
University “Politehnica” of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

Multilingual Automatic Speech Recognition System

Diploma Thesis

submitted in partial fulfillment of the requirements for the Degree of

Engineer in the domain Electronics and Telecommunications, study program

Technologies and Systems of Telecommunications

Thesis Advisor
Dr. Ing. Andi BUZO Student
Dr. Ing. Horia CUCU Ioana CALANGIU

Table of Contents

1 CHAPTER INTRODUCTION 13

1.1 THESIS MOTIVATION 13

1.2 THE FIELD OF SPEECH RECOGNITION 13

1.3 THESIS OBJECTIVES AND OUTLINES 15

2 CHAPTER NECESSARY RESOURCES FOR BUILDING AN ASR 17

2.1 RECOGNITION FORMALISM 17

2.2 LANGUAGE MODELING 18

2.2.1 N-GRAM MODELS 19

2.2.2 APPROACH OF THE DATA SPARSENESS PROBLEM 19

2.2.2.1 Back-off methods 19

2.2.2.2 Smoothing methods 21

2.2.3 EVALUATING THE PERFORMANCE OF THE LANGUAGE MODEL 21

2.2.3.1 Perplexity 22

2.2.3.2 Out Of Vocabulary words 22

2.2.3.3 N-gram hits 23

2.3 FSG GRAMMAR 23

2.4 PHONETIC MODELING 23

2.5 ACOUSTIC MODELING 24

2.5.1 FEATURE EXTRACTION 25

2.5.2 HMM FRAMEWORK 29

2.5.3 CHOOSING THE BASIC UNIT 32

2.6 ASR EVALUATION 33

2.7 SPEECH RECOGNITION TOOLS 34

3 CHAPTER AUTOMATIC SPEECH RECOGNITION SYSTEMS 35

3.1 CURRENT STAGE FOR AUTOMATIC RECOGNITION SYSTEM FOR ALBANIAN 35

3.2 SPEECH DATABASE ACQUISITION FOR ALBANIAN ASR 35

3.2.1 ACQUISITION TOOLS FOR AUDIO CLIPS FOR ALBANIAN ASR 35

3.2.2 ACQUISITION TOOLS FOR TRANSCRIPTIONS FOR ALBANIAN ASR 36

3.2.2.1 Diacritics 38

3.3 BUILDING AND ACOUSTIC, A LANGUAGE AND A PHONETIC MODEL FOR A SMALL ALBANIAN

DATABASE 38

3.3.1 BUILDING THE LANGUAGE MODEL 38

3.3.2 BUILDING THE PHONETIC MODEL 39

3.3.2.1 Graphemes-to-phonemes method description 39

3.3.2.2 Phones list 39

3.3.3 BUILDING THE ACOUSTIC MODEL 41

3.3.3.1 Speech unit selection 41

3.4 DATA PREPARATION FOR TRAINING AND TESTING AN ASR 41

3.4.1 TRAINING 41

3.4.1.1 The hierarchical training strategy 44

3.4.2 TESTING 44

3.5 FINAL RESULTS FOR ALBANIAN ASR 45

3.6 AUTOMATIC SPEECH RECOGNITION SYSTEM FOR ENGLISH 46

3.6.1 BUILDING THE LANGUAGE MODEL 47

3.6.2 BUILDING THE PHONETIC MODEL 47

3.6.2.1 Phones list 47

3.6.3 BUILDING THE ACOUSTIC MODEL 49

3.7 AUTOMATIC SPEECH RECOGNITION SYSTEM FOR ROMANIAN 49

3.7.1 BUILDING THE LANGUAGE MODEL 49

3.7.2 BUILDING THE PHONETIC MODEL 50

3.7.2.1 Phones list 50

3.7.3 BUILDING THE ACOUSTIC MODEL 51

3.8 DEMO APPLICATION 52

4 CONCLUSIONS 55

BIBLIOGRAPHY 57

ANNEX 1 59

Table of Figures

Figure 1.1 A source-channel model for speech recognition system .. 14

Figure 2.1 Necessary resources for building an ASR .. 18

Figure 2.2 Necessary sets for training a language model .. 20

Figure 2.3Matlab figure illustrating the energy of vowels .. 25

Figure 2.4 The stages for extracting the MFC coefficients ... 26

Figure 2.5 Frequency bands on Mel scale[12]... 27

Figure 2.6 HMM-based phone model with 5 states[15] .. 30

Figure 3.1 Example of Albanian .txt file in raw form ... 37

Figure 3.2 Cleaned Albanian text .. 38

Figure 3.3 transcription file for language model ... 38

Figure 3.4 Example of output during decoding ... 42

Figure 3.5 GUI for Demo application ... 52

Figure 3.6 The language word graph ... 52

Figure 3.7 FSG Grammar for Demo application ... 53

Figure 3.8 GUI for Romanian Recognition .. 53

Table of Tables

Table 3-1 MediaEval 2013 database ... 38

Table 3-2 Albanian Phoneme set ... 40

Table 3-3Structure of decoding process .. 43

Table 3-4 Albanian Speech database ... 45

Table 3-5 Albanian Text copora .. 45

Table 3-6 Albanian Acoustic Models .. 45

Table 3-7 Albanian Language Models .. 46

Table 3-8 Albanian experimental results ... 46

Table 3-9 TIMIT Text corpora .. 47

Table 3-10Language model evaluation for TIMIT database ... 47

Table 3-11Phoneme set in English .. 48

Table 3-12 Results for TIMIT database .. 49

Table 3-13 Romanian database.. 49

Table 3-14 number of words for Romanian database .. 50

Table 3-15List of phones in Romanian ... 51

Table 3-16 Evaluation for Romanian database .. 51

13

1 CHAPTER Introduction

1.1 Thesis motivation

From human prehistory to the new media of the future, speech communication has been and will be

the dominant mode of the human social bonding and information exchange. In addition to human-

human interaction, this human preference for spoken language communication finds a reflection in

human-machine interaction as well. Designing a machine that mimics human behavior, in particular

the capability of speaking naturally and responding properly to spoken language, has intrigued

engineers and scientists for centuries. Homer W. Dudley was the pioneering electronic and acoustic

engineer in this field, by creating the first electronic voice synthesizer for Bell Labs in the 1930s

and leading the development of a method of sending secure voice transmissions during World War

Two.

New machine learning algorithm can lead to significant advances in automatic speech recognition.

