and 3-grams

(trigrams) with more attention given to trigrams. The amount of text data on which the training of

such a language model is performed is called text corpus. For a LM of good performances it is

necessary to use a large enough text corpus which comes back to the initial problem or resource

gathering. The number of words required for such a case is of many millions, reaching even

billions.

 Considering for example the case of bigrams we must use the maximum likelihood estimate

and count how often the word precedes the word [9], or the probability to come upon the

pair of words (), in this order. The probability thus can be calculated with the formula:

 (|
 (

 (
 (

 Equation 1.7 states that we can find the probability of the pair of words () to appear

by counting the number of this pair’s occurrences and dividing it by the number of occurrences of

the word . It can be easily seen that according to the meaning of such sequences higher or

lower probabilities will be assigned. For example, we expect the sequence “I would” to have a

much higher probability than the sequence “Chinese pizza”, being very context dependent. In a

similar manner trigrams are approached, their probabilities being calculated according to:

 (|
 (

 (
 (

The larger the number of words in the history of a sequence is to be considered the better the results

will be, providing better accuracy and more robustness. However, this comes at the price of needing

even larger text corpus with the number of words in the language model growing exponentially. It

has been a common practice to choose 3-grams to obtain satisfactory result for a speech recognizer.

1.3 Language Model Evaluation

 As it has been seen in the previous section the language model’s purpose is to try to

determine the most probable sequence of words in a speech signal. Consequently, a means of

evaluating such language models is necessary. There are more ways in which an objective

evaluation can be made but we will approach the most common two of them.

1.3.1 Perplexity

 LM’s evaluation is most commonly done by means of Word Error Rate (WER), which is

basically an alignment between the correct speech transcript, also called reference file and the

decoded speech transcript, also called hypothesis file. This method can be successfully used if we

have access to the reference files, which is not generally the case. It also depends strongly on the

ASR in question and is computationally expensive [13]. Thus, perplexity was taken into account,

regarded as the main LM evaluation metric, between ASRs with the same vocabulary size.

Perplexity can be calculated starting from the formula:

 ((∏ (|

 (

21

 The above equation can also be interpreted as the inverse of the geometric average

probability assigned to each word in the test set by the model [13]. Computing its logarithm gives

the upper bound of the number of bits expected in compressing. Generally, the lower the perplexity

is the better the estimation of the ASR regarding the sequence of words is.

1.3.2 Out Of Vocabulary words

 The second metric that we discuss is the Out Of Vocabulary (OOV) words. As a language

model is trained on a finite text corpus it is obvious that it cannot contain all possible words of that

language. Consequently, it is possible to come upon words that the system has not been trained with

during the decoding process. These words are considered OOVs. The higher the number of OOV

words is, the worse the result of the recognizer will be, giving false hypothesis for each of these

words. The perplexity for such a word is considered infinite so it must not be taken into account

when computing the sum of all perplexities for the sequence of words in which the OOV word is

encountered. In this case the following evaluation will be made and taken into consideration [4]:

 []

 (

1.4 Phonetic modeling

 Having a large vocabulary to work with for designing a speech recognition system it is

impossible to use words as basic speech units because there would be too many words outside the

training corpus that the implemented system has never seen to have good results. Also, different

tasks may require from an ASR to mold itself to a specific context for which there has been no

training data available. For example, if an ASR is asked to decode utterances linked to quantum

Physics and the training corpus consisted mainly of news and political terms there would be a very

high probability of error if the ASR were to try and decode the speech with words as basic speech

units. For easier adaptation of the ASR it is required to build a phonetic model as well. This serves

as a link between the acoustic model and the language model, between the likelihood of the acoustic

data and the probability of the word sequence.

 The phonetic model usually consists of a pronunciation dictionary, linking each word in the

dictionary to its respective phonetic transcription, written as a sequence of phones. Again, the

phonetic model is linking the acoustic model which uses phones to the language model which uses

words [4], thus being an interface between the two.

 It is good to know that for phonetic languages the list of phones will contain less phonemes

than in the case of languages which are not phonetic. Thus, it is expected to see more phonemes for

English than for Albanian and Romanian. The lower the number of phonemes, the easier it is for the

ASR to map them in meaningful sequences in order to form words.

1.5 Acoustic modeling

 After years of research and debate in ASR domain the greatest challenge remains that of

obtaining a good accuracy. Factors such as variations in context, in speaker and in environmental

noise have a strong impact on the ASR’s accuracy [6]. The acoustic modeling of an ASR is

arguably the most important part of the system and it must be treated likewise. As stated in Section

1.3 ASR systems do not estimate the likelihood of entire sequences of words but of phonemes

which are smaller speech units. As a consequence, the decoding process implies estimating the

likelihood of these small speech units linked in such a way that they form word models and

eventually word sequences models [4]. It has been proved that for this kind of approach the Hidden

Markov Model (HMM) is best suited. It is a powerful tool used for segmentation, time warping,

pattern matching and integrating context knowledge in a unified manner [6].

22

1.5.1 Acoustic features

 As it can be observed in Figure 1.1 a speech recognizer does not decode the time-domain

waveform of a speech signal. Instead it performs and acoustic analysis which in term gives at the

output some acoustic features which will aid the acoustic model in the decoding process. These

acoustic features will be used, more precise, by the HMM.

 It is known that speech signal is a quasi-stationary signal, presenting stationary properties on

small frames, of 20ms to 30ms. This frames are generated every 10ms, thus resulting in a partial

overlapping. In order to smooth the edges of these frames they will be multiplied with a window

function. Usually, the Hamming window is chosen for this multiplication as it gives the smoothest

and least distorted spectrum that typical framing windows can give. Thus, the initial speech signal’s

time-domain waveform is now translated into a sequence of time-domain sequence of quasi-

stationary frames [4].

 The main parameters extracted during this stage are the Mel-Frequency Cepstrum

Coefficients (MFCC) and the Perceptual Linear Prediction (PLP). Cepstral coefficients are

preferred above spectral coefficients because they are de-correlated with the help of the Discrete

Cosine Transform (DCT) as opposed to the second type, which possess great correlation between

adjacent spectral coefficients [4]. MFCCs are obtained according to the following block scheme:

Figure 1.2 MFCC generation block scheme [10]

 As it can be seen in Figure 1.2 there are several steps required to obtain the MFC

coefficients [10]:

 preemphasizing the original samples and applying a Hamming window of length around

25ms

 the magnitude spectrum is obtained by computing the Fast Fourier Transform (FFT) of the

windowed signal

 the magnitude spectrum is compressed by a Mel scaled filter bank (filters of triangular

frequency response, equally distanced regarding their central frequency)

 compute logarithm of the power of each of the Mel frequencies

 perform the DCT in order to de-correlate the signal

 normalize the obtained terms in order to account for different audio channels

23

 The PLP acoustic features are obtained according to the following block diagram:

Figure 1.3 PLP generation block scheme [10]

 As it can be seen in Figure 1.3 there are several steps required to obtain the PLP acoustic

coefficients [10]:

 a Hamming window is applied to the speech signal without pre-emphasizing it. This

window is slightly narrower than in the case of MFCC, with a length of 20ms.

 the power spectrum is obtained with the use of FFT

 a filter bank composed of trapezoidal frequency response filters is now applied to the power

spectrum

 the first and last value are repeated because the filters reach beyond the valid frequency

range and their output is discarded and replaced with the value of the right or left neighbor

 the equal loudness pre-emphasis is used to compensate the non-equal perception of loudness

at different frequencies [11], having as output the intensity of the speech

 the intensity-loudness law gives an approximation of the loudness perceived by the human

hearing as a function of the intensity

 autocorrelation coefficients are calculated with Inverse Discrete Fourier Transform (IDFT)

 the autocorrelation coefficients are then transformed into autoregressive coefficients by

using the Levinson-Durbin recursion [10]

 finally, these autoregressive coefficients are transformed into cepstral coefficients and are

optionally normalized

 These two kinds of acoustic features are computed on a relatively small window length of

20-25ms with MFCC being usually preferred to PLP. Even so, they both give plenty of information

regarding speech models and information about the coefficients’ dynamics. The second type of

information has been found to be useful as well because it contains important data about the

coefficients’ variation rate, adding to the local temporal dynamics of the speech signal [4]. Together

24

they give a comprehensive description of the speech signal which will further be used. It is worth

mentioning that these acoustic features are used not only in the training phase of the system, but

also in the decoding process, the entire system relying on these coefficients instead of the actual

speech signal.

1.5.2 Hidden Markov Model

 As it was stated in the previous section speech signal is completely characterized by the

acoustic features for automatic speech recognition. In order to model these features and exploit the

information that they contain we make use of the HMM. The HMM is used as a statistical method

which characterizes the data samples of a discrete-time series [6]. It is basically a finite state

automaton that models the state of a system with a random variable that changes during time on

which we apply some restrictions. The HMM is called hidden because the state sequence is partially

unknown, thus hidden to the observer. A probability density function attached to each state

generates a sequence of acoustic feature vectors which is observed instead of the state sequence [4].

A representation of the HMM can be found below, taking into consideration the start and end states

depicted as “Entry” and “Exit” and three other intermediate states:

Figure 1.4 3-state left-to-right HMM diagram [12]

 This HMM’s constituent parts are:

 the set of states: “Entry”, “1”, “2”, “3”, “Exit”, usually denoted

 the set of transition probabilities (| representing the probability of transitioning

to state from the state

 the set of observation likelihoods (((, where ((| is the

probability of an observation being generated in the state .

 It can be observed that a particularity of the HMMs used for speech recognition is that the

transitions are not arbitrary as how it is presumed. Instead, a transition can be made only to the

actual state (a self-loop) or to the successive state, not allowing backward transitions or skipping

transitions. This type of modeling for phones can be explained by the fact that a self-loop occurs

when a phone is prolonged for more than one state, covering a larger part of the input speech or it

can only advance to the next state, just as human speech behaves. The advantages for this type of

modeling occur from the fact that there is no need for a memory in which to store the previous

states being a first-order Markov process and from the fact that the current state contains all the

information regarding the previously observed acoustic feature vectors [4].

𝑎 𝑎 𝑎

𝑎 𝑎 𝑎 □ 𝑎□

𝑏 (𝑥 𝑏 (𝑥 𝑏 (𝑥

1 2 3

Entry Exit

25

 The HMM previously presented is regarded as the best method of acoustic modeling so far,

making computations faster and less complex. This is well-suited for phone modeling because it is

known that a phoneme is strongly dependent on the context in which it will be found. Thus, a

phoneme can be evaluated only by taking into account its neighboring phonesme. The common

practice is to take a phoneme into consideration regarding its left and right neighboring phonemes,

case in which we refer to it as a triphone. Another case could be when a pair of phonemes is

referred to in a similar manner, regarded as a quadriphone.

26

27

Chapter 2. Language Identification – Theoretical Aspects

2.1. Introduction to Language Identification

 The aim of Language Identification (LID) systems is to give a quick and accurate

identification of the language that has been spoken. Over the past few decades LID systems have

become increasingly important and found their way into many industrial applications. The current

degree of globalization has indirectly imposed the use of many languages for a large number of

applications, thus requiring these systems to give a fast and accurate response while surpassing

language barriers. An example of such applications is the system used to redirect incoming calls in

a telephone company to different operators depending on the language spoken by the caller [14].

That would be a time-saving action that would benefit not only the company but also the person

calling as he or she wouldn’t be required to go through preliminary steps in order to talk to the

person in charge of solving that problem. It would be much easier to say “I am given the number

busy message whenever I call somebody” in your mother tongue and immediately be switched to an

operator that speaks your language and already knows the problem that you are confronted with. It

would be less stressful and this kind of problems would be quickly solved.

 Another important aspect about LID is that it is less expensive to train than people. It would

take multiple days or weeks for a person to gain the capability to recognize a language that they

have no knowledge about. Taking into account the fact that LID is being performed out of a number

of languages it means that each person responsible for this task should be trained in the same

manner for each of the languages in question. This training must be performed for each and every

person that will have the task of LID. In comparison to these necessities, LID systems must be

trained only once with a high enough robustness and then they can be ran on any machine

simultaneously with no additional costs involved. This gives a higher degree of freedom when one

resorts to such an approach.

 However, the accuracy of such systems depends on the available training data as it can take

wrong decisions if the system has not been properly configured. A strong advantage that humans

possess in this debate is that they can make subjective assumptions about the language that they are

hearing at the moment based on previous experience “sounds like Spanish” and with little or no

expertise about what the sentence’s message was [15].

 Another challenging task for LID systems is that they must be reliable in the absence of

prior knowledge about the speaker’s identity and the utterance’s message. Adding to this there is an

overwhelming number of languages out of which a LID system must discriminate, with more than

6000 languages being used in the present. That is why it must easily adapt to new languages and it

must also be flexible enough in order to accommodate variations of different speakers [16].

 LID and ASR systems share many similarities as to what the problem formulation and

system approaches are concerned. Both of them can be set up as recognizers or verifications.

Regarding this problem, a LID system can be built in such a way that it is able to recognize the

spoken language from a set of known languages or it can be built in such a way that it addresses the

problem of accepting or rejecting the hypothesis that the given utterance was spoken in a certain

language or not [14].

 Human speech can be modeled in the case of the LID task into different speech features,

divided mainly into two levels: spoken level and word level [17]. The first level includes acoustic,

phonetic, phonotactic and prosodic information about human speech and it can be obtained from the

raw speech signal. The latter refers to morphology, syntax and grammar information [14]. Its

importance can be easily seen because each language contains a specific set of words, namely an

own vocabulary. This is a great difference between any two languages.

 LID systems are formed of two main parts: the front-end which extracts the necessary

feature vectors from the input speech and the back-end which has the task of identifying the

language based on certain sets of feature vectors, models and algorithms. The training of such

systems must be done taking into account that the identification part must not be biased to any

28

language, it must respond in the same manner to short or long speech inputs, it must be robust to

channel and speaker variations [14] and it must be persistent to noise factors.

2.2 Basic aspects of LID systems

 As stated in the previous section LID systems are composed of the front-end and the back-

end, each with its specific tasks to fulfill. The front-end of the system extracts a sequence of

features thus giving a characterization of the input speech’s waveform. The idea here is to extract as

much useful information as possible from the audio waveform and discard as much of the redundant

information as possible [14]. This is done at the frame level with a single N-dimensional feature

vector being extracted from each frame. N is a value much lower than the number of samples per

frame, thus resulting in a reduction of the information quantity that is sent to and interpreted by the

back-end. An entire speech signal is thus transformed into a sequence of

vectors [], with an N-dimensional vector and k the frame index [14].

 The ideal case is when all redundant information, noise factors and speaker dependent

features have been removed from the signal and only the characteristics of the speech waveform

that are useful for discriminating between languages are left and sent to the back-end for further

computations. The most common parameters that are used for LID are MFCCs, PLP, Delta, Delta-

Delta and Shifted Delta Cepstra (SDC). At first, these feature vectors are used to train a model,

different for each of the languages to be recognized.

 In the identification phase the input signal is processed and the same set of feature vectors is

extracted as in the training phase. This feature set is afterwards compared with the sets of features

that the system was trained with: | , with the number of possible languages used

for identification. The back-end of the system must determine which of the language models

better fits the input signal’s set of feature vectors, maximizing the a posteriori probability across the

set of language models [14].

 The selection goes according to the following equation:

 ̂

 (| (

 According to Bayes’ Rule, Eq. (2.1) can be rewritten as:

 ̂

 (| (

 (
 (

 The hypothesis that the system is not biased towards any language means that all languages

are assigned equal likelihoods (, the above equation thus becomes:

 ̂

 (| (

 This leads to the fact that giving an estimate of the identified language is the same as finding

the language model in which has the highest probability of occurring. Putting all these parts

together we get the general architecture of LID systems:

29

Figure 2.1 Basic block diagram of a LID system [14]

2.3 Speech Information regarding Language Identification

 When using a LID system various types of information are taken into account. A certain

classification of these information has been made, inspired by human’s understanding mechanism.

Studies have approached the methods which people use in order to discriminate between languages,

whether it is in a conscious manner or not. A broad classification has split the speech features into

low level and high level. At the low level, the most common are the acoustic, phonetic, phonotactic

and prosodic information. At the higher level, language identification can be made based on

morphology and sentence syntax [14].

 In the following figure we see a gradation of these features according to the level they are

assigned to:

Figure 2.2 Levels of LID features [14]

 The acoustic features, usually modeled by MFCCs are a compact representation of the input

speech signal fulfilling a compression of the data contained in the audio waveform. The phonotactic

30

features represent the admissible sound patterns that can be formed within a language. The N-gram

 language model (LM) is used to model these phonotactic features. The prosodic features

make reference to duration, pitch and stress of speech and reflect elements such as the speaker’s

emotional state, which cannot be characterized by grammar. The lexical features address the

problem of the internal structure of words. Lastly, the syntactic features are the outcome of the

analysis of the way in which words are linked together in order to form phrases, clauses and

sentences [14].

 If we are to compare these two broad levels we can conclude that low-level features are

easier to obtain but are very volatile and are easily affected by noise and speaker variations whereas

high-level features contain more information regarding language discrimination. However, high-

level features rely on large vocabulary recognizers, therefore on more training data. This ultimately

leads to a higher complexity in obtaining these features. A brief description of each of these features

is presented below.

2.3.1 Acoustic Information

 Acoustic information is generally considered as the first level of speech production [19]. It is

directly connected to the physical part of the speech, i.e. amplitude and frequency components of

the audio signal’s waves. It is the easiest to obtain form of information and it results from raw

speech. Higher level features can be obtained from the acoustic information. The parameterization

techniques used to model these type of information are MFCCs, Linear Prediction, PLP and Linear

Prediction Cepstral Coefficients (LPCC). After basic features are obtained another intermediate step

is done in which the temporal aspects of the signal are appended to each feature vector.

2.3.2 Phonotactic Information

 It is known that humans can produce only a limited amount of sounds. What is of

importance for LID systems is that not all of these sounds can appear in any given language. In fact,

each language has its own set of sounds, out of which only a few are common to other languages as

well. Phonotactics deals with the admissible phoneme combinations for each language. These

phonemes’ arrangement gains meaning or not depending on the given language. The phonotactics

constraints are strong enough to offer a means of distinguishing a certain language. For example,

Japanese does not allow two adjacent consonants but Danish and Swedish do [14]. There are many

other examples based on which it has been concluded that phonotactics contain a great deal of

information useful for LID.

2.3.3 Prosodic Information

 Prosodic information pays attention to elements such as tone, stress, duration or rhythm.

Intonation is defined as the variation of pitch during speech. The pitch, in term, is the fundamental

frequency and it is used for tone representation. The intensity of one’s speech is used for

representing rhythm. In some Asian languages where intonation gives a certain meaning to a word

[20] it is essential to explore this field. Stress can also have a strong impact on LID as some

languages such as French have a word-final stress pattern as opposed to others that have a word-

initial stress pattern such as Hungarian [14].

2.3.4 Morphological Information

 Morphology is the field of linguistics that studies the internal structure of words [21]. Words

are the fundamental units for syntax and they can be related to other words according to

morphology rules. Word roots and how other words are formed are different across different

languages. In a similar manner it is concluded that languages have their distinct vocabularies

31

leading to a unique expression of these languages. Therefore, examining the characteristics of word

forms can determine language discrimination.

2.3.5 Syntactic Information

 As a definition, syntax is the study of the ways in which words are adjoined within a

sentence. It is the study of the laws that words follow so they can form a meaningful phrase.

Integrating word based grammars leads to a clear improvement of LID but it comes with a great

price, as creating such a grammar is a very tedious task. It is a far more complex process than the

commonly used phonetic level.

 All in all, LID systems make use of the above mentioned types of information but it is not

necessary that they use all of them. In fact, systems that integrate all of the above are very rare.

Researches that have been made in this direction have shown that satisfactory results can be

obtained by integrating only the acoustic and phonotactic information.

2.4 Acoustic Information used in the Front-End

 The development of LID based on the acoustic information has been mane in a similar

approach to the one used in speech recognition and speaker recognition. They are strongly related

regarding the techniques used for representing the audio waveform of a signal. As it has been seen

in Section 1.5.1 speech recognition relies on compressing the relevant parts of the speech into some

coefficient vectors, namely MFCCs and PLP. It is the same case for LID as it aims to capture the

essential differences between languages by modeling the distributions of spectral features directly

[14]. In the front-end part of the system the audio signal is translated into a more compact and

efficient representation which incorporates the most important aspect of speech characteristics and

leaves apart the redundant information. The acoustic front-end of the system is composed of four

main parts, illustrated in the figure below:

Figure 2.3 Block Diagram of the Front-End System

 These four blocks are necessary for obtaining the feature vectors from the raw speech’s

waveform and they work as follows:

 the preprocessing block takes the original signal as input and it includes voice activity

detection, windowing and pre-emphasizing.

 feature parameterization refers to extracting only the data that is important for the back-end

system in the distinguishing between languages process. The parameterization techniques

will be briefly discussed in this paper as they are of equal importance to the LID and ASR

systems alike.

 after the basic set of coefficients has been obtained some additional information regarding

the temporal variation of the speech signal is appended. This comes in the form of delta,

delta-delta cepstrum and SDC.

 the final block processes the signal such that it improves its robustness against noise and

channel mismatch [14].

32

2.4.1 Mel Frequency Cepstral Coefficients (MFCCs)

 The MFCCs are one of the most commonly used parameterization techniques used for

speech and speaker recognition and LID as well. It is in fact a certain type of filter banks that best

approximates the nonlinear frequency resolution of the human ear. After the magnitude-square of

the Fourier Transform is calculated for the input windowed frame of speech, it is passed through a

bank of triangular Mel filters and the natural logarithm of the filter bank energies is taken. The

strong correlation between the log-energies imposes the need of a linear transformation such as the

DCT to decorrelate the information resulting in the MFCCs [14].

2.4.2 Perceptual Linear Prediction (PLP)

 The PLP coefficients come as an alternative to the MFCCs. They are useful because they

incorporate some important features regarding human’s subjective hearing characteristics such as

critical band resolution, the equal-loudness curve and the intensity power law. The critical band is a

similar approach to the MFCCs’ filter bank noting that in this case we discuss about a different type

of filter banks, namely the Bark filter banks. These are of trapezoidal shape, unlike MFCCs’

triangular shape. The equal-loudness curve models the non-linear sensitivities of human hearing at

different frequencies and the intensity power law models the non-linear relationship between the

intensity of sound and the perceived loudness. After this process the auditory spectrum is estimated

by an autoregressive all-pole model [14].

2.4.3 Delta and Delta-Delta Features

 The two previously mentioned types of coefficients are both obtained on a short frame of the

speech signal. However, the information that resides in the temporal dynamics of these features is

very useful for both LID and ASR systems. The characterization of these dynamics is done in two

ways:

 delta features which represent the velocity of the features, determined by its average first-

order temporal derivative

 delta-delta features which represent the acceleration of the features, determined by its

average second-order temporal derivative [4]

2.4.4 Shifted Delta Cepstra (SDC)

 The previously described two features (delta and delta-delta) are effective when it comes to

model temporal dynamics but they fail at modeling higher level temporal aspects of the speech

signal because they only model the slope of the cepstra at the current point in time. This means that

they are able to incorporate the temporal aspects of speech within short time windows.

LID benefits greatly from the assessment of the likelihood of one phoneme following another so in

order to model the temporal aspects of a language it is necessary to take into account the transient

nature of the acoustic sounds across time windows comparable to at least a phoneme’s duration

(which is somewhere between 50ms and 150ms) [14]. This is what the SDC has been proposed for,

offering an alternative to including temporal information in the speech signal across longer time

windows. They are obtained by concatenating a sampling of future delta cepstra with the current

feature vector [14] and they depend on the number of basic cepstral streams to use in the calculation

(the number of used MFCCs or PLP values), the number of frames from one delta calculation to the

next, the total number of delta values concatenated together to form the SDC and the difference

value used in the delta calculation [14].

33

2.5 Acoustic Information used in the Back-End

 The back-end of the LID system has as main purpose the training of some form of model

for each language to be recognized by the system. One very common language modeling scheme is

the one that implies the modeling of the distribution of the acoustic features for each language by a

separate Gaussian Mixture Model (GMM). Recently, another approach has appeared and it involves

the training of a single common GMM for all the languages that are to be identified. This approach

is called the Universal Background Model (UBM) and it is followed by an adaptation of a separate

GMM for each language from that UBM, resulting in the GMM-UBM based LID [14].

2.5.1 Gaussian Mixture Model (GMM)

 A Gaussian Mixture Model (GMM) is a parametric probability density function represented

as a weighted sum of Gaussian component densities [22].

 (| ∑ (|

 (

 In the above equation is a D-dimensional features vector, are the mixture

weights and (| , are the component Gaussian densities. Each component

density is a D-variate Gaussian function of the form:

 (|

(

 ⁄ | |

 ⁄

(

 ((

 In Equation 2.5 represents the mean vector, the covariance matrix and it must also be

taken into account that

 . A complete description of the GMM can be given using only

the mean vectors, covariance matrices and mixture weights, usually written as follows [22]:

 {
} (

 Training these GMMs involves forming an estimate of the probability density distribution

that best characterizes the set of training data [14]. The common method to do so is using the

Expectation Maximization (EM) algorithm. The use of GMMs is motivated by the fact that the

individual components of the GMM can be considered to model the acoustic classes produced by

that language so they can be used in training a general model of that acoustic class. A second

motivation is that GMMs give a smooth approximation of varying distributions such as those

produced by human speech [14] which otherwise would be very difficult to model given their

strong variations.

2.5.2 GMM-UBM

 GMM-UBM has been applied at first for speaker verification and then extended to LID. It

has quickly become the dominant technique for acoustic based LID. Its functionality blocks are

presented in Figure 3.4. In the training phase we can observe two different stages. The first one

implies the training of a single GMM with the data gathered from all the languages that are desired

in the testing phase. This is done by collecting a set of feature vectors from each of the languages in

question and results in the UBM, which represents the characteristics common to all the different

languages. In the other stage, training data from each language is used together with the UBM to

train a specific GMM for each language, making use of the Maximum Aposteriori (MAP)

adaptation, also known as Bayesian adaptation. The process behind this adaptation relies on the fact

that the parameters for the Gaussian mixtures which bear a high probabilistic resemblance to the

language specific training data will tend towards the parameters of that training data whereas the

parameters of the GMMs bearing little resemblance to the language specific data will remain fairly

close to their original UBM values [14]. This type of adaptation is often applied only to the means

of the mixture components instead of the means, mixtures and weights. A block diagram of the

working principle is illustrated in the following figure:

34

Figure 2.4 General Block Diagram of GMM-UBM Functionality [14]

2.6 Phonotactic Information in LID systems

 Phonotactic information is of great importance for a LID system representing one of the

main decision factors in determining the language selection. There are several techniques used at

this level out of which we will discuss the two most important. For the current LID system it is

worth mentioning that phoneme recognition is a key feature on which the identification mechanism

heavily relies on.