The biggest single advance occurred nearly four decades ago with the introduce of the Expectation-

Maximization (EM) algorithm for training Hidden Markov Models (HMMs). Through the EM

algorithm, it became possible to develop speech recognition systems for real world tasks using

richness of Gaussian mixture models (GMM) to represent the relationship between the acoustic

input and the HMM states. In these systems the acoustic input is created by concatenating Mel

Frequency Cepstral Coefficients (MFCCs), computed from the raw waveform, and their first- and

second-order temporal differences. This pre-processing of the input signal is designed to discard the

large amount of information in waveforms that is considered irrelevant.

The field of Automatic Speech Recognition (ASR) exploded in the last decades, since people tend

to be more and more busy and look after hands-free and eyes-free interfaces to devices. The object

of ASR is to capture an acoustic signal representative of speech and determine the words that were

spoken by pattern matching. To do this, a set of acoustic and language models have to be stored in a

computer database, that represent the actual patterns. These models result after training and are then

compared to the capture signals

1.2 The field of speech recognition

Recognition and understanding of spontaneous unrehearsed speech remains an elusive goal. To

understand speech, a human considers not only the specific information conveyed to the ear, but

also the context in which the information is being discussed. For this reason, people can understand

spoken language even when the speech signal is corrupted by noise. However, understanding the

context of speech is, in turn, based on broad knowledge of the world. And this has been the source

of the difficulty and over forty years of research.

Automatic speech recognition is the recognition of the information embedded in a speech signal and

its transcription in terms of a set of characters. The ASR process addresses the problem of mapping

an acoustic signal to a sequence of words. When the input acoustic signal contains speech uttered

by different speakers, the ASR task can be regarded as a two-step process : speaker diarisation (who

spoke when?) and speech-to-text transcription (what did he say?).

14

The task of speech recognition can be formulated through a source-channel model. The speaker’s

mind decides the source word sequence W that is delivered through his/her text generator. The

source is passed through a noisy communication channel that consists of the speaker’s vocal

aparatus to produce the speech waveform and the speech signal processing component of the speech

recognizer. At the last stage, the decoder aims to decode the acoustic signal X into a word sequence

, which should be as close as possible to the original sequence W.

Figure 1.1 A source-channel model for speech recognition system[8]

The speech signal is processed in the signal processing model that extracts feature vectors for the

decoder. The decoder uses both acoustic and language models to generate the word sequence that

has the maximum probability for the input feature vectors. Acoustic models refer to the

representation of the information and knowledge about acoustics, phonetics, environment

variability, gender, different pronunciations and dialect differences among speakers etc. Language

models refer to a system’s intuition of what constitutes a valid word and what words are most likely

to occur.

Several problems appear when building an ASR, and mostly depend on the type of language. For a

vast number of languages, called low-resourced language, there are no text and speech resources

available. These language are spoken by a large number of people, but no prior work of collecting

and organizing speech and/or text resources has been made. In this case, the task of implementing

an ASR includes gathering the necessary resources for creating a wide database.

Other languages, like French and Romanian, are categorized as rich-morphology language.

Compared to English, a poor-morphological language, these languages have a large vocabulary.

For example the word to learn in Romanian has six morphologically different forms : „învăţ”,

„înveţi”, „învaţă”, „învăţăm”, „învăţaţi”, „învaţă”. In French it has four : „apprends”, „apprend”,

„apprenons”, „apprenez”, „apprennent”. The right morphological variant depends on various

factors, like constraints or grammatical gender. In English, the same verb has only two forms :

„learn” and „learns”. German and Turkish are some of the so-called agglutinative languages.

Agglutination is a process in which complex words are formed by stringing together morphemes,

each with a single grammatical or semantic meaning. This process translates into a very large

vocabulary, which makes the task of speech recognition even more challenging.

The size of vocabulary is also an important factor which settles the difficulty when designing an

ASR. The task of recognizing a set of commands, with a limited number of words, is much simpler

than a spontaneous recognizing task (with 64k words vocabulary). Nevertheless, a large vocabulary

does not always translate into a more difficult ASR task. The linguistic uncertainty of the possible

speech utterances plays a significant role. For instance, an ASR targeted to recognize tourism

15

related words (which can form a 64k words vocabulary) is not as difficult as a spontaneous speech

recognition task with an equals-size vocabulary. The low linguistic uncertainty, also called

perplexity, of the tourism-specific ASR task makes it less difficult.

After years of research and development, accuracy of automatic speech recognition remains one of

the most important research challenges. A number of well-known factors determine accuracy: those

most noticeable are variations in context, in speaker and in environment. Acoustic modeling plays a

critical role in improving accuracy and is arguably the central part of any speech recognition

system.

One of the factors that influences the accuracy of the speech recognition system is the acoustic

environment in which the speaker is placed, along with any transmission channel. In this cases, it is

a demanding task to separate the different acoustic signals found in an environment, which can be

other talkers or environmental noise. This factor is also influenced by microphones, which can have

a great impact on the speech recognition accuracy. In laboratories, the research is done with high-

quality, head-mounted microphones. Other types of microphones can cause problems due to

movements of the speaker’s head relative to the microphone. In a similar manner to speaker-

independent training, we can build a system by using a large amount of data collected from a

number of environments; this is referred to as multistyle training. Nevertheless, despite the progress

being made in the field, environment variability remains as one of the most severe challenges facing

today’s state-of-the-art speech systems.

The accuracy of a speech recognition process is also influenced by the speaker characteristics. By

speaker characteristics, one refers to the speaker accent, the gender, the speech rate, different

pronunciations or even dialect differences. Every individual speaker is different. As such, one

person’s speech patterns can be entirely different from those of another person. Even if these

interspeaker differences could be excluded, the same speaker is unable to precisely produce the

same utterance. Along with these, the speaking style also plays an important role in designing an

ASR. The speaking style refers to how fluent, natural or conversational the speech is. The inter-

speaker variability could be dealt with by simply designing speaker-dependent ASR systems.

Nevertheless, even if this would translate into a small error rate, the drawback is that a new acoustic

model should be trained for every new speaker. Consequently, speaker-independent ASR systems

are more flexible, since they can be used to recognize the speech of any speaker.

Another factor to be taken into consideration is style variability. To deal with acoustic realization

variability, a number of constrains can be imposed on the use of the speech recognizer. For

instance, there are isolated speech recognition systems, in which users have to pause between each

word. Because the pause provides a clear boundary for the word, we can easily eliminate errors

such as Ford or and Four Door. In continuous speech recognition, the error rate is usually much

higher than in the case of isolated speech recognition. If a person whispers, or shouts, to reflect his

or her emotional changes, the variation increases more significantly.

1.3 Thesis objectives and outlines

The main objective of this thesis was to develop a speaker-independent large-vocabulary continuous

speech recognition system for Albanian, a under-resourced language. This system should be able to

recognize general Albanian continuous speech produced by any speaker with a decent performance.