2.6.1 Phoneme Recognition followed by Language Modeling (PRLM)

 In the case of PRLM systems phonetic information is first extracted from the speech data

using a phoneme recognizer and yields at the output a sequence of phonemes .
It is immediately followed by N-gram LMs which estimate the likelihood of certain phoneme

sequences inside each target language. We remind that an N-gram LM gives an estimation of the

probability of a certain phoneme to appear given the sequence of the previous N-1 phonemes.

Afterwards, these N-gram LMs can give the LM that best reflects the phonotactic information

about that language [14]. In order to give a comparable measure for language discrimination a

likelihood score is computed for each language when an utterance is analyzed. This score is

calculated with the following formula:

 (| ∑ (| () (

 In Equation 2.7 represents the language model corresponding to the language and

 (| () represents the probability of the N-gram event

 (estimated from [14]. The decision regarding the uttered language is then taken

according to:

 ̂

 (| (

35

 In order to obtain a LID system based on such an approach it is necessary to have the

phonetic transcription of the entire training corpus. This is a strong limitation as there are little

available resources when it comes to phonetic transcriptions. Moreover, a phonetic recognizer must

be implemented having at its output a viable phoneme sequence to work on.

2.6.2 Parallel Phone Recognition followed by Language Modeling (PPRLM)

 An advance in LID has occurred when a phonotactic based LID system with a single

decoder with a multilingual repertory and a variable number of phoneme units was implemented.

This system uses multiple phoneme recognizers in the front-end part and it thus obtains the statistics

of a language. Each of the phone recognizers will give different results according to the different

characteristics that their specific language has relative to the acoustic features. Putting all these

recognizers together a parallel phone recognizer is formed which is able to characterize the spoken

language from a broader perspective [14].

 The multiple phoneme recognizers introduce a higher robustness than in the case of a single

phoneme recognizer due to a larger number of phonotactic models. However, it is a more complex

task to run several recognizers at the same time and the processing speed is decreased. Thus, an

improvement in accuracy comes at a higher cost. The working scheme of PPRLM is illustrated

below:

Figure 2.5 Block Diagram of PPRLM LID [14]

2.7 Prosodic, Morphological and Syntactic Information

 As stated in Section 2.3.3, prosodic information stores information relative to the

fundamental frequency and amplitude of the signal. Each of these may influence the LID process.

Prosodic information contains duration, the pitch pattern and stress pattern in human linguistics

[14]. Different combinations of the prosodic features make for different LID systems. However, the

most effective approach to LID makes use of the entire available knowledge about a language’s

features, namely lexical and grammatical information of a language, but it comes at the price of

higher complexity due to the large vocabulary needed for LID. In order to implement such a

complex system which decodes a speech utterance into strings of words it is necessary to include

both acoustic and phonetic features into the speech recognition process. This means that it will lead

to the best accuracy as it uses most or all levels of speech information. When comparing accuracy

and complexity a compromise is imminent and an acceptable one is to resort only to the first two

feature levels, i.e. the acoustic and phonotactic levels in order to build a LID system.

36

37

Chapter 3. ASR Systems’ Implementation and their Performances

 Implementing the ASR systems before going on to the LID system was a key point in this

thesis. As mentioned in the previous chapter it is vital to have a robust ASR system to build the

identification mechanism on as they use similar approaches and rely on many common techniques.

It is important to note that the main purpose of this thesis was to make a proof-of-concept project in

which functionality overcame high performance regarding the amount of effort put in its

development.

 The ASRs that were developed in this project aim three different languages with the

following motivations: English because it is among the most popular languages that are used in

speech recognition systems and is very well documented, Romanian because it is our mother tongue

and it is very interesting to see the results for it given the fact that almost anybody can assess its

performance and finally, Albanian because we wanted to prove that it is possible to build such

systems for a language which is not approached at all. That being said it is also worth mentioning

that out of these three languages English is the only rich-morphology language. While Romanian

has been studied by some native researchers it is fair to say that this study of Albanian by non-

native speakers is amongst the first that were put to practice. This is the reason why Albanian has

been given more attention than the other two, aiming to overcome resources barriers.

 The ASRs proposed in this thesis address large vocabulary, speaker independent and

continuous speech. In other words there are very few limitations on the way a person is supposed to

make its speech for it to be analyzed by these systems. Speakers are not required to talk with a

certain tonality, intensity or to train their speech before uttering it. However, some limitations

appear regarding the quality of the recording, the noise level in the environment where the speech

was recorded and the context of the speech. All of these will be further discussed in the following

sections.

 The tool that was used in order to train the models and perform the decoding process on

input speech is the Carnegie Mellon University (CMU) Sphinx toolkit which is an open source

project, freely available for any user. It is regarded as the best one at the moment as it offers many

tutorials and there is a large community willing to aid its development but also its support.

3.1 Working with CMU Sphinx

 The speech recognition process involves two phases: the training phase and the decoding

phase. For the training phase it is necessary to build an acoustic model, a language model and to

integrate them in the system, as stated in Chapter 1. These models consist of the following:

 a language model file

 a speech database (audio files with specific name patterns that contain speech)

 a transcription file (a text file which includes the written message found inside an audio

file). These transcriptions must have certain identifiers which correlate the transcript with

the audio file with the same name

 a fields file (a text file which includes the names of every audio file and transcription, of

course)

 a phonetic dictionary (a text file which contains a list of all possible words that can be

recognized and their phonetic transcription)

 All of the above files will be discussed and analyzed in the following sections. The CMU

Sphinx toolkit requires its training files to follow a certain pattern in order to work. This introduces

a certain constrain on the resource gathering process and it imposes many additional processes.

 The CMU Sphinx toolkit also offers language model evaluation and results evaluation tools.

They also provide a Java development kit for further customization of the project which is also free

to download. With the help of these tools it is possible to build an entire ASR and evaluate it as well

given that one already has the necessary resources.

38

3.2 Resources gathering and analysis

 A very important aspect to take into account when building a robust ASR is the database

used for training. This can also be split into the audio database and the text corpus.

3.2.1 Audio database

 The audio database consists of audio recordings of people uttering different statements. It is

desirable to have a large diversity of recorded speakers, both males and females and of different

ages as their voices tend to be very different. Certain health factors such as the common flu can

change one’s voice’s features, namely its pitch making it similar to other natural nasal voices. The

system best performs if it is trained with every type of voice but the number of audio samples must

be weighted according to the probability of encountering a similar kind of voice in reality. For

example, we cannot train a system with 90% male voices and expect it to correctly recognize

female voices.

 Another important aspect regarding the audio database is that all audio samples used for

training must be “clean”. By that we mean that there must not be any environmental noise, the

speech signal must have adequate amplitude and sentences must be uttered at the same approximate

speed. Other factors such as long pauses, coughs, stuttering or laughter can also appear in the audio

signal so they must be treated as well. Furthermore, audio files used both for training and testing

must be sampled at 16 kHz with 16 bits used to represent each sample.

 Speaker independency, which is the desiderate of this thesis, is a concept very difficult to

obtain because it requires a very large amount of training data, from many speakers. CMU Sphinx

gives some empirical data as to what it is required to achieve satisfying performances. These

numbers can be found in the table below:

ASR Task Speaker dependent system Speaker independent system

command and control

(SV-CSR)

1 hour of recordings,

1 speaker

5 hours of recordings,

200 speakers

dictation

(LV-CSR)

10 hours of recordings,

1 speaker

50 hours of recordings,

200 speakers

Table 3.1 CMU Sphinx suggested databases size [4]

 The CMU Sphinx tutorial proposes these databases for several tasks. The command and

control task is generally a short vocabulary pseudo-continuous speech recognition system and it is

supposed to be suitable for short phrases of up to five words. As this is not a very complex

application there is not a special need for numerous hours of training. For the dictation task, on the

other hand, an increase of up to ten times is observed. This is due to the fact that dictation involves

free speech on any topic. What the two have in common is that if a speaker independent system is

desired then the number of different speakers is very large, around two hundred. The explanation

for this resides in the great differences found between different speakers, as stated above.

 For this thesis we have used different databases for each language as illustrated in Table 3.2.

The acquisition of the Albanian speech database was the most complex part of the resources

gathering because there was no free Albanian database available. Therefore we had to find a way in

which we would acquire enough speech files and associate them to their respective transcription.

This was resolved in a manner that did not guarantee “clean” audio clips but they were good enough

to setup a decent ASR. This process took place in the following manner:

 firstly, three Albanian news websites (www.balkanweb.tv, www.vizionplus.tv, www.top-

channel.tv) have been investigated and they have been discovered to contain many clips

containing both audio and video information

 the second step was to iterate through all of their available pages and download them in the

.html format

39

 a thorough search has been made on these .html files with the purpose of finding links that

led to videos posted on www.youtube.com (because that is the site they would use to upload

all their clips) and saved into a list

 the previous list was parsed such that only valid links would be kept for further use and the

other ones would be discarded

 each of the valid clips was then downloaded from www.youtube.com using the “youtube-dl”

tool under the .mp4 format. These clips would contain both video and audio information but

we only needed the audio information

 the next step was to retrieve only the audio information from the .mp4 clips and to make

sure that they have a good quality and storing them does not take up too much memory. This

was made with the “ffmpeg” tool and the resulting clips contained only audio information,

under the .wav file format, sampled at 16 kHz, represented on 16 bits. At this point we had

extracted the audio information and separated them into different files for each news article.

 as we went through the audio clips we realized that many of them contained useless

information such as commercials or music clips that were not correlated with the news

article itself so we had to manually parse all of them so we would keep only the ones that

contained useful audio information, corresponding to the news article’s information

 the audio files obtained in this way still had another problem under the form of multi-

speaker audio clips. In other words, in a single audio file there were more than one speaker

present and most of the times they did not have their entire speech transcribed in the news

article. In order to solve this problem we had to apply a diarization process over these audio

files. The diarization process would break an audio file into separate smaller audio files,

each containing the amount of speech up to the next speaker change. The diarization process

is illustrated in Figure 3.1.

Figure 3.1 Diarization process example

 the diarization process was accompanied by a simultaneous parsing of the corresponding

transcription file. In this step, a native speaker was following the target audio file and its

transcription at the same time and make adjustments to the transcript where it was needed.

This way we made sure that we have exact transcriptions for each part of the audio file.

 Along to these audio files that we managed to extract from the Internet and bring them to the

required format we also had another audio database provided by the Speech and Dialogue (SpeeD)

laboratory, that was used for the MediaEval 2013 Spoken Web Search task. This database provided

us with audio files that were recorded with the help of native speakers, both males and females, that

were prompted a certain sentence on a screen and then asked to utter it. The entire audio database

that was used for testing Albanian files is represented in the table below:

40

Database name Total duration of files [h] Type of files

SD1 2 recordings

SD2 3:20 broadcast news (web)

SD3 2 broadcast news (web)

SD4 5:40 broadcast news (web)

Table 3.2 Databases for Albanian ASR

 The above databases go as follows:

 SD1 was created on the recordings used for the MediaEval 2013 Spoken Web Search task

and it includes two hours of speech from twelve speakers, equally distributed between

genders. These recordings were done in a controlled environment and have the best quality.

It is the desirable case for any audio database.

 SD2 consists of audio files extracted from the vizionPlus news site. The number of speakers

is difficult to evaluate because the audio files do not undergo a certain rule. They can have

both male and female news anchors. Furthermore, they also contain interviews with

different people and cannot be subject to any statistics without making an exhaustive manual

search among the audio files. These files went through the diarization process and were

manually transcripted by native speakers. While making tests on this database we

discovered a major drawback in the form that its audio files are filtered low-pass at 5.5 kHz

which comes in great contrast with what the system requires, namely files with the

frequency range up to 8 kHz, sampled at 16 kHz. This cutoff frequency limits the amount of

information that the system relies in the decoding process.

 SD3 is formed out of audio files selected from the topChannel news site. These files were

parsed as well and a thorough transcription for each was created. They did not pose any

problems, such as SD4 but the database is not as large as the others.

 SD4 was created from the topChannel news site as well. This database contains speech that

does not have a perfect transcription but we noticed that many of this files corresponded to

their respective transcription. Thus, we approached the problem in the following manner:

from a larger list of audio files we ran the decoding process and obtained some results

(hypothesis) which were aligned with the available transcriptions(references). Out of these

we selected only those with higher recognition rates (number of correctly recognized words

> 25%). Afterwards, we listened to each of the audio files and eliminated parts of the

transcriptions that were not present in the uttered sentences. This led to a database with

loose transcriptions for the audio files. Another important aspect is that these files were

recorded in a noisy environment (recordings were done outdoors or in crowded rooms –

interviews or political public speech).

 Using these audio databases we have created the following acoustic models:

Acoustic model name Audio database used for training the acoustic model
AM01 SD1

AM02 SD1+SD2

AM03 SD1+SD2+SD4

AM04 SD3

AM05 SD3+SD4

Table 3.3 List of Albanian acoustic models

 In addition to the four audio databases mentioned above that were used for Albanian we

must also specify the audio databases which were used for Romanian and English. This information

can be found in the table below:

41

Database name Total duration of files [h] Type of files

TIMIT (English) 5:20-total; 3:50-training recordings

SD5 (Romanian) 62-total;36-training recordings

Table 3.4 Databases for English and Romanian ASR

 Unlike most of the Albanian audio databases, these two databases contain only recordings,

meaning clean audio files recorded in a controlled environment. The TIMIT database is available

for free download on the internet and it contains utterances from 630 different speakers, both males

and females. SD5 contains utterances from 18 different speakers, out of which 8 are males and 10

females. The Romanian database has been provided by the SpeeD laboratories and it was created

there as well. These two databases did not require any further processing as they were already

prepared to match the CMU Sphinx pattern.

3.2.2 Text corpus

 The text corpus is basically a text database, consisting of already transcribed utterances, thus

forming meaningful sequences of words that can be found in different contexts. The text corpus is

the starting point in any ASR system, along with the audio database, because it provides valuable

information regarding many aspects. The text corpus gives relevant information about the language

and it also contains the transcriptions of the audio files that are used to train the ASR system. We

will approach in this section the matters of phonetic dictionary and fileids file as well, as they also

contain only text.

 As the audio databases for Romanian and English were already given so were their

transcriptions. That left the Albanian language up for further processing so as we would get the

desired pattern from the raw texts that were provided, based on the news websites’ content.

3.2.2.1 Language models

 The entire text databases are used not only as transcriptions of the audio files that the ASR

system is trained with but also to create a phonetic dictionary, a list of phonemes and a language

model, one for each of the languages in question. To start with, we will approach the extraction of

text from the previously mentioned websites (www.balkanweb.tv, www.vizionplus.tv, www.top-

channel.tv) and go through every step that was necessary to obtain a clean set of phrases. The idea

behind text gathering was to access different news pages on the previously mentioned three news

websites and to download their source pages in a more simplified format. This has been done

automatically, with the help of a Java program and the results are illustrated in the figures to follow.

42

Figure 3.2 Website page in different

formats: the original page on the left-side, the downloaded format changed to .html on the right-side

 Note that these pictures are valid in the case of the Top Channel website. In a similar

manner, the other two websites have been approached.It can be observed that certain information,

such as the background’s color and numerous visual details, were removed from the original source

of the web page and the useful information along with its respective video remained undamaged.

We were presented with the .php version of the web page, and our task was to retrieve the news

content and the audio clip associated to it. Firstly, a script that transformed the .php files into .html

files by simply changing their extension was necessary in order to prepare the files for the next

steps. The result is presented in the right-side, in Figure 3.2. Next, we created a script that would

convert all the .html files into a more readable form, in the .txt format with the help of the “lynx”

tool, available under Linux. In this way we have managed to eliminate other unimportant

information and bring the file in a format that can be easily parsed and have the required

information extracted from it, as it can be seen in Figure 3.3.

43

Figure 3.3 Website page brought in the .txt format

 It can be observed that the .txt format allows an easier parsing of the file as it has its

information written on distinct rows and every other web page element has been replaced by a text

marker. In Figure 3.3 we can see where the useful information starts (row 29, containing the title of

the news) and the link to the associated video file (row 32). Every web page associated to a web site

follows a certain pattern and it was up to us to discover it and use it to our advantage. In the present

case it can be seen that the unwanted information for the text corpus ends on row 28, thus it can be

eliminated. A similar pattern can be found at the end of the file that must also be eliminated. This

header and footer patterns had to be manually identified for every news website and applied

individually for the three raw text databases.

 After isolating the useful information there is still need for some processing regarding

punctuation and what the texts contain. Thus, all punctuation marks had to be removed, every

phrase had to be written on a separate line, the entire text had to be written using only lowercase

letters, some special symbols like “$” had to be replaced by their textual transcription, i.e. “dollars”

and all phrases containing numbers had to be also removed because it would have been a very

complex task to replace each numeral with its textual transcription. Furthermore, all tabs, trailing

whitespaces and other characters or symbols that were not Albanian letters had to be erased. This

posed an interesting problem because it appears that many different encodings were used when

writing the news on the website and most of these special characters had to be manually identified

and removed. A special program was written to perform all of the above tasks on an indefinite

number of files, meaning that adding several files to the target directory would not change the way

in which the program behaves and its sample output can be seen in Figure 3.4.

44

Figure 3.4 Parsed website page in its final format

 The above text corpus corresponds to the news found at the address http://www.top-

channel.tv/artikull.php?id=215708 (most recently accessed on 23
rd

 June). At this moment a clean

set of phrases has been obtained and another program was ran in parallel that iterated through the

same files and extracted only those that contained a valid link to an online video. Based on these

results we have created a list containing the names of the files in which the link was found and its

respective link. The following process that led to obtaining the audio information from these links

was previously presented in Section 3.2.1. At this moment we managed to retrieve the entire written

information that was posted on the three websites during the past year and the audio files necessary

for the audio database creation, correlated to their transcriptions.

 This text corpus mining was important in the language modeling process. As stated in

Chapter 2 it is necessary to have a text database as large as possible in order to obtain the best result

for a language model. During the parsing process a total of 293939 files have been processed, the

entire text corpus that was gathered from the websites contains 5378944 phrases adding up to a total

of 53952942 words, distributed according to Table 3.4.

News website Number of files Number of phrases Number of words

www.balkanweb.tv 124829 4479633 35504639

www.top-channel.tv 158408 825505 17164441

www.vizionplus.tv 10702 73806 1283862

Table 3.5 News websites parsed content

 For the language model we used only 90% of the available text corpus in order to have a big

enough text database (10% out of the total) on which to perform the language model evaluation.

Thus, the obtained language model contains a total of 4841048 phrases, 48560551 words, out of

which 377170 are distinct words.

 With the language modeling process for Albanian being summed up we now refer to the

Romanian and English text databases. These two languages did not require any further text

processing actions as several language models were available for each of them. For the Romanian

language model we have used a text corpus provided by the SpeeD laboratory, of 9794777 phrases

containing 168519175 words, out of which 656647 are distinct words. For English we have trained

a language model based on the transcriptions of the audio files provided in the TIMIT database,

resulting in 6299 phrases, a total of 54375 words, out of which 6102 are distinct words. Several

other language models have been trained with variations on the available text corpus in both the

number of words to be taken into consideration and the weight associated to certain language

45

models, all combined so that new language models with different properties would result. For all

three languages we have also trained language models based only on the transcriptions of the audio

files that were used in the training of the acoustic model, in order to have a reference model for

further comparisons. We can find below an enumeration of the language models that were created

for Albanian and the text corpuses that were used for their training.

LM name Database used for training

LM01 SD1

LM02 all news text corpus

LM03 SD1+SD2

LM04 SD1+SD2+SD4

LM05 SD3

LM06 SD4

LM07 SD3+SD4

LM08 SD3(90%)+all news text corpus(10%)

LM09 SD1+SD4(90%)+all news text corpus(10%)

Table 3.6 List of Albanian LMs

 Note that on the right column, in the “SD” fields, we have denoted the audio database from

whose transcriptions the language model was created and the “all news text corpus” label stands for

the entire text corpus that was extracted from the news websites. The percentages found in the last

two rows represent the weight associated to the respective language model when it was interpolated

with the other language model written on the same row.

3.2.2.2 Fileids

 The fileids files represent a listing of the audio files that we give as input for the ASR

system’s training process. They are simply a list of the available audio files, from whose name the

extension “.wav” was removed. An example of fileids file can be found below.

Figure 3.5 Fileids file example

3.2.2.3 Transcriptions

 Another part of the text corpus is represented by the transcription files. These represent the

written form of the speech that can be found within an utterance. These transcription files must

follow a certain pattern that can be found in the following figure.

Figure 3.6 Transcription file example

 The pattern used for the transcription files can be easily understood from Figure 4.5: every

utterance is preceded by the “<s>” syntax and follow by the “</s>” syntax. After this we can find

46

the audio file’s name, without the “.wav” extension between round brackets. In order for the CMU

Sphinx tool to work properly we need to provide it with a transcription file that corresponds

precisely to the fileids file. The fileids file and the transcription file must be perfectly synchronized

for the system to work and all files that are included in the fileids and transcription files must be

contained in the folder containing the audio files.

3.2.2.4 Phonetic dictionary

 The phonetic dictionary is a list of words from a certain language, followed by their

phonetic transcription. For this, a list of phonemes is necessary to provide us with the available

phonemes for that language. For the targeted three languages we used three different lists of

phonemes with the following phoneme count: Albanian list of phonemes contains 36 phonemes,

English contains 76 phonemes and Romanian contains 36 phonemes. These lists of phones contain

a different phoneme on each row and no other text.

 The phonetic dictionaries were obtained in different ways: the Romanian phonetic dictionary

was automatically created based on phonetic rules and it was manually adjusted with numerous

additions and corrections where it was the case, at the SpeeD laboratories. The English phonetic

dictionary was provided along with the other English resources. The Albanian phonetic dictionary

was created automatically based on a script in which phonetic rules have been implemented with

the help of a native speaker. The phonetic dictionaries all have the same structure as presented in

Figure 3.7.

Figure 3.7 Phonetic dictionary example

 The lists of phonemes for each language will be presented in Chapter 5 as they better fit the

approaches studied and explained in that chapter.

 All of the above resources were either downloaded or created with the help of scripts

conceived by us and all processes were brought to the form where they required only writing a

single command line. All these scripts were written in such a manner that they would automatically

perform all the desired actions and adding more files to the working directory would not affect the

system’s performances. Automatization was a must, given the large number of files that were

processed, and execution time was also improved whenever it was possible as running these scripts

was a time-consuming task.

 The number of words in the phonetic dictionary it is also important for the outcome of the

test as a large number of words can determine ambiguity for the system’s decoding process whereas

small number of words can be very restrictive in the context independent task that was proposed.

There are 3 Albanian phonetic dictionaries containing 11k, 16k and 367k words, one English

dictionary of 6k words and two Romanian ones containing 14k and 96k words. For Albanian and

Romanian the dictionaries with 11k and 14k words, respectively have been used in order to have a

certain balance between the languages.

3.3 Experiments and results

 In the following section we will cover the experiments that were performed along with the

configuration that was used at the time being, their results and an interpretation of these outcomes.

All these experiments were evaluated relative to the percentage of correctly identified words within

an utterance. This evaluation process was possible by aligning the decoding result (the hypothesis)

47

with the original transcription for the target file (the reference) and interpreting the result according

to the following aspects: if a word/sequence of words is found both in the hypothesis and reference

files it is considered correctly recognized, if a word/sequence of words is found in the hypothesis

file but not in the reference file it is considered insertion (I), if a word/sequence of words from the

hypothesis file is similar to a word/sequence of words found in the reference file but not exact

match then it is considered substitution (S), if a word/sequence of words from the reference file

cannot be found in the hypothesis file then it is considered deletion (D). Having these in mind there

are two evaluation metrics: word error rate (WER), calculated as the ratio between the sum of S, D

and I and the total number of words, and accuracy, calculated as the difference between the total

number of words and the sum of S, D, I, all divided by the total number of words. An interesting

metric, however, is the number of correctly identified words as it gives a flavor of the ASR’s

performance.

 In what it is to come we find the results of several experiments and their interpretations,

most of them ran on the Albanian ASR as it was the most challenging of the three. On the first

column we have the name of the acoustic models that were used and on the first row the names of

the LMs used in the decoding process. The results are evaluated from the point of view of correctly

identified number of words and WER, as accuracy is the complement of WER.

 LM name

Acoustic model name

LM02 LM07

AM04 Correct=9.80% WER=90.38% - -
AM05 Correct= 7.96% WER=92.24% Correct= 16.02% WER= 85.54%%

Table 3.7 Albanian ASR tested on SD1

 This experiment shows that running the decoding process on clean audio files when the

acoustic model was trained with another audio database gives bad results, mainly because the audio

files in that form the acoustic model have little to no resemblance with the audio files in the test

database, mainly because of different contexts. This experiment shows the degree of context

dependency of an ASR.

LM
AM LM02 LM03 LM05 LM07

AM02
-
-

Correct=46.53%
WER= 54.37%%

-
-

-
-

AM04
Correct=8.82%
WER=91.27%

-
-

Correct=29.06%
WER=71.48%

-
-

AM05
Correct=4.35%
WER=95.71%

-
-

-
-

Correct=10.23%
WER=90.27%

Table 3.8 Albanian ASR tested on SD1+SD2

 These experiments show a great difference when running the decoding process on the same

database that was used for training the system and when running the decoding process on different

databases. It can be seen that a system trained entirely on a database and tested on a completely

different database gives the best result in the case of SD3 (WER=29%) meaning that these two

databases share similar context and their speakers behave similarly, which was to be expected since

the test database contains part news corpora and part clean transcriptions. This WER is better

because of the news corpora part of the combined test databases.

48

LM
AM LM02 LM05 LM09

AM01
Correct=1.44%
WER=98.58%

Correct=5.01%
WER=95.04%

-
-

AM02
Correct=26.34%
WER=74.79%

Correct=68.49%
WER=33.86%

-
-

AM04
Correct=40.38%
WER=61.62%

Correct=74.89%
WER=27.61%

Correct=44.88%
WER=59.13%

Table 3.9 Albanian ASR tested on SD3

 From the experiments ran on SD3 audio database we can see the best results are obtained

when we decode a database with the same audio files that were used for training. It is the most

constrictive case but it also provides the best results. These experiments also show us that applying

a different language model than the one obtained from the transcriptions used for training gives

worse results as it introduces more degrees of uncertainty when it comes to selecting the

words/sequences of words as the recognition outcome. These results were somewhat expected and

they provide useful information mostly under constrained conditions such as command and control

systems.

LM
AM LM06

AM04 Correct=33.55% WER=75.11%

Table 3.10 Albanian ASR tested on SD4

 The last test on Albanian databases was ran mostly to verify if the manually selected audio

files from SD4 matched the manually edited and parsed transcriptions that they point to. Generally,

this is a bad result, but taking into account the method in which the database has been created and

the factors that contributing to deter the result we can state that it is an acceptable result.