Several stages were followed to achieve this final goal :

16

1. The acquisition of a phonetic, speech and text resources. A speech database is needed to

train the acoustic model, while a text database is required to create a general purpose

language model. A phonetic model links the acoustic model, a spectral representation of

sounds and words, to the language models, that is a representation of the grammar or syntax

of the task.

2. The development of specific tools to process the necessary resources presented above.

3. The design, implementation and evaluation of an Albanian large vocabulary continuous

speech recognition system using state-of-the-art techniques : the HMM framework for

acoustic modeling and the n-gram paradigm for language modeling.

The thesis is organized in four chapters as follows.

Chapter 1 presents a brief summary of the main issues in the field of speech recognition and the

important factors that influence the accuracy of a large vocabulary continuous speech recognition

system.

Chapter 2 presents a brief summary of the main issues in the field of speech recognition. The

second chapter introduces the reader the concepts of acoustic, phonetic and language modeling,

which represent the engines of a continuous speech recognition system. This chapter ends with

presenting some metrics computed in order to evaluate the ASR.

In Chapter 3, in the first sections, we focus on presenting the steps and difficulties in developing an

ASR from zero. Our targeted language is Albanian, a low-resourced language. In the beginning of

this chapter are illustrated acquisition tools for a speech database (audios clips and transcripts), The

chapter continues with the stages of training the acoustic and the language models for a small

Albanian database. After that it describes our efforts to extend this database, in order to have more

accurate models, and smaller word error rates. Chapter 3 ends with the final results we obtained.

The last part of Chapter 3 is dedicated to Romanian and English speech recognition systems, for

which there are speech databases available. There are presented problems we encountered on the

way, and the solutions we have come up with. Moreover, a demo is described in order to evaluate

each of the three targeted languages.

Chapter 4 summarizes the main conclusions of this thesis and underlines the author’s contributions.

This chapter ends with briefly discusses regarding future developments for increasing the systems’

accuracy.

17

2 CHAPTER Necessary resources for building an ASR

2.1 Recognition formalism

The process of automatic speech recognition is the translation of spoken words into text. This

speech-to-text task can be characterized in a probabilistic framework. Probability theory and

statistics provide the mathematical language to analyze and describe ASR systems. The speech-to-

text task can be formulated in a probabilistic manner :

What is the most likely sequence of words W* in a certain Language L, given the speech utterance

X?

The formal representation uses the arg max function, in order to select the argument which

maximizes the probability of the word sequence is :

 (2.1)

The Equation 2.1. points to the most probable sequence of words as the one with the highest

posterior probability, given the speech utterance. This posterior probability is computed using

Bayes rule, so the most probable word sequence becomes:

(2.2)

p(X), the probability of the speech utterance is independent of the sequence of words W, and can

be ignored. The problem of recognition is simply reduced to :

(2.3)

Equation 2.3. points out two terms that can be directly estimated : a) the apriori probability of the

word sequence p(W) and b) the probability of the acoustic data, given the word sequence,

p(X/W).The first factor can be estimated using a language model, while the second factor can be

estimated with the help of an acoustic model. The two models can be built independently, but will

be used together in order to decode the spoken data, as shown by equation 2.3. The general

architecture of an ASR is presented in Figure 2.1. In can be seen that the speech recognition process

is mainly described by two essential phases : a) extracting useful information from speech signal

and b) compressing these representations for efficient transmission and storage. [1]

18

Figure 2.1 Necessary resources for building an ASR

Besides the acoustic model and the language model, which have been already mentioned above, the

general architecture of the ASR also includes a phonetic model. Its purpose is to connect the acoustic

model to the language model.

Figure 2.1. also shows that the system performs, in the early phase, a feature extraction. This block

has the role to extract specific acoustic features which are further used to create the acoustic model.

Consequently, the same feature extraction block is used in the decoding process.

Section 2.2. continues with the analysis and description of the several blocks in Figure 2.1.

2.2 Language modeling

The language model (grammar) is used in the decoding phase to describe how likely, in a

probabilistic sense, is a sequence of language symbols that can appear in the speech signal. A

statistical language model assigns a probability to a sequence of n words by

means of probability distribution. The main purpose of the grammar is to estimate the probability

that a word sequence , is a valid sentence in the researched language. The

probability of these word sequences help the acoustic model in the decision process. [1]

In other words, a language model is used to restrict word search. It defines which word could follow

previously recognized words and helps to significantly restrict the matching process by stripping

words that are not probable.

The probability of the word sequence can be decomposed as follows

(2.4)

19

where is the probability that will follow, given that the word sequence

 was present previously.

Now, the task of estimating the probability of a word sequence has been split into several tasks of

estimating the probability of one word given a history of preceding words. In Eq. 2.4 the choice of

 thus depends on the entire part history of the input. For a vocabulary of size there are

different histories and in order to specify completely, values would have

to be estimated. In reality, the probabilities are impossible to estimate for

even moderate values of , since most histories are unique or have occurred only a

few times. A practical solution is to assume that depends only on some

equivalence classes. The equivalent class can be simply based on the several previous words

. This leads to an n-gram language model. The trigram is a particular case,

and has proven to be very powerful, since most words have a strong dependence on the previous

two words. [2]

2.2.1 N-gram models

The n-gram model, which characterizes the word relationship within a span of n words, is a very

powerful statistical representation of a grammar. Its effectiveness in building a word search was

strongly validated by the famous word game of Claude Shannon which consisted in a competition

between a human and a computer. In this competition, both the human and the computer were asked

to sequentially guess the next word in an arbitrary sentence. The human guessed based on native

experience with language, while the computer based its answers on maximum likelihood principle,

using the accumulated word statistics. This experiment showed that, when n, the number of

preceding words, exceeds 3, the computer was very likely to make a better guess of the next word in

the sentence than the human. Unigrams are terrible at this game, but is easy to understand why.

Currently, n-gram models are indispensable in large vocabulary speech recognition systems.[3]

2.2.2 Approach of the data sparseness problem

The text available for building a model is called a training corpus. For n-gram models, the amount

of training data used is typically many millions of words.

Data sparseness is a problem which may appear even in the cases when there is a large training

corpus put on disposal. No matter the size of the training corpus, there may always appear n-grams

in the decoding phase, which were not found in this text.

2.2.2.1 Back-off methods

Sometimes it helps to use less context than more. In the cases when a trigram appears a very large

number of times, it can be considered a very good estimator. But sometimes, a trigram does not

appear that often, so a better solution is to back-off and to use a bigram. If the bigram is not trust

worthy, as well, a unigram may provide a more useful information. The interpolation method

proposes the mix of unigrams, bigrams and trigrams, in order to get benefits from all of them. In

practice, it was proven to have really good results.

20

There are two kinds of interpolation :

a) Simple linear interpolation :

(2.5)

Where , for them to be probabilities. The task is simply to compute the probability of a

word, when given the previous two, by interpolating the three models.

b) Lambdas conditional on context :

(2.6)

This method also mixes the three models, but λs are here dependant on what the previous words

were. This translates in the possibility to train a richer and more complex context conditioning for

deciding how to mix the trigrams, the bigrams and the unigrams.[4]

The next encountered step is to set lambdas and this is done by using a held-out corpus.

Figure 2.2 Necessary sets for training a language model

Lambdas are chosen to maximize the likelihood of held-out data. The first step is to train some n-

grams, using the training set. Then look after λs to use to interpolate those n-grams such that to give

the highest probability of this held-out set.

So far, the case of switching from a bigram to a unigram has been approached, when the bigram has

few or even 0 appearances. But what about the case when the actual word does not appear at all in

the training set? Here can be discussed two situations. The first one is the case of a command menu.

It is characterized by a fixed vocabulary V, and no other words can be said, except the ones

included in the menu. This is called a closed vocabulary task and shall be discussed in more detail

in a Section 2.3. The second situation deals with unseen words in the training set, called out of

vocabulary words or OOV. This task is known as open vocabulary task and consequently, these

words cannot be predicted by the language model.

In such situations, firstly we create a special token <UNK> (i.e. "unknown") and a fixed lexicon L

of size v. At text normalization phase, we take the most unimportant words, with the lowest

21

probabilities and change them to <UNK>. Next step is to train the probabilities of UNK like a

normal word.

So, instead of having in the training set : W.. where is a really low probability

word, we will have : .. In the decoding process, if a word appears which has not

been seen before, that word is replaced with UNK and its bigram and trigram probabilities are given

from the UNK word in the training set.

2.2.2.2 Smoothing methods

The main idea of these methods is that they extract a part of the probability assigned to n-grams

seen in the training phase, and redistribute it to unknown n-grams. As a result, they tend to make

distributions more uniform, by adjusting low probabilities such as zero probabilities upward, and

high probabilities upward. Smoothing methods have proven to be very effective, since they attempt

to improve the accuracy of the model as a whole. Whenever a probability is estimated from a small

number of occurrences, smoothing has the potential to significantly improve the estimation so that it

has a better generalization capability.

The Good-Turning method deals with infrequent n-grams. The basic idea is to look after how many

times the n-grams appear in the training data. On this basis, divide the n-grams into groups,

depending on their frequency, such that the parameter can be smoothened based on the n-gram

frequency.

To wrap this up, if a n-gram occurs r times, we should pretend that it occurs times :

(2.7)

where represents the number of n-grams that appear exactly r times in the training data. In order

to convert it to probability :

(2.8)

where , so N is equal with the number of counts in

the distribution.[2]

The Good-Turing method is not very reliable for large values of r, for which is typically 0. This

drawback can be overcome by leaving aside the counts for frequent n-grams.

2.2.3 Evaluating the performance of the language model

A good language model is a model that assigns a higher probability to „real” or „frequently

observed” sentences than to „ungrammatical” or „rarely observed” sentences. The process starts

with training the parameters of the model on a training set and then, test the model’s performance

on unseen data. In order to be a fair evaluation, this data should be really different from the training

data. An evaluation metric is used to see how well the model does on the test data.

22

2.2.3.1 Perplexity

The best evaluation for comparing two models, for example A and B, is to put each model in a

task, run the task, and get an accuracy for A and B. In the end, the only thing left to do is to

compare the accuracy for A and B. This is called extrinsic evaluation of n-gram models(in-vivo).

The drawback of this kind of evaluation is that it is time-consuming, can take days or even

weeks.[5]

Instead, one can use intrinsic evaluation, that is perplexity. The perplexity of the test data is the

most widely-used metric to evaluate the performance of n-gram smoothing. In information theory,

the perplexity is a measurement of how well a probability distribution or probability model predicts

a sample. So, the intuition of perplexity comes down to the simple question : How well can the

model predict the next word in a sentence? The best language model is one that best predicts an

unseen test set.

Translated in a mathematical language, perplexity is the probability of the test set, normalized by

the number of words. If we consider the sentence has N-words:

(2.9)

Where is the probability of a string of words. The longer the sentence, the less

probable it is going to be. Another mathematical expression of the perplexity is obtained through

the chain rule :

(2.10)

A particular case of Equation 2.10 for bigrams has the following expression:

(2.11)

Because of this inversion, minimizing perplexity is the same as maximizing probability.[6] To

conclude this section, there is a strong correlation between the test-set perplexity and the word error

rate. Smoothing algorithms leading to lower perplexity generally result in a lower error rate.[2]

2.2.3.2 Out Of Vocabulary words

In the case of unseen words in the training set, the evaluation of the performance of the language

model is very difficult. As mentioned previously, these words are known as out of vocabulary OOV

and cannot be predicted by the language model. The perplexity of such words is infinity and thus,

23

cannot be added to the perplexity of the other n-grams. Thus, the perplexity of the entire word

sequence cannot be computed. In order to fully evaluate the performance of a language model, one

must specify both the perplexity and the OOV.

(2.12)

2.2.3.3 N-gram hits

N-gram hits represents another method to evaluate how good can a language model predict a word.

As it was discussed previously, sometimes, if a trigram does not seem trust worthy, it is better to

back-off, and use a bigram. Moving on, a bigram could back off, due to insufficient data, to a

unigram. In the case of a trigram model, this metric gives the percentage of how many times the

model could use the full two-preceding words history over how many times had the model to back-

off to find the probability for the current n-gram :

(2.13)

This metric has proven to be very useful when comparing different domain-specific language

models.

2.3 FSG grammar

For the systems that deal with recognition of simple commands and control, it is more convenient to

describe the user language by a grammar model. A finite state grammar (FSG) is a graph model in

which the nodes correspond to the vocabulary words, and the transitions between the words are

represented through the links of the graph. If the task is relatively small (digits recognition, phone

dial, etc.) than this type of language model can be successfully used. Moreover, finite state

grammar can be successfully used in word spotting applications.

This model explicitly describes all possible word sequences allowed by the grammar of the

recognition task. Moreover, a cost can be attached to each link to specify the probability of finding

that word preceded by another word. A grammar is composed of a set of rules that together define

what may be spoken. This type of grammar can be successfully used when the vocabulary is only a

few thousands or hundreds words wide.