 A few remarks must be made regarding the Albanian recognition task because they highly

influence the results and make them look worse than they really are. For starters, Albanian includes

some diacritics that are easily mistaken for simple letters, i.e. “ë” is often mistaken for “e” and “ç”

for “c” mostly in the case of words that differ only with one letter, namely with the ones implied in

the confusion pair stated before. One such example is the word “të” which is very often mistaken

for “te” with both words existing in Albanian and a confusion between the two words is very likely

since they sound very similar. Another aspect that must be taken into consideration is that some

words/sequences of words are recognized as different words/sequences of words that have similar

transcriptions, such as “individët” and “individë”. These kind of confusions are also often

encountered and they have a negative impact on the total WER even if a person would still

understand the message behind the transcription. Given the limited amount of resources available

from the start (only SD4) and the fact that these methods were manually designed and implemented

and are scalable we can say that the results were better than expected.

 For English and Romanian the case is somewhat different because there were not any

different databases available for training and testing respectively. Thus, the available database was

split into test and train parts. The English database involved 3:50:00h of training and 1:30:00h of

testing, while the Romanian database was trained on 36:00:00h and tested on the same amount but

on different files. The English LM was created based on the transcriptions available in the TIMIT

database, containing 54k words out of which 6.1k are distinct words and the Romanian transcription

file was created on a text corpus of 254k words with 10k distinct words, provided by the SpeeD

laboratories. The results are:

49

English database Correct=42.16% WER=60.78%

Romanian database Correct=50.32% WER=64.33%

Table 3.11 Romanian and English Results

 Adding up the results for each of the three language and taking into consideration only the

case of decoding a database that contains audio files which were not used for the training process

we get the correctly recognized words comparison seen in Figure 3.8. For Albanian we have

regarded the testing of SD1+SD2 database with both language and acoustic models built on SD3,

this being the most restrictive case that can be encountered for an ASR, imposing more strict

conditions than in the case of English decoding. When analyzing this result we must also note that

the diacritics and the minor, but often encountered, confusions as stated above strongly influence

the correctness of this decoding.

Figure 3.8 Final ASR results

 Drawing a conclusion out of the experiments’ results we can state that we have successfully

created an ASR system for Albanian with similar performances to English and Romanian given the

major drawback represented by the acoustic and text resources. This method can be subject to

further optimization and improvements but it was demonstrated that is represent a strategy worth

taking into consideration.

0%

10%

20%

30%

40%

50%

60%

Romanian English Albanian

C
o
rr

ec
t

p
er

ce
n
ta

g
e

50

51

Chapter 4. LID Systems’ Performance and their Implementations

 As mentioned in the previous chapter, building the multilingual ASR systems was a crucial

point because all of the techniques applied for the LID systems rely on the previous knowledge

studied for the ASR part. It is worth mentioning that some of the programs that were used for the

LID system development are open-source, thus can be modified over time by different people and

that is why their stability is not guaranteed. The studied approaches came as an addition to the

existing source code, bringing it a new flavor, exploiting some of the existing characteristics in a

new different manner.

 The aim of the this work is to make a study over some language identification methods,

decide on which has the most accurate results and determine which of them is the most efficient

taking into account their complexities, processing times and accuracies.

 The LID systems that were created and tested in this thesis make use of the same databases

as the ASR systems, some of the approaches rely heavily on the results of the ASR systems and that

brings an unwanted dependency between the proposed LID and ASR systems. This dependency

reflects in the fact that if the ASR system has poor performances then the LID system would also be

faulty in its output, even if the language identification is done according to the technique that

outperforms the others. This is why an evaluation of the LID system can be ambiguous and not give

the best estimate for its accuracy. Imposing several restrictions on the developed methods gave

comparable results that will be further discussed as we go through every applied method.

 It is also important to note that this chapter aims only to identify the spoken language and

very little importance is given to the recognized sequence of words. The thing that interests us is the

language to which that sequence of words or phonemes, as we will see, belongs to.

4.1 Phoneme recognition method

 The first strategy that was proposed for the LID system refers to phoneme recognition. In

Chapter 4 we addressed the term of phonetic dictionary and defined it as a list of words, one on

each line together with their phonetic transcription. In Chapter 2 we introduced the term “phoneme”

as the fundamental unit of speech. Now we exploit these phonemes and how they help us decide

over language identification. In Table 4.1 we can find a listing of all the phonemes corresponding to

the three languages, written in a common encoding, making it easier to read and write them on a

computing system. As it was stated in Chapter 3, we can use phonotactics to identify a language

from a series of previously trained languages.

52

Phoneme

Word

example

(written

form)

Word example

(phonetic

form)

Phoneme

Word

example

(written

form)

Word example

(phonetic

form)

a aflate a f l a t e a afatet a f a t e t

a1 află a f l a1 b baletit b a l e t i t

b aibă a i3 b a1 c ciko c i k o

d data d a t a1 c1 diçka d i c1 k a

e alune a l u n e d dita d i t a

e1 asemenea a s e m e n e1 a dh edhe e dh e

f asfalt a s f a l t e ekonomia e k o n o m i a

g asigura a s i g u r a e1 dëmtuar d e1 m t u a r

g1 atinge a t i n g1 e f fakt f a k t

g2 gheb g2 e b g figurat f i g u r a t

h hadroni h a d r o n i1 gj gjatë gj a t e1

i găsit g a1 s i t h historia h i s t o r i a

i1 găști g a1 s1 t i1 i hiçi h i c1 i

i2 dâmb d i2 m b j abetarja a b e t a r j a

i3 hotelului h o t e l u l u i3 k kaq k a q

j just j u s t l klan k l a n

k cojoc k o j o k ll vullnet v u ll n e t

k1 colaci k o l a k1 m kemi k e m i

k2 deschide d e s k2 i d e n kenë k e n e1

l destul d e s t u l nj njeri nj e r i

m diametrul d i a m e t r u l o njoftoi nj o f t o i

n din d i n p paguar p a g u a r

o dizolv d i z o l v q paqena p a q e n a

o1 doar d o1 a r r parti p a r t i

o2 maseur m a s o2 r rr rreth rr e th

p cip k1 i p s rusisë r u s i s e1

r morav m o r a v sh shba sh b a

s mosc m o s k t sarajet s a r a j e t

s1 mușc m u s1 k th theksoi th e k s o i

t muști m u s1 t i1 u thinjur th i nj u r

t1 mutați m u t a t1 i v valbona v a l b o n a

u mărul m a1 r u l x nxitjen n x i t j e n

v naiv n a i v xh xhirua xh i r u a

w nouă n o w a1 y zyrtarë z y r t a r e1

y alurile a l y r i l e z zoti z o t i

z miez m i3 e z zh zhvillim zh v i ll i m

 a) b)

53

Phoneme Word

example

(written

form)

Word example

(phonetic form)

aa arcade aa r k ey1 d

aa1 abolish ax b aa1 l ih sh

aa2 chaos k ey1 aa2 s

ae comrades k aa1 m r ae d z

ae1 crab k r ae1 b

ae2 diagram d ay1 ax g r ae2 m

ah nobody n ow1 b ah d iy

ah1 none n ah1 n

ah2 outcome aw1 t k ah2 m

ao portray p ao r t r ey1

ao1 pouring p ao1 r ix ng

ao2 sauce s ao2 s

aw however hh aw eh1 v axr

aw1 loudest l aw1 d ix s t

aw2 outside aw2 t s ay1 d

ax parallel p ae1 r ax l eh2 l

axr parades p axr ey1 d z

ay tycoons t ay k uw1 n z

ay1 type t ay1 p

ay2 upside ah1 p s ay2 d

b variable v ae1 r iy ax b el

ch virtue v er1 ch uw2

d vivid v ih1 v ix d

dh weather w eh1 dh axr

eh aspects ae1 s p eh k t s

eh1 assembled ax s eh1 m b el d

eh2 comment k aa1 m eh2 n t

el colorful k ah1 l er f el

em column k aa1 l em

en cotton k aa1 t en

er energy eh1 n er jh iy

er1 eternal ih t er1 n el

er2 sunburn s ah1 n b er2 n

ey always ao1 l w ey z

ey1 vacant v ey1 k ix n t

ey2 anyway eh1 n iy w ey2

f baffle b ae1 f el

g bag b ae1 g

hh forehead f ao1 r hh eh2 d

ih behavior b ih hh ey1 v y axr

ih1 forbidden f ao r b ih1 d en

ih2 heroism hh eh1 r ow ih2 z

em ix hesitate hh eh1 z ix t ey2 t

iy highly hh ay1 l iy

iy1 hyena hh ay iy1 n ax

54

iy2 increase ih1 n k r iy2 s

jh indulge ih n d ah1 l jh

k inexact ih2 n ih g z ae1 k t

l inflated ih n f l ey1 t ix d

m informed ih n f ao1 r m d

n into ih1 n t uw2

ng ironing ay1 axr n ix ng

ow location l ow k ey1 sh ix n

ow1 loads l ow1 d z

ow2 mango m ae1 ng g ow2

oy ellipsoids ax l ih1 p s oy d

oy1 enjoy eh n jh oy1

oy2 gunpoint g ah1 n p oy2 n t

p happen hh ae1 p ax n

r hard hh aa1 r d

s heights hh ay1 t s

sh inertia ih n er1 sh ax

t inexact ih2 n ih g z ae1 k t

th length l eh1 ng th

uh modular m aa1 jh uh l axr

uh1 poor p uh1 r

uh2 outputs aw1 t p uh2 t s

uw ritual r ih1 ch uw el

uw1 roof r uw1 f

uw2 statue s t ae1 ch uw2

v survey s er1 v ey2

w sweet s w iy1 t

y unit y uw1 n ix t

z used y uw1 z d

zh visual v ih1 zh uw el

 c)

Table 4.1 List of phonemes for: a) Romanian, b) Albanian, c) English

 The most notable difference between the ASRs and the LID system is that the LID system

uses all three databases, namely SD3, TIMIT for train and SD5 for train, as they were presented in

Chapter 3, concatenated in order to form a single large database with audio clips and text files that

cover all the targeted languages for its training process. This system uses different techniques for

training and decoding but is somewhat similar to the multilingual ASR in that it is trained on the

same audio databases, it uses the same transcriptions for training and it is done with the help of the

CMU Sphinx tool. The phonetic dictionary used for training suffered some minor modifications,

because every phoneme was added a prefix to mark the language it belongs to in the following way:

every Albanian phoneme has been added the prefix “a_”, English phonemes have been added the

prefix “e_” and Romanian ones the prefix “r_”.

55

Figure 4.1 Phonetic dictionary used for training

 Using this type of dictionary we will have words from each of the three languages mapped

to a phonetic transcription specific to that language, easily recognized by their prefix. This way, the

system will know to train the acoustic model with language specific phonemes.

 The phonetic dictionary used for decoding has been changed as well because of the fact that

this system is not meant to recognize words but phonemes. That is why every phone must now be

mapped to itself, instead of mapping words to their phonetic transcriptions. In the case of an ASR

the system would provide a sequence of phonemes as output and according to the phonetic

dictionary they would be joined in such a way to form complete words. For the phoneme

recognition task we only need to recognize phonemes and mapping them to complete words is

unnecessary.

Figure 4.2 Phonetic dictionary used for decoding

 For the language model we also used a different technique because we are now interested to

study not the sequences of words and based on them to build trigrams but the sequences of

phonemes and build the trigrams taking sequences of phonemes as input, instead of words. For this,

we had to bring the transcriptions file to a form in which it contains only phonemes and not words.

Basically, we changed every word in the transcriptions file with its phonetic transcription according

to the phonetic dictionary that was used in the training process by running a Java program that was

specially created for this purpose. The transcriptions’ form is represented in Figure 4.3.

Figure 4.3 Phonetic transcriptions

 Each sentence should contain only phonemes from a single language since we have no audio

clip containing mixed languages speech. The language can be easily recognized by reading the

prefix in front of the phoneme and this is the algorithm based on which the evaluation will be done

as well.

56

 Having brought the resources in the desired form, the LID system was trained and then the

decoding process was ran firstly on the same audio database that the system was trained on in order

to obtain a reference result and, afterwards, it was tested on different audio clips than the ones used

for training. Then, we have sorted the output files according to their fileids into three categories:

English, Romanian and Albanian. Afterwards, a Java program that was created for this purpose was

ran and it would count all the occurrences of the prefixes “e_”, “r_” and “a_” for each line in the

resulted file. The maximum number determines the language that was uttered, with the restriction

that if at least two of the prefixes shared the place for the maximum number of occurrences on a

line or if there were not at least 6 phonemes recognized for a sentence then that sentence’s language

would be regarded as “unknown”. The results can be found in the table below:

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4876 0 0 124 97.52%

English 369 3883 268 99 84.06%

Albanian 0 0 561 283 66.46%

Table 4.2 Phoneme decoding results reference

 Summing up all the correctly identified phrases and dividing them to the total number of test

phrases we obtain a LID rate of 89.07%. Having these results as reference we performed another

test on some audio clips that were not used for the system’s training, namely SD1, TIMIT for test,

SD5 for test. The results can be found in Table 4.3.