2.4 Phonetic modeling

In the context of state-of-the-art continuous speech recognition systems, the acoustic models do not

model the words of the source language in a direct manner, but in an indirect one. For Large-

Vocabulary Continuous Speech Recognition Systems(LVCSR), where large-vocabulary generally

means that the systems have roughly 5,000 to 60,000 words, it is difficult to build whole-word

models because :

24

 There are simply too many words, with different acoustic representations and it is unlikely

to have sufficient occurrences of these words in the training set to build context-dependant

models.

 Every new ASR task comes with new specific words, without any available training data,

such as newly invented jargons and proper nouns.[7]

The term continuous refers to the fact that the words are run together naturally, and not isolated,

where each word would be preceded and followed by a pause.

The purpose of the phonetic model is to link the acoustic model, which estimates the acoustic

probabilities of the phonemes, to the language model, which estimates the probability of sequences

of words. The phonetic analysis component converts the processed text into the corresponding

phonetic sequence.[8] In other words, the phonetic dictionary is a linguistic instrument, which

makes the correspondence between the written form and the phonetic form of the words in the

source language. This is followed by a prosodic analysis to attach the corresponding pitch and

duration information to the phonetic sequence. In linguistics, prosody is the stress, the rhythm and

the intonation of speech. Prosody may indicate several features of the speaker or the utterance, like

the emotional state of the talker, or the form of the utterance (statement, command or question) or

the presence of irony or sarcasm and many other elements of language that cannot be encoded by

grammar or by choice of vocabulary.[9]

The difficulty with which a phonetic dictionary is developed depends on the size of the vocabulary.

Even though a manually created dictionary would guarantee a perfect phonetisation, this task might

prove to be extremely time-consuming when designing a large-vocabulary speech recognition

system. Moreover, it would require a good command of the respectively language.[1]

2.5 Acoustic modeling

Acoustic models refer mainly to the representation of knowledge about phonetics, acoustics,

different pronunciations, gender and dialect differences among the speakers, environment

variability and so on. A speech recognition system which can be applied to a vast number of talkers,

without the need to be trained individually on every one, is called a speaker-independent system.

Such a system is based on some clustering algorithms with the final goal of creating word and

sound reference patterns, which can be used across large range of speakers and accents. In the early

stages, these patterns were characterized by a more intuitive template-based approach, but gradually

evolved in more rigorous statistical models.[3]

The popularity and use of the Hidden Markov Model as the main foundation for automatic speech

recognition has remained constant over the past two decades. HMM is today the preferred method

for speech recognition mainly because of the steady stream of improvements of the technology.

Another reason why HMMs are popular is because they can be trained automatically and are simple

to use.

Hidden Markov model (HMM) can provide an efficient way to build trust worthy parametric

models and also incorporate the dynamic programming principle in its core for unified pattern

segmentation and pattern classification of time-varying data sequences. The underlying assumption

of the HMM is that the data samples can be well characterized as a parametric random process, and

the parameters of the stochastic process can be estimated in a precise and well-defined framework.

The HMM has become one of the most powerful statistical methods for modeling speech signals. Its

25

principles have been successfully used in automatic speech recognition, formant and pitch tracking,

spoken language understanding and machine translation.

2.5.1 Feature extraction

Since HMMs do not model directly the waveform of the acoustic signal, in this section it will be

discussed a kind of acoustic processing commonly called feature extraction or signal analysis in

speech recognition literature. The term features refers to the vector of numbers which represent one

time-slice of speech signal. Most commonly used kinds of features are LPC features, PLP features

and MFCC features. They are called spectral features because they represent the waveform in terms

of the distribution of different frequencies which make up the waveform.[10]

Speech parameters are often processed by filters. The most common filtering occurs at the spectral

level, where the power spectrum is processed through filter bank channels. The MFCC features use

the Mel-scale filter bank while the PLP features utilize the Bark scale for its critical band analysis.

The first feature we use is the speech waveform itself. The fact that humans, and to some extant

machines, are capable of transcribing and understanding speech just given the sound wave leads to

the conclusion that the waveform contains enough information to make this task possible.

Sometimes, this information is hard to unlock just by looking at the waveform, but even so a visual

inspection is sufficient to retrieve some relevant characteristics. For instance, the difference

between vowels and some consonants is relatively clear on a waveform. Vowels are characterized

by an open configuration of the vocal tract so there is no build-up of air pressure above the glottis.

This contrasts with consonants, which are characterized by a constriction or closure at one or more

points along the vocal tract. This translates in a visible difference of energy. Researchers are able to

look at the spectrogram and indentify several vowels or consonants on account on their amplitude.

In Figure 2.3 is a Matlab energy figure of vowels (“a”, “e”, “i”, “o”, “u”). Between them, the areas

where the energy is almost zero, are the moments of silence, when the speaker pauses before

moving on to the next vowel.

Figure 2.3Matlab figure illustrating the amplitude of vowels

Moving on, since the speech signal is not a stationary one, the spectral analysis cannot be done on

the entire signal, but on short frames(20-30ms), on which the signal is quasi-stationary. The original

26

signal is segmented in the time domain, using a Hamming window, and the feature extraction

process is performed on every single window. In general, time-domain features are much less

accurate than frequency-domain features such as the mel-frequency cepstral coefficient(MFCC).

This is said because many features such as formants, useful in discriminating vowels, are better

characterized in the frequency domain. When computing the MFCC coefficients, a non-linear

frequency scale is used, since it better approximates the human hearing system. This analysis

process takes into account that the seizing of different sound tones is done on a logaritmic scale

inside the ear, proportional with the fundamental frequency of the sound. In this manner, the

human ear response in non-linear with respect to frequency, since it is able to sense small frequency

differences among the low frequency components easier than among the high ones.

In order to determine the cepstral coefficients, the spectrum, computed using FFT, is smoothened

through some triangular filter banks, each centered on a frequency found on the Mel scale. The Mel

scale is a perceptual scale of pitches built according to some listeners which are equal in distance

from one another.[11] The purpose of this set of triangular filters is that of splitting the signal over

the frequency bandwidths associated with the Mel scale. For a vocal signal with a bandwidth of

8kHz, a number of 24 filter sets is considered sufficient to compute the MFCC parameters.

Nevertheless, in speech recognition systems this number is configurable and through experiments,

one can find its optimum value for the respective application. By applying the logaritmic

compression at the output of the set of filtres, the distribution of the coefficients follow a Gaussian

law. Then, over each band it is computed the mean energy. The MFCC coefficients are obtained

after applying the Discrete Cosine Transform, which is a very convenient instrument. It deals only

with real numbers, it has a strong „energy compaction” property : most of the signal information

tends to be concentrated in a few low-frequency components and decorrelates these values.[12]

Figure 2.4 The stages for extracting the MFC coefficients

In other words, in order to obtain the MFCC coefficients:

 First the Fourier transform of (a windowed excerpt of) a signal is computed:

(2.14)

27

 The set of M (triangular overlapping windows is defined, so that to map the

powers of the spectrum obtained above onto the mel scale:

(2.15)

The formula can be, also, expressed like this:

(2.16)

In this case . The only thing that differs between the two representations is a

vector of constants for all the input signals, so as long as the same filter is used among everywhere,

the choice of which one is applied is unimportant.[12]

This set of filters computes the spectrum around the central frequency of each band. Their band

increases along the index m.[13]

The first filter bank will start at the first point, reach its peak at the second point, then return to zero

at the third point. The second filter bank will start at the second point, reach its peak at the third

point, then be zero at the fourth point and so on. The final plot of the M filters overlaid on each

other looks like this:

Figure 2.5 Frequency bands on Mel scale[12]

28

Let us consider that : and are the lowest, respectively the highest frequency in the filter bank,

expressed in Hz, is the sampling frequency, expressed as well in Hz, M the number of filters and

N the size of the FFT window. The boundary point are placed uniformly, along the Mel scale:

(2.17)

Where Mel scale B is :

(2.18)

And its inverse, is :

(2.19)

 Next, the logs of the powers at each mel frequency are taken.

(2.20)

 The DCT is applied on the list of M Mel log powers, as if it were a signal

(2.21)

 The MFCCs are the amplitudes of the resulting spectrum. Only the 2-13 DCT coefficients

are taken, the rest being discarded.[13]

Temporal changes in the spectra play an important role in human perception. Even though each set

of coefficients is computed over a short Hamming window, the information contained by the

temporal dynamics of these parameters is very useful in automatic speech recognition. One way to

capture this information is by using delta coefficients , that measure the change in coefficients over

time. They are also known as differential and acceleration coefficients. It turns out that computing

the MFCC trajectories and appending them to the original feature vector would significantly

increase the performance of the automatic speech recognition system. Temporal information is

particularly complementary to HMMs, since HMMs assume each frame is independent of the past,

in contrast with these dynamic features that broaden the scope of the frame.[7]

When 16-kHz sampling rate is used, a typical state-of-art speech system can be build based on the

following features:

29

- 13
th

 order MFCC

- 13
th

 order 40-msec - order delta MFCC computed from

- 13
th

 order 40-msec - order delta MFCC computed from

The short-time analysis Hamming window of 256 ms is typically used to compute the MFCC .The

 is included in the feature vector. In conclusion, the feature vector used for speech recognition

is generally a combination of these features :

The short-time analysis Hamming window of 256 ms is typically used to compute the MFCC .The

 is included in the feature vector. In conclusion, the feature vector used for speech recognition

is generally a combination of these features :

(2.22)

and have proven to give very good results. It is formed of 39 coefficients : 12 MFCC + energy,

together with their first and second order temporal derivatives.

2.5.2 HMM framework

HMMs are very popular in speech recognition domain, mainly because of the advantages they offer.

Compared to simple Markov models, in the case of HMMs there is no bijection between the state

and the output. This offers a greater flexibility and it matches perfectly the speech signal, in which

the same phoneme can have different durations depending on the case. A hidden Markov model is

a stochastic process, which models the intrinsic variability of the speech signal and the structure of

the spoken language in a consistent statistical modeling framework. HMMs are probabilistic finite

state machines, which can be combined to obtain word sequence models out of smaller units. In the

task of large-vocabulary speech recognition, sequences of words are built hierarchically from word

models, which in turn are built from sub-word models with the help of a pronunciation dictionary.

For good recognition results, these sub-word models have to be context-dependent phone

models.[1]

Through its nature, a speech signal is significantly variable, due to variations of pronunciation or

environmental factors. When the same word is said by several speakers, the acoustic signals may be

amazingly different, even though the underlying linguistic structure may be the same. HMM uses a

Markov chain to establish the linguistic structure and a set of probability distributions to score the

variability in the acoustic realization of the sounds in the utterance. Given a sufficient collection of

the variations of the words of interest, one can obtain the most „suited” set of parameters that define

the corresponding model or models, through an efficient estimation method, known as Baum-Welch

algorithm. This estimation of parameters can be translated through training and learning of the

system. In the end, the resulted model should be able to indicate whether an unknown utterance is

indeed a realization of the word represented by the model.[3]

The hidden Markov model introduces a non-deterministic process that generates output observation

symbols in any give state. Thus, the observation is a probabilistic function of the state. It can be

viewed as a double-embedded stochastic process with an underlying stochastic process (the state

sequence) not directly observable. This underlying process can only be probabilistically associated

with another observable stochastic process producing the sequence of features we can observe. A

30

hidden Markov model is basically a Markov chain where the output observation is a random

variable X generated according to a output probabilistic function associated with each state.[14]

Figure 2.6 HMM-based phone model with 5 states[15]

The entry and the exit states are non-emitting. These are included to simplify the process of

concatenating phone models to make words. Although the definition of an HMM allows the

transition from any state to another state, in speech recognition the models are created in such a

manner to disallow arbitrary transition. Due to the sequential nature of speech, there are placed

strong constraints on transitions backward or on skipping transitions. Self-loops allow a sub-

phonetic unit to repeat so as to cover a variable amount of the acoustic input.[1] Formally speaking,

a hidden Markov model is defined by :

 - an output observation alphabet. The observation symbols correspond to

the physical output of the system being modeled.

 – a set of states representing the state space.

 - a transition probability matrix, where is the probability of taking a transition

from state i to state j :

(2.24)

 - an output probability matrix, where is the probability of emitting

symbol when state i is entered. Let be the observed output of the

HMM. The state sequence is not observed (hidden), and can be

rewritten as follows :

(2.25)

 - a initial state distribution where :

(2.26)

Since , and are probabilities, they must satisfy the necessary properties :

31

(2.27)

(2.28)

(2.29)

(2.30)

The acoustic model parameters are efficiently estimated from a corpus of training

utterances using the forward-backward algorithm, which is an example of expectation-

maximization.

In conclusion, the complete description of a HMM includes two-size parameters, N and M,

representing the total number of states and the size of observation alphabets, observation alphabet Y,

and three matrices of probability measures A, B, . The following notation :

(2.31)

is used to indicate the whole parameter set of an HMM.

Given the above definition of HMMs, the three basic problems can be formulated now before they

can be applied to real-world applications:

A. The Evaluation Problem : Given a model and a sequence of observations

 what is the probability that this sequence Y to have been

generated by the model

B. The Decoding Problem : Given a model and a sequence of observations

, what is the most likely state sequence in the model that

produces the observations?