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4998 0 1 110 97.82%

English 184 1332 125 39 79.28%

Albanian 80 149 733 6 75.72%

Table 4.3 Phoneme decoding results on a different audio database than the one used for training

 Summing up the result it gives us a LID rate of 91.05%. It has been observed that the

language model favored the languages with a greater number of words in the text corpus, because

they would have more occurrences than the others resulting in greater probabilities. In order to

overcome this drawback we applied a language interpolation script that combines two different

language models, each of them being given a desired weight. As the script can be applied only for

two language models we had to first make a language interpolation between two out of the three

language models, each for a different language, and assign them equal weights (50%-50%). The

resulted interpolated language model would then be interpolated with the remaining language model

out of the three with the following weights: the already interpolated language model was given a

weight of 66% and the other one 34%. This led to an equal distribution of weights between the three

languages and the results are. The new language model was tested on the same database that was

used for training to see how it would affect our reference results.

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4857 1 16 126 97.14%

English 152 3748 599 120 81.14%

Albanian 0 0 561 283 66.46%

Table 4.4 Phoneme decoding results on trained database with interpolated LM

57

 The total LID rate is of 87.6% in this case, slightly lower than in the reference case. We can

observe a small increase in the total number of unknown phrases, due to the fact that equal weights

of the three language models diminish the difference between phonemes’ probability occurrence,

leading to a higher number of confusions.

 Adding all these various results together we have obtained the next table, for an easier

understanding and reading with the following notations: “Reference” stands for the test performed

on the training database, “Different database” stands for the test performed on a database containing

audio files different from the ones used in the training process and “Interpolated LM” stands for the

test performed on the database that was used for training with a LM that was assigned equal weights

for each language. The results represent the percent of correctly identified phrases.

Tested language Reference Different database Interpolated LM

Romanian 97.52% 97.82% 97.14%

English 84.06% 79.28% 81.14%

Albanian 66.46% 75.72% 66.46%

Table 4.5 Phoneme recognition results summary

 All in all, this strategy provided a good LID rate with little additional effort. The most

complex task was the creation of the new LM but given the fact that there was little additional

knowledge required to put this method in practice [Annex 1] it can be considered an efficient

method of LID.

4.2 Language specific word recognition method

 The second strategy proposed for the LID system is based on recognizing complete words

having the prior knowledge regarding the language they belong to. The basic idea for this approach

is to add a distinctive marker to each word so as we know what language it belongs to and after the

decoding process to count the number of words specific to each language. In the end, the maximum

number of words attached to a language determines the uttered language. For this method we used

the same audio databases as in the previous method for training, namely SD3, TIMIT for train and

SD5 for train, as they were presented in Chapter 3, concatenated in order to form a single large

database with audio clips. The transcriptions have been slightly modified and so was the phonetic

dictionary. Similar to the first method we added the “a_”, “e_” and “r_” prefixes to each word and

obtained the following transcriptions:

Figure 4.4 Transcriptions for word recognition LID example

 As it can be seen, the difference between these transcriptions and the ones used for ASR lies

in the additional prefix that maps every word to a certain language. The same technique has been

applied for the text corpus that was used to create the LMs. The phonetic dictionary has also been

modified and it was the same one used both for training and decoding having the language prefix

added not only to each phoneme but also to every word as it can be seen in Figure 4.5.

58

Figure 4.5 Phonetic dictionary for word recognition LID example

 What is worth mentioning about the phonetic dictionary is that a special parsing was

necessary in order to remove words that belonged to several languages. These are mostly words that

were borrowed from English (e.g. “show” that appears both in English and Romanian) and only one

of these phonetic transcriptions was kept which in most of the cases was the English phonetic

transcription. The small amount of words that posed this problem had little to no impact on the

performance but having duplicated phonetic transcriptions for the same word would result in a

critical error for the system, which would cause it to fail in both the training and decoding processes

making this an important aspect.

 A reference test has been performed on the same audio clips that were used for the system’s

training. Note that the “Unknown phrases” field refers to sentences for which less than 5 words

were recognized. The results are the ones in Table 4.6.

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 152 2483 1595 770 3.04%

English 0 4065 1 553 88%

Albanian 0 0 831 13 98.45%

Table 4.6 Word decoding results reference

 The total LM rate was of only 48.24%, a very low value due to the poor results obtained for

Romanian. The above test has been run with a LM that was obtained by interpolating the most

common 6k words from each of the targeted languages. This means that the entire corpus for each

language is processed and the most common 6k words from each language are selected. Afterwards,

three LMs are created, one for each language and then interpolated so that they are given equal

weights. The same is valid for the next test, where the decoding was performed on different audio

databases, with none of the audio files being part of the training process.

 It has been observed that the previously mentioned technique used for creating the LM is not

perfectly realistic because LMs created on a smaller text corpus have larger probabilities for each

word/sequence of words, which in term would make their presence felt more in the interpolated LM

design. This explains the poor results for Romanian, where the text corpus for the LM is much

larger than the ones used for English and Albanian, meaning lower probabilities are assigned to

Romanian words, meaning less Romanian words would be decoded when the test is performed, this

being reflected in the obtained results.

 That is why another method has been proposed, namely selecting the most common 6k

words from each language and create a text corpus with all the previous three text corpuses

concatenated which would serve as backbone for the one single LM. This means that all the

probabilities assigned to words/sequence of words would be flattened by the increased number of

words in the text corpus and all the probabilities will then be calculated with the same amount of

total words. This is still not the best practice, but a perfect selection of text corpuses would be too

wasteful for this precise task. The test with the new LM was done on the training databases in order

to make a comparison between its results and the previous ones.

59

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4769 0 0 231 95.38%

English 125 2753 18 1723 59.60%

Albanian 6 0 555 283 65.75%

Table 4.7 Word decoding results reference, new LM

 The total result yielded a LID rate of 77.19%. We have observed that the imposed restriction

on the number of words was slightly harsh and it impacted the decision process. By lowering the

threshold for the number of words per phrase that led to the decision of “Unknown phrase” by one

unit, i.e. less than 4 words, we obtained the following evaluation:

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4826 0 0 174 96.52%

English 173 3204 32 1210 69.36%

Albanian 6 0 559 279 66.23%

Table 4.8 Word decoding results reference, new LM (less restrictive)

 The new total LID rate increased to 82.08%. It is now clear that tweaking the decision

threshold for this method gives a visible increase of the recognition rate, but it is less reliable

because it makes the LID system more dependent on the ASR system that runs behind it. A reliable

ASR that introduces less confusion over the recognized words gives us the opportunity to lower the

decision threshold even more. Ideally, this “Unknown phrase” threshold would be set to 0 so that

we could state that a random phrase clearly belongs to a certain language. The improvement

brought by the new LM is obvious and it clearly shows the importance of a more balanced LM.

 The next test was performed with the second LM and on audio files that were not used

during the training process.

Tested language Romanian

phrases

English

phrases

Albanian

phrases

Unknown

phrases

Correct

phrases

Romanian 4948 0 0 161 96.84%

English 96 1008 34 542 60%

Albanian 72 139 677 80 69.93%

Table 4.9 Word decoding results on different audio database (less restrictive)

 This test was performed with the less restrictive threshold for the “Unknown phrases”

decision, namely only less than 4 words/decoding would lead to this decision, giving a LID rate of

85.50% because of the good result that the numerous Romanian test phrases yielded. Several

differences can be observed regarding the other two languages as well, most notably that the

Albanian decoding performed better than in the reference case due to having clearer audio clips to

run the test on than the ones used for training the system.

 Adding all these various results together we have obtained the next table, for an easier

understanding and reading with the following notations: “Reference” stands for the test performed

on the training database, “Reference with new LM” stands for the test performed on the training

database but with the LM obtained in the previously mentioned manner, “Loose reference with new

LM” stands for the same test as before, but with a less restrictive threshold and “Loose different

database” stands for the test performed on a different database than the one used for training with

the newer LM and less restrictive threshold. The results represent the percent of correctly identified

phrases.

60

Tested language Reference Reference with

new LM

Loose reference

with new LM

Loose different

database

Romanian 3.04% 95.38% 96.52% 96.84%

English 88% 59.60% 69.36% 60%

Albanian 98.45% 65.75% 66.23% 69.93%

Table 4.10 Word recognition results summary

 Another important fact is that for this strategy the LM plays an important role because when

the ASR system recognizes a sequence of phonemes it will automatically try to map them into

words. This decision can be somewhat forced having recognized phonemes from more than one

language and being obliged to output a word from only one language based on that phoneme

sequence. Overall, it is a method of low complexity as it introduces few new elements [Annex 2]

with the LM being the most important aspect to take into consideration and it produces decent

results.

4.3 Confidence score method

 The third strategy resorts to an approach more programming oriented and it heavily relies on

the Java application released by the CMU Sphinx for free usage. This application can be found

under the name “sphinx4-5prealpha-src” and it is available for free downloading on the Internet, at

the address http://sourceforge.net/projects/cmusphinx/files/sphinx4/5%20prealpha/ (accessed on

30.06.14). It consists of all the features that were developed so far by the Sphinx community, as it is

an open-source toolkit, integrated into one dense Java program which can be modified at one’s own

wish. This application offers access to all the system’s core functions, allows modifying the

configuration files and one can also create new features based on the existing ones. Having such

freedom inside the speech recognition application gives us the ability to access and model certain

parameters that are otherwise not implemented in the available release.

 The idea behind this strategy is to explore a certain characteristic of the recognized

words/sequences of words, namely the confidence score. This is a measure of how the system

interprets the correctness of the given hypothesis as outcome of a recognition system taking into

account other possibilities or, to put it in other words, the probability that the resulted words are

correct. The confidence score feature resides in the program’s core source code but it has not been

approached in any release and is not yet supported by the available demos, thus we had to

investigate the source code, isolate and understand how the confidence scorer works and, lastly,

implement it in a brand new demo application. Afterwards, several tests have been performed on

different audio files and the results have been carefully parsed as to keep only relevant situations

from which the required information has been extracted. These steps have been applied three times

as a consequence to building three different recognizers, one for each language and finally summing

up the results.

 Firstly, a brief description of how the confidence score is obtained is necessary to allow a

better understanding of it and of its impact on the analyzed data as well. It is important to note that

the recognized sentence that is presented to us by the decoding program is the outcome of the last

stage through which the uttered sentence passes. After the actual decoding of the audio signal into a

sequence of words, under the form of text, a very rigorous selection process takes place in order to

allow only the best result to pass. In the first phase of this selection a lattice formed of all the

theories considered by the recognizer that have not been pruned out is created [23]. This lattice is,

in fact, a directed graph with nodes and edges. The nodes represent the theory that a word has been

uttered over a certain time period while the edges represent the score given to a word following

another. A lattice example can be found in Figure 4.6. Initially, a lattice can have redundant nodes,

i.e., nodes referring to the same word and that originate from the same parent node. These nodes

can be collapsed and they result in a cleaner, more readable lattice [23]. The lattice is useful to

61

analyze alternative results meaning alternative recognized words on the same position, forming the

so called “confusion sets”. Note that <s> means the start of the utterance, </s> its end and <sil>

stands for a short period of silence.

Figure 4.6 Lattice example

 Figure 4.6 represents the lattice example for a Romanian sentence recognized using

Romanian language and acoustic models. The next step of the selection process and obtaining the

confidence score is to create a sequence of confusion sets, one for each position in an utterance.

This process is called “sausage making” and as awkward as it may sound it is very representative

for its task. A graphical representation of this step can be seen in Figure 4.7.

Figure 4.7 Sausage example

 As it can be observed, the lattice has suffered some modifications and the sausage is a graph

as well, but this time the nodes and edges are arranged in a different manner and some decisions

will be taken on each node of the sausage. The scores have been removed from the graphical

representation for an easy reading and understanding, but the important aspect about the confidence

score is that it gets higher when a word appears more often in one of the nodes described above. In

the cases when there is no alternative at the node level (e.g. between boxes 4 and 5 in Figure 4.7) a

maximum confidence score is assigned to the selected word. Thus, each word in the recognized

utterance has its own confidence score and the fewer the alternatives for that word are the better the

confidence result will be. These alternatives appear when the decoder has doubts regarding what it

62

processed but maximum confidence score means that there is no room for doubt regarding that

certain word. The confidence score is expressed as a non-positive number with 0 representing the

best confidence assigned and no determined lower limit because it represents the logarithmic value

of a probability.

 In this context we have designed three distinct ASRs, one for each language and started

testing audio clips from all languages with every decoder. Firstly, each decoder had the task to

recognize audio files corresponding to the language they were built on, even part of the training

database, and by comparing the hypothesis’ and references some restrictions have been imposed in

order to have a common metric used for comparisons between languages. The purpose was to

extract enough data based on how each recognizer acts for both native audio files and foreign ones

as well and observe how the confidence score is influenced.

 It has been observed that the three ASRs behaved somewhat differently in that they assigned

different confidence scores to correctly identified words mainly because of the acoustic and

language model that did not possess the same characteristics above all languages. When analyzing

the results we have seen that the correctly recognized words of less than 4 characters in length gave

very bad confidence results. It has also been seen that there were very few correctly recognized

words with a confidence score of less than -2000. Thus, we have decided to impose the threshold of

a word to have at least 4 characters in size and have a confidence score of at least -2000 in order to

be evaluated as a correctly recognized word. Moreover, it has been seen that the correctly

recognized phrases gave at the output at least 5 words that met the above restrictions. Thus, a

counter for the words that met the imposed requirements has been implemented for each decoder to

keep a statistic of the “good words” that have been recognized.

 The next step was to find a common metric for each sentence that could be used for

comparisons. The following metric has been determined by trial and error while observing its

impact on the identified words and it has been applied for all the “good words”.

 (

 In Equation 4.1 n represents the total number of words in the sentence, μ represents the word

size (the number of characters of that word) and λ represents the word’s confidence score, thus

taking into account the number of words that were recognized, the number of characters in the

recognized word and the decoder’s uncertainty regarding the hypothetical results. In this way, for a

sentence that was used as input for each of the three transcribers the mean would be evaluated and

the highest mean out of the three would point towards the presumably correct language.