C. The Learning Problem – Given a model and a set of observations, how can we adjust the

 model parameters to maximize the joint probability(likelihood)

By solving the evaluation problem, we are able to evaluate how well a given HMM matches a given

observation sequence. Therefore, HMM is used to do pattern recognition, since the likelihood

 can be used to compute posterior probability , and the HMM with the highest

posterior probability is determined as the desired pattern for the observation sequence. By solving

the decoding problem, we can find the best matching state sequence given an observation sequence,

or in other words, we can uncover the “hidden” state sequences. And by solving the learning

problem, we will have the means to automatically estimate the model parameter from the training

32

set.[14] The hardest task is the learning one, since from the training data one must estimate the

HMM’s parameters such that they can characterize the chosen speech unit.

The vocal signal is split in elementary units, like : words, phonemes, tri-phonemes. To each unit, a

HMM is associated, and to each state of a HMM a time window, with the voice parameters

computed for this specific window. During speech, the vocal tract passes through a sequence of

states (which are modeled with the HMM states) and in each state a segment from the vocal speech

is emitted with a vector of parameters which constitute the output of the HMM’s state.

 This output vector of the HMM must take continuous values, since the voice parameters take

values in a continuous space. For this reason, Gaussian mixtures are used to model the observations

of the HMMs’ states. Each parameter of the output vector can be modeled through a weight sum of

functions with normal distributions :

(2.32)

where :

(2.33)

Where Y=[] is the n-dimensional observation vector, n is the number of the voice

parameters which are extracted from the observations, | | is the covariance’s diagonal matrix

determinant, G is the number of components of the mixture and is the weight of the component

g of the state j.[12]

Modeling speech using hidden Markov models makes two assumptions :

 Markov process : the state sequence in an HMM is assumed to be a first-order Markov

process, in which the probability of the next state transition depends only on the current

state, so that means the history of previous states is not necessary.

 Observation independence : observations are conditionally independent of all other

observations given the state that generated it.[1]

These two assumptions may lead to an unrealistic model of speech, but they are needed due to the

mathematically and computationally simplifications they bring. The estimation and decoding

problems would be very difficult to be addressed without these two assumptions. Nevertheless, the

last two decades of HMMs success in speech signal modeling prove that these „limitations” are not

significant.

2.5.3 Choosing the basic unit

In other words, the task of choosing an appropriate modeling unit is not as simple as it may appear

at a first glance. In order to design a workable system, there are some important issues to be taken

into consideration when selecting the most basic units :

 The unit should be accurate, to represent the acoustic realization that appears in different

contexts.

 The unit should be trainable. To estimate the parameters of the unit, there should be enough

available data. Here it is pointed out again why words are the least trainable choice in

33

building a recognition system, since, despite their accuracy, it is almost impossible to get

several hundred repetitions for all the words. Words are a proper choice of basic units only

in the cases when speech recognition is domain specific i.e. for digits only.

 The unit should be generalizable, so that any new word may be derived from a predefined

unit archives for task-independent speech recognition. If this record would consist in a fixed

set of word models, there would be no possible way to derive the new word model.[7]

A practical challenge is how to balance these three important criteria. Thus, instead of modeling

words, large-vocabulary recognition systems use sub-words as basic speech units, such as phones,

since words are neither trainable, nor generalizable.

Phonetic models provide no training problem, since sufficient occurrences for all phones can be

found in just a couple of thousand phrases. They can be trained on one task and tested on another

because they are vocabulary independent. These make phones trainable and generalizable.

However, this phonetic model assumes that a phoneme is identical in any context and any word is

obtained by concatenating independent phones. This is not the case, because phonemes are not

produced independently and the realisation of a phoneme strongly depends by its immediately

neighboring phonemes. To sum up, these phonetic models lead to less accurate models.

This drawback can be overcome if we consider context dependent units. If we have a large enough

training set to estimate these context-dependent parameters, we could significantly improve the

recognition accuracy. Here we introduce the notion of triphone model, a phonetic model that takes

into consideration both the left and the right neighboring phones. If two phones have the same

identity but different left or right context, they are considered different triphones. The different

realizations of a phoneme are denoted with the term allophone.[1]

Triphone models are very powerful phonetic models and they are more consistent than context-

independent units, but in this case the training becomes a challenging task. Since every triphone

context is different, the main idea is to find instances of similar contexts and merge them, so that to

obtain a manageable number of models that can be better trained.[1]

Moving one step further, with the purpose of balancing trainability and accuracy between phonetic

and word models, the modeling of sub-phonetic events is observed. For sub-phonetic modeling, we

can treat the state in phonetic HMMs as the basic sub-phonetic unit. In this context, the concept of

clustering hidden Markov models has been proposed and generalized to the state-dependent output

distributions across different phonetic models. Each cluster represents a set of similar Markov states

and is called a senone. A sub-word is thus composed of a sequence of senones after the clustering

process is finished. The optimal number of senones for a system is mainly determined by the

available training set and can be tuned.

2.6 ASR Evaluation

As a sanity check, it is better to use a small sample from the training data to measure the

performance of the training set. Training-set performance is useful in the development stage to

identify potential implementation bugs. Eventually, the tests must be done on a development set that

typically consists of data never used in training.

A way to evaluate the performance of the language model is to evaluate the word error rate(WER)

yielded when placed in a recognition system. The WER is a very convenient tool used when

comparing different language models, as well as for evaluating improvements within one system.

The general difficulty when using this method lies in the fact that the recognized word sequence can

34

have a different length from the reference sequence, which is supposed to be correct. These two

sequences of words are aligned through a algorithm which has as final goal minimizing the cost of

editing the recognized sentence, so that to look alike the reference one. The WER can be computed

as :[16]

(2.34)

There are typically three types of word recognition errors in speech recognition :

o Substitution : an incorrect word was substituted for the correct word

o Deletion : a correct word was omitted in the recognized sentence

o Insertion : an extra word was added in the recognized sentence.

This kind of evaluating the performance provides, however, no specific details regarding the nature

of the translation errors and further work is required in order to find the source of the error.

Moreover, this kind of measurement does not keep count that a substitution error could be easily

removed if the number of erroneous characters is small (like „look”, ”looks”), or difficult if the

number of erroneous characters would be high(like „maintain”, ”sustain”). In order to overcome

this drawback, sometimes it is used an evaluation done at the character level.

(2.35)

The last method of evaluation is done at the sentence level, and is useful only in the cases when the

erroneous transcription of a single word in a word sequence makes the recognition useless.