 Unfortunately, the designed demo [Annex 3] would require a great deal of computational

resources mainly because it was built on an untested, not optimized subversion of the core source

code which did not provide the appropriate support for the targeted task. That resulted in very high

processing times, up to 20 times the decoded file’s time. However, a total of 275 files, equally

balanced between the three languages, were still analyzed and the results can be found below. The

“Can’t decide” field refers to sentences that were decoded and did not have more than 5 “good

words”.

Transcriber’s

main language

Romanian

phrases

English

phrases

Albanian

phrases

Can’t decide Percent

correct

Romanian 50 18 6 17 54.94%

English 5 78 4 13 78%

Albanian 4 7 69 4 82.14%

Table 4.11 Confidence score based experiment’s results

 This experiment was performed on a database with audio files that were not used during the

training process and yielded a total LID rate of 71.63% which is satisfying taking into consideration

63

the imposed restrictions the small amount of tested data and, most of all, the dependency on the

previously built ASRs. Another notable aspect about this strategy is that it somewhat forces the

system into decoding a certain language. By that we mean that if, for instance, the English

transcriber is passed an Albanian sentence for decoding then it would automatically try decoding it

by the English rules that were implemented in the acoustic and language model. In this way the

system gives an opinion about what written sequence of words from English best fits the uttered

sentence from Albanian, instead of making a clear-cut distinction between languages. It still is a

solution for LID but it is not as reliable as the first two that were proposed.

 Another strategy has been proposed, closely related to the third method, which involved

building two cumulative distribution functions for each language, one composed of the low

confidence scores and one of the high confidence scores. These were supposed to represent the

wrongly and correctly identified words, respectively, but after observing how some correctly

identified words are given very low confidence scores and vice versa it has been concluded that

there is not enough available data to build such distributions and extract relevant data out of it.

Therefore, this strategy has been aborted but it may still be viable on a larger data set.

 The following chart brings together the results for each of the three methods in the case of

decoding a database that was not used for training and with the characteristics that maximized the

performance in each case.

Figure 4.8 Results of the three methods

 Taking into account the total number of files that were decoded and expressing the results

relative to the entire database that the test was performed on (i.e. taking into account all three

languages for each test) we get the following chart that summarizes the total results for each

strategy.

Figure 4.9 Total results of the three methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Phoneme recognition Word recognition Confidence score

Romanian

English

Albanian

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Phoneme recognition Word recognition Confidence score

C
o
rr

ec
t

p
er

ce
n
ta

g
e

C
o
rr

ec
t

p
er

ce
n
ta

g
e

64

65

Conclusions

 The present paper has shown that in order to elaborate a study over language identification

methods one needs both an ASR and a LID system as the latter depends in a great extent on the first

one. Both systems have been presented along with their characteristics and, most importantly, how

modifying these characteristics altered the final results. Emphasizing how each aspect, such as

acoustic model, audio files clarity, language model or recognition pattern, influences the outcome of

the experiments we can outline the importance of trial and error when it comes to this kind of

approaches.

 The major drawback when designing both systems was undoubtedly the lack of resources

that were available for the ASR task, which, in term, impacted the performances of the LID

strategies. However, this problem has been partially solved by the very interesting approach of

exploiting a free to use resource, namely the Internet. Even if the Internet does not always provide

perfectly accurate information or the desired pattern it is still a great source which should be given

the appropriate attention.

 This thesis presented an out-of-the-box idea that was applied with a considerable amount of

efforts but the results that it provided made the entire process worth-while. A major aspect of the

way in which Albanian resources were gathered is that it is a scalable process, giving us the

possibility to extend it to any other language. This opens up numerous opportunities either for

developing other similar systems or improving this one. Being amongst the few ASR systems for

Albanian ever developed it made it even harder to overcome the problems that emerged at every

step. This made the result even more satisfying, knowing what the start point was and what the end

point came to be, thus not only creating an acceptable ASR but also proving that this idea yielded

good results. The Romanian and English ASRs behaved both as a reference point for the Albanian

one and part of a multilingual ASR that was very interesting to develop. Better results would have

been obtained with a larger resource database, both for audio and text files, preferably in the desired

format. Parsing the entire databases and creating each necessary file were very time consuming and

challenging as they required a lot of imagination and programming skills, represented by numerous

scripts [Annex 4] that were ran under Linux and Java programs that, in the end, came to work as a

whole.

 Regarding the LID system the task was to evaluate a number of methods and given the ASR

background it was easier to design them and work with them. However, differences in the LM or

the acoustic model had a greater impact in this case making the LID system more sensitive to this

sort of changes. The processing time was a drawback in the case of the confidence scores method

but its results proved that it is a method worth not only approaching but also optimizing. The other

two strategies that were designed had the advantage that they did not require perfect speech

recognition and even a bad recognition from the context meaning point of view would benefit the

system in its task. It is important to note that the LID system relied on the language of what it

recognized and not on the meaning of what it recognized. This offered a greater degree of freedom

when discriminating between languages than when we were to discriminate between an accurate

recognition and a bad one, as it was the case of the ASRs.

 All in all, the approaches that were studied in this thesis were new to this field and they

would have brought even greater contributions if the available databases were denser and with a

better quality. The study over LID systems gave comparable results which were not ambiguous and

most importantly, could be extended to match numerous other applications’ requirements. In a

world dominated by technological progress and highly reliant on verbal communication these

methods provided an interesting insight and an additional aid to obtaining better performances.

66

67

References

[1] http://en.wikipedia.org/wiki/Telephone accessed on 27.05.14

[2] https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Agglutinative_language.html

accessed on 27.05.14

[3] http://privatewww.essex.ac.uk/~nckula/LG105_Class10_MorphologyAcrossLanguages.pdf

accessed on 27.05.14

[4] H. Cucu, “Towards a speaker-independent, large-vocabulary continuous speech recognition

system for Romanian”, București, 2011

[5] http://www-i6.informatik.rwth-aachen.de/web/Research/speech_recog.html accessed on

28.05.14

[6] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, “Spoken language processing: A Guide to

Theory, Algorithm and System Development” , Redmond WA, October 2000

[7] http://research.microsoft.com/en-us/projects/language-modeling/ accesed on 30.05.14

[8] Philipp Koehn, “Statistical Machine Translation”, 2009, Cambridge University Press

[9] http://www.stanford.edu/class/cs124/lec/languagemodeling.pdf accesed on 30.05.14

[10] András Zolnay Thesis, “Acoustic Feature Combination for Speech Recognition”, 14 August

2006, Fakulät für Mathematik, Informatik und Naturwissenschaften, Aachen

[11] http://svr-www.eng.cam.ac.uk/~ajr/SA95/node55.html accesed on 01.06.14

[12] http://masters.donntu.edu.ua/2008/fvti/verenich/library/th_eng.htm accesed on 01.06.14

[13] Stanley Chen, Douglas Beeferman, Ronald Rosenfeld, “Evaluation Metric for Language

Models”, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

[14] Eliathamby Ambikairajah, Haizhou Li, Liang Wang, Bo Yin and Vidhyasaharan Sethu,

“Language Identification: A Tutorial”, Circuits and Systems Magazine, IEEE (Volume:11 , Issue:

2), p. 82-108, 27 May, 2011

[15] D. Jurafsky and J. Martin, “Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistic and Speech Recognition”, 2
nd

 ed. New Jersey:

Prentice Hall, 2008

[16] E. Wong, “Automatic spoken language identification utilizing acoustic and phonetic speech

information”, Ph.D. dissertation, Speech and Audio Research Laboratory, Queensland Univ.

Technol., 2004

[17] T. Rong, M. Bin, Z. Donglai, L. Haizhou and C. Eng Siong, “Integrating acoustic, prosodic

and phonotactic features for spoken language identification”, in Proc. 2006 IEEE Int. Conf.

Acoustics, Speech and Signal Processing 2006 (ICASSP 2006), pp. I-I.

[18] T. Schultz, I. Rogina, and A. Waibel, “LVCSR-based language identification,” in Proc. 1996

IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP-96), 1996, vol. 2, pp. 781–784.

68

[19] J. Laver, „Principles of Phonetics”, Cambridge, U.K.: Cambridge Univ. Press, 1994

[20] M. Yip, „Tone” Cambridge, U.K.: Cambridge Univ. Press, 2002.

[21] L. Bauer, „Introducing Linguistic Morphology” Georgetown Univ. Press, 2003.

[22] D. Reynolds, „Gaussian Mixture Models”, MIT Lincoln Laboratory, 244 Wood St., Lexington,

MA 02140, USA

[23] http://cmusphinx.sourceforge.net/doc/sphinx4/edu/cmu/sphinx/result/Lattice.html accesed on

29.07.14

69

Annex 1

String phrase;

Configuration configuration = new Configuration();

configuration.setAcousticModelPath("resource:/edu/cmu/sphinx/models/acoustic/LID_3.cd_cont_1000");

configuration.setDictionaryPath("resource:/edu/cmu/sphinx/models/acoustic/LID_3.cd_cont_1000/LID_3_d

ecoding.dic");

configuration.setLanguageModelPath("resource:/edu/cmu/sphinx/models/language/LID_3.1_OnlyFromPhones.

3GramLM.sorted.dmp");

//Iterate through the entire wavs directory:

File targetInput = new File("C:\\Users\\Mihai\\Desktop\\smallTestFolder");

 for (File rawInput : targetInput.listFiles()) {

 try {

 int alWordCount = 0;

 int roWordCount = 0;

 int enWordCount = 0;

 StreamSpeechRecognizer recognizer = new StreamSpeechRecognizer(configuration);

 InputStream stream = new FileInputStream(rawInput);

 recognizer.startRecognition(stream);

 SpeechResult result;

 while ((result = recognizer.getResult()) != null) {

 phrase = ("" + result.getHypothesis());

 System.out.println("\n\n");

 System.out.println("Phrase:" + phrase + " " + rawInput.getName());

 String[] wordsInRecognizedPhrase = phrase.split(" ");

 for (String word : wordsInRecognizedPhrase) {

 if (word.contains("a_")) {

 alWordCount++;

 } else if (word.contains("e_")) {

 enWordCount++;

 } else if (word.contains("r_")) {

 roWordCount++;

 }

 }

 int max = Math.max(alWordCount, Math.max(enWordCount, roWordCount));

 if (max == alWordCount) {

 albanianLID_3Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is Albanian!");

 } else if (max == enWordCount) {

 englishLID_3Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is English!");

 } else {

 romanianLID_3Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is Romanian!");

 }

 }

 recognizer.stopRecognition();

 }

 catch (IOException ex) {

 Logger.getLogger(DemoGUI.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

70

71

Annex 2

String phrase;

Configuration configuration2 = new Configuration();

configuration2.setAcousticModelPath("resource:/edu/cmu/sphinx/models/acoustic/LID_4.cd_cont_1000");

configuration2.setDictionaryPath("resource:/edu/cmu/sphinx/models/acoustic/LID_4.cd_cont_1000/LID_4.

dic");

configuration2.setLanguageModelPath("resource:/edu/cmu/sphinx/models/language/all_languages.6k_each.

3GramLM.sorted.dmp");

 //Iterate through the entire wavs directory:

 for (File rawInput : targetInput.listFiles()) {

 try {

 int alWordCount = 0;

 int roWordCount = 0;

 int enWordCount = 0;

 StreamSpeechRecognizer recognizer2 = new StreamSpeechRecognizer(configuration2);

 InputStream stream2 = new FileInputStream(rawInput);

 recognizer2.startRecognition(stream2);

 SpeechResult result2;

 while ((result2 = recognizer2.getResult()) != null) {

 phrase = ("" + result2.getHypothesis());

 System.out.println("\n\n");

 System.out.println("Phrase:" + phrase + " " + rawInput.getName());

 String[] wordsInRecognizedPhrase = phrase.split(" ");

 StringBuilder wordsOnLine = new StringBuilder();

 for (String word : wordsInRecognizedPhrase) {

 wordsOnLine.append(word).append(" ");

 if (word.contains("a_")) {

 alWordCount++;

 } else if (word.contains("e_")) {

 enWordCount++;

 } else if (word.contains("r_")) {

 roWordCount++;

 }

 }

 int max = Math.max(alWordCount, Math.max(enWordCount, roWordCount));

 if (max == alWordCount) {

 albanianLID_4Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is Albanian!");

 } else if (max == enWordCount) {

 englishLID_4Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is English!");

 } else {

 romanianLID_4Phrase.append(rawInput.getName() + " transcription: " + phrase)

 .append("\n" + rawInput.getName() + " is Romanian!");

 }

 }

 } catch (IOException ex) {

 Logger.getLogger(DemoGUI.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

72

73

Annex 3

public class AlbanianTranscriber {

 public static void main(String[] args) throws Exception {

 System.out.println("Loading models...");

 String phrase = new String();

 Configuration configuration = new Configuration();

 configuration.setAcousticModelPath("resource:/edu/cmu/sphinx/models/acoustic/

albanianChunks7-10.cd_cont_1000");

 configuration.setDictionaryPath("resource:/edu/cmu/sphinx/models/acoustic/

albanianChunks7-10.cd_cont_1000/albanianTrain.dic");

 configuration.setLanguageModelPath("resource:/edu/cmu/sphinx/models/language/

albanianChunks7-10.3GramLM.sorted.dmp");

 //Iterate through the entire wavs directory:

 File targetInput = new File("C:\\Users\\Mihai\\Desktop\\smallTestFolder");

 int totalWordCount = 0;

 float totalConfidencePerFile = 0;

 float totalGoodConfidencePerFile = 0;

 int goodWordsPerFile = 0;

 for (File rawInput : targetInput.listFiles()) {

 String outputID = "(" + rawInput.getName().replace(".wav", "") + ")";

 File textResultsOutput = new

File("C:\\Users\\Mihai\\Desktop\\LID_1_results\\albanianTranscriber\\", outputID.replace("(",

"").replace(")", "").concat(".result.txt"));

 File confidenceResultsOutput = new

File("C:\\Users\\Mihai\\Desktop\\LID_1_results\\albanianTranscriber\\", outputID.replace("(",

"").replace(")", "").concat(".confidence.txt"));

 BufferedWriter bufferedTextWriter = new BufferedWriter(new

FileWriter(textResultsOutput));

 BufferedWriter bufferedConfidenceWriter = new BufferedWriter(new

FileWriter(confidenceResultsOutput));

 int k = 0;

 int contor = 0;

 int goodWordsPerPhrase = 0;

 float totalConfidencePerLine = 0;

 StreamSpeechRecognizer recognizer

 = new StreamSpeechRecognizer(configuration);

 InputStream stream = new FileInputStream(rawInput);

 recognizer.startRecognition(stream);

 SpeechResult result;

 while ((result = recognizer.getResult()) != null) {

 phrase = ("" + result.getHypothesis());

 System.out.println("\n\n");

 System.out.println("Phrase:" + phrase + " " + rawInput.getName());

 String[] wordsInRecognizedPhrase = phrase.split(" ");

 Lattice resultedLattice = result.getLattice();

 LatticeOptimizer optimizer = new LatticeOptimizer(resultedLattice);

 optimizer.optimize();

 resultedLattice.computeNodePosteriors(1);

 SausageMaker sausageMaker = new SausageMaker(resultedLattice);

 Sausage sausage = sausageMaker.makeSausage();

 sausage.removeFillers();

 ArrayList<String> wordsInRecognizedPhraseFromSet = new ArrayList();

 ArrayList<Float> confidenceArrayFromSet = new ArrayList();

 StringBuilder wordsOnLine = new StringBuilder();

 StringBuilder confidenceOnLine = new StringBuilder();

 for (ConfusionSet confusionSet : sausage) {

 for (Set<WordResult> wordResultSet : confusionSet.values()) {

74

 for (WordResult wordResult : wordResultSet) {

 wordsInRecognizedPhraseFromSet.add(wordResult.

 getPronunciation().getWord().getSpelling());

 confidenceArrayFromSet.add((float) wordResult.getConfidence());

 }

 }

 }

 for (int i = 0; i < wordsInRecognizedPhrase.length; i++) {

 for (int j = k; j < wordsInRecognizedPhraseFromSet.size(); j++) {

 if (wordsInRecognizedPhrase[i].

 equals(wordsInRecognizedPhraseFromSet.get(j))) {

 wordsOnLine.append(wordsInRecognizedPhraseFromSet.get(j)).append(" ");

 confidenceOnLine.append(confidenceArrayFromSet.get(j)).append(" ");

 if ((wordsInRecognizedPhraseFromSet.get(j).length() >= 3) &&

(confidenceArrayFromSet.get(j) > -2000)) {

 totalConfidencePerLine = totalConfidencePerLine

 + confidenceArrayFromSet.get(j) /

wordsInRecognizedPhraseFromSet.get(j).length();

 goodWordsPerPhrase++;

 goodWordsPerFile++;

 }

 contor = j;

 break;

 }

 }

 k = contor + 1;

 }

 wordsOnLine.append(outputID);

 if (goodWordsPerPhrase <= 5) {

 confidenceOnLine.append(outputID).

 append(" not enough (good) words in phrase");

 } else {

 confidenceOnLine.append(outputID).

 append(" word count: ").

 append(wordsInRecognizedPhrase.length).

 append(" sum of confidence per line: ").

 append(totalConfidencePerLine).

 append(" mean: ").

 append(totalConfidencePerLine / wordsInRecognizedPhrase.length);

 totalGoodConfidencePerFile = totalGoodConfidencePerFile +

totalConfidencePerLine;

 }

 totalWordCount = totalWordCount + wordsInRecognizedPhrase.length;

 totalConfidencePerFile = totalConfidencePerFile + totalConfidencePerLine;

 bufferedTextWriter.write(wordsOnLine.toString());

 bufferedTextWriter.newLine();

 bufferedConfidenceWriter.write(confidenceOnLine.toString());

 bufferedConfidenceWriter.newLine();

 }

 recognizer.stopRecognition();

 bufferedConfidenceWriter.newLine();

 bufferedConfidenceWriter.write("Total number of recognized words: " + totalWordCount);

 bufferedConfidenceWriter.newLine();

 bufferedConfidenceWriter.write("Total number of good words: " + goodWordsPerFile);

 bufferedConfidenceWriter.newLine();

 bufferedConfidenceWriter.write("Total sum of confidences: " + totalConfidencePerFile);

 bufferedConfidenceWriter.newLine();

 bufferedConfidenceWriter.write("Total sum of good confidences: " +

totalGoodConfidencePerFile);

 bufferedConfidenceWriter.newLine();

 bufferedConfidenceWriter.write("Total mean confidence of good words: " +

totalGoodConfidencePerFile / goodWordsPerFile);

 bufferedConfidenceWriter.newLine();

 bufferedTextWriter.close();

 bufferedConfidenceWriter.close();

 }

 }

}

75

Annex 4

// .php to.html conversion script:

for file in /home/dogariu/studentsShare/multilingualASRTask/albanian/text/raw/topchannel2/*.php; do

 cp "$file" /home/dogariu/nasHome/albanian/Task1/topchannel2/"`basename $file .php`.html"

done

--

// .html to .txt conversion script:

#!/bin/bash

for i in `ls /home/dogariu/nasHome/albanian/Task1/topchannel2/`;do

 lynx -dump /home/dogariu/nasHome/albanian/Task1/topchannel2/$i >

 /home/dogariu/nasHome/albanian/Task1/texte_formatate/topchannelTemp/"`basename $i .html`.txt"

done

--

// conversion to UTF-8 encoding script:

TARGET_FOLDER=/home/dogariu/nasHome/albanian/Task1/texte_formatate/topchannelTemp

DEST_FOLDER=/home/dogariu/nasHome/albanian/Task1/texte_formatate/topchannel2

for i in `ls /home/dogariu/nasHome/albanian/Task1/texte_formatate/topchannelTemp/`;do

 iconv -f UCS-2le -t UTF-8 $TARGET_FOLDER/$i > $DEST_FOLDER/$i

done;

--

// concatenating large numbers of files:

ls /home/dogariu/nasHome/albanian/Task1/texte_finale/topchannel2/ >

/home/dogariu/nasHome/albanian/Task1/texteFinaleOneFile/texteFinaleOneFile.txt

sort -n /home/dogariu/nasHome/albanian/Task1/texteFinaleOneFile/texteFinaleOneFile.txt >

/home/dogariu/nasHome/albanian/Task1/texteFinaleOneFile/texteFinaleOneFileSorted.txt

while read LINE

do

 echo $LINE

 cat /home/dogariu/nasHome/albanian/Task1/texte_finale/topchannel2/$LINE >>

/home/dogariu/nasHome/albanian/Task1/texteFinaleOneFile/topchannel2.txt

done < /home/dogariu/nasHome/albanian/Task1/texteFinaleOneFile/texteFinaleOneFileSorted.txt

--

// selecting 90% of the text corpus for training and leaving the other 10% for testing:

shuf topchannel2.txt > topchannel2Shuffled.txt

head -82550 topchannel2Shuffled.txt > firstTopchannel2.txt

diff firstTopchannel2.txt topchannel2Shuffled.txt | grep '>' | sed 's/> //' > lastTopchannel2.txt

cat firstTopchannel2.txt >> toTest.txt

cat lastTopchannel2.txt >> toTrain.txt

--

// copying .wav files corresponding to the files in the fileids list of files:

#!/bin/sh

FROM_WAV_FOLDER=/home/dogariu/studentsShare/old140402/resources/speech/database4/wav/*

TO_WAV_FOLDER=/home/dogariu/romanianTrainDatabase

INPUT_FILEIDS=/home/dogariu/licentaMihai/romanian/etc/01-20_00-04_train.fileids

while read line

do

 cp -r $FROM_WAV_FOLDER/$line.wav $TO_WAV_FOLDER/$line.wav

done < $INPUT_FILEIDS

--

// creating fileids file based on the list of available audio files:

for file in /home/dogariu/licentaMihai/albanian_task4_annotated/wav/*.wav;

 do

 echo "`basename $file .wav`" >>

/home/dogariu/licentaMihai/albanian_task4_annotated/etc/fileidsFromWavs

done

--

//creating fileids file based on the available transcriptions:

TARGET_FOLDER=/home/dogariu/licentaMihai/albanian_task4_annotated/etc

TARGET_FILE=/home/dogariu/licentaMihai/albanian_task4_annotated/etc/albanian.fileids

reverse file such that last column on each row becomes first column on each row

rev $TARGET_FOLDER/albanian.all.transcription > temp

awk -F " " '{print $1}' temp > temp2

rev temp2 > temp

sed 's/(//g; s/)//g' temp > $TARGET_FILE

rm temp

rm temp2

--

// copying .txt files corresponding only to the available audio files:

for file in /home/dogariu/wav/*.wav;do

 cp /home/dogariu/nasHome/albanian/Task1/texte_finale/vizionPlus/"`basename $file .wav`.txt"

/home/dogariu/wav_transcripts/

done

--

76

// bringing the text corpus in the desired format for LM creation:

TARGET_FOLDER=/home/dogariu/licentaMihai/albanianChunks7-10/etc

sed 's/<s>//g;s/<\/s>//g;s/[\t]*$//g' $TARGET_FOLDER/albanianChunks7-10.transcription >

$TARGET_FOLDER/transcription_for_lm

rev $TARGET_FOLDER/transcription_for_lm > $TARGET_FOLDER/temp

cut -d " " -f 2- $TARGET_FOLDER/temp > $TARGET_FOLDER/temp2

rev $TARGET_FOLDER/temp2 > $TARGET_FOLDER/temp

sed 's/[\t]*$//g' $TARGET_FOLDER/temp > $TARGET_FOLDER/transcription_for_lm

rm $TARGET_FOLDER/temp

rm $TARGET_FOLDER/temp2

--
// creating LM script:

ENGLISH_LM_FOLDER=/home/dogariu/licentaMihai

TARGET_FOLDER=/home/dogariu/studentsShare/old140402/resources/text/europarl9amHotnews

#create the counts file (english.counts) and the vocabulary file (english.vocab) for english corpus

#english-one-phrase-per-line is the file that contains one phrase per line

ngram-count -order 3 -write-vocab $ENGLISH_LM_FOLDER/ro.vocab -text

$TARGET_FOLDER/europarl9amHotnews.rsDiacriticsGre -write $ENGLISH_LM_FOLDER/ro.counts

#create the language model (english.3GramLM)

ngram-count -sort -order 3 -read $ENGLISH_LM_FOLDER/ro.counts -lm $ENGLISH_LM_FOLDER/ro.3GramLM

#sort the language model and create sphinx format language model (english.3GramLM.sorted.dmp)

sphinx_lm_sort $ENGLISH_LM_FOLDER/LID_4_english.3GramLM >

$ENGLISH_LM_FOLDER/LID_4_english.3GramLM.sorted

sphinx_lm_convert -i $ENGLISH_LM_FOLDER/LID_4_english.3GramLM.sorted -o

$ENGLISH_LM_FOLDER/LID_4_english.3GramLM.sorted.dmp

--
// downloading content of URLs under a specified format:

i=0;

j=0;

ID_FILE=/home/dogariu/nasHome/albanian/Task2/OutputTask2_vizionPlus/ID_vizionPlus.txt

URL_FILE=/home/dogariu/nasHome/albanian/Task2/OutputTask2_vizionPlus/URL_vizionPlus.txt

OUTPUT_WAV_FOLDER=/home/dogariu/vizionPlusWav

while read p;do

 a[i]=$p;

 c[i]=$i;

 #echo ${a[i]}

 i=`expr $i + 1`;

done < $ID_FILE

echo $i

echo ${c[*]}

while read r;do

 b[j]=$r;

 #echo ${b[j]}

 j=`expr $j + 1`;

done < $URL_FILE

#echo $j

for k in ${c[*]}

do

 #echo $k

 #echo ${b[k]}

 youtube-dl -o temp.mp4 -f 17 "${b[k]}"

 ffmpeg -i temp.mp4 -f wav -ar 16000 $OUTPUT_WAV_FOLDER/${a[k]}.wav

 rm -r temp.mp4

done

--

// LM interpolation script:

ngram -lm <LM#1> -lambda <weight> -mix-lm <LM#2> -write-lm <interpolatedLM>

<LM#1> path to first LM

<weight> a number between 0 and 1, representing LM1’s weight

<LM#2> path to second LM

<interpolatedLM> path to resulting LM

ngram -lm /home/dogariu/licentaMihai/creatingLMTopChannel+bd+bigLM/topChannel2+bd.3GramLM.sorted -

lambda 0.9 -mix-lm

/home/dogariu/nasHome/albanian/Task1/albanianLMfolder/albanian.task1.3GramLM.sorted -write-lm

/home/dogariu/licentaMihai/AdaptiveTraining2/models/language/albanianInterpolated90topChannel2+bdWit

h10BigLM

--