(2.36)

From these three performance criteria used in evaluating a recognition system, the most commonly

used is WER.

2.7 Speech Recognition Tools

For this project I have used CMU Sphinx. It is an open source toolkit and it is available online.

CMU Sphinx system successfully integrated the statistical method of hidden Markov models and

hence, it was able to train and embed context-dependent phone models in a sophisticated lexical

decoding network. [3] It is a very popular and commonly used speech recognition tool because it

offers the possibility of developing speaker-independent, large-vocabulary, continuous speech

recognition systems with remarkable results.[1] This tool also presents summaries of the most

inserted/deleted/substituted words and can compute the sentence/word error rates in a per speaker

manner.

35

3 CHAPTER Automatic Speech Recognition Systems

3.1 Current stage for Automatic Recognition System for Albanian

One of my targeted languages was Albanian, a language with poor resources. These languages are

spoken by a large number of people, but so far too few acoustic resources (speech data bases) and

linguistic resources (text corpuses) were acquired in order to develop an unconstrained continuous

speech recognition system.

The Baum-Welch training paradigm requires speech audio clips along with their textual

transcriptions in order to estimate the models parameters. Thus, speech databases are critical

resources along with their characteristics, such like the number of hours of speech, number of

speakers, etc, in developing a speech recognition system.

As previously remarked, Albanese has no speech resources available, neither freely, nor

commercially. Moreover, the speaker-independency desiderate implies resources from a large

number of speakers. The inter-speaker speech variability is an important factor and can be

overcome by completely and accurately modeling the various possible pronunciations of every

phone. This can, in turn, be achieved by using recordings from a vast number of speakers.

3.2 Speech database acquisition for Albanian ASR

A complete speech database is formed from :

 a set of speech signal samples.

 a set of transcriptions, which must be perfectly synchronized with what is spoken in each

speech sample.

 additional information regarding speech type (isolated words, continuous, spontaneous).

Since direct recording was not a possible solution, we have started to build speech databases by

extracting fragments from website news. These audio clips also had correspondent transcriptions,

which, in most of the cases, were related. We had access at 4 news databases : www.balkanweb.tv,

www.topchannel.tv, www.topchannel2.tv and www.vizionPlus.tv. SpeeD gave us access to each

database’s .php files. By processing the .php files specific for each database, we searched for the

URL in each file and created two lists : one containing the fileids of the files, and the other one the

correspondent link.

3.2.1 Acquisition tools for audio clips for Albanian ASR

With the help of a Java Program, we processed all the files having the php extension. We looked

after the pattern „www.youtube.com” and extracted the substring corresponding to the URL in a

list. We also checked if the URLs were still available, by removing the URLs which returned the

code „404” to the ”checksURL” method. After procesing all the files in the four databases, we had

as output four lists in the format : ”ID : URL”.

The next step was to separate each list in two separate lists : one with just one column, containing

all the fileids, and the other one with the corresponding youtube links. We chose to do this with a

script, since it was faster. We used ”sed”[17], which is a stream editor.

36

Problems encountered at this step :

 For 50 files in www.topchannel2.tv database it worked perfectly, but when we tested it on

1000 files, there appeared more URLs than IDs. The problem was that some of the .php files

contained the same links. We resolved this error with the help of a Linux command which

sorted uniquely the elements after the second column, that of the URLs.

So far, for each database we created two lists : one with the IDs corresponding to the .php file

names and one with the URLs found in those .php files.

The next step was to download the content of those audio clips, and then convert them in files with

“wav” extension, as requiered by Sphinx. To do this, we used ffmpeg tool.[18] All the audio clips in

the databases share the same sampling frequency (16kHz) and the same sample size (16 bits).

During acquisition of these databases, one significant issue gained our attention. Some audio files

had to be split into smaller samples (5 seconds to 25 seconds, as CMU Sphinx suggests). For this

we used diarisation. Speaker diarisation is the process of partioning an input audio stream into

homogeneous segments according to the speaker identity. It is a combination of speaker

segmentation and speaker clustering. The first one aims to find speaker change points in an audio

stream, while the second one aims at grouping together speech segments on the basis of speaker

characteristics.[19]Through speaker diarisation process we have managed to transform the audio

clips from the website news’ databases into audio data ready to be further used in speech

recognition.

3.2.2 Acquisition tools for transcriptions for Albanian ASR

As stated before, Albanian is a low-resourced language. That is a language spoken by a large

number of people, but so far no prior work has been done to collect and/or organize resources for

developing an automatic speech recognition system. Given the lack of availability of Albanian text

corpora and the need of large amount of text to create a language model suitable for an automatic

speech recognition system, one of our goals was to acquire this type of language resources. Our

only solution, given also the lack of time, was to gather the resources from the website news’

databases and organize them in the purpose of making a trust worthy text corpora. For every

downloaded file with the extension “wav”, we had to find the correspondent transcription file. The

first step was to convert the files from the “php” extension to “txt” conversion. We changed the

extension from “php” to “html”, and then we converted the files from “html” to “txt” format using

lynx tool. [22] Lynx is a Web browser that only reads text. We preferred lynx because it parses the

raw HTML. The difference from wget, another Web Browser, is that lynx will render the HTML (it

hides all the tags, arranges the text etc). After this, the files had to be encoded in UTF-8. This was

done using “iconv” command. [23] Iconv converts string to requested character encoding. The .php

files were intially encoded with UCS-2 little endian, and in order to move further we needed them

encoded with UTF-8. The second step was to parse the files, in order to bring them in the format

required by Sphinx. As can be seen from Figure 3.1, the useful information, that is the actual news,

was surrounded by a Header and a Footer. Luckily for us, all the files belonging to a website news’

database had the same Header and Footer. Moreover, the text contained special characters (like “, #,

$, etc), punctuation signs, uppercases and numbers and also had an undesired format. In this shape,

the text was useless for Sphinx speech recognition toolkit, that is why these files had to be

processed and brought in the required shape.

37

Figure 3.1 Example of Albanian .txt file in raw form

We created a tool for the purpose of cleaning the text corpora, and bring .txt files in the needed

format. This cleaning application is, mainly, written in the Java programming and can run on any

operating system which has a Java Virtual Machine (JVM) installed. Besides Java, we also used a

couple of Linux scripts to correct things that passed the Java filtering. The cleaning application

takes a corpus as an input and, after applying several processing operations, it returns a text without

any digits, punctuation marks or special characters. All the programs that we used work as a

pipeline, meaning the output of one program is the input of the following program.

The first thing was to look for a specific header and footer for each database. For example, for the

www.topchannel2.tv database, we noticed that in every raw file, the useful information, that is the

actual news, was included between the header : “ [22][kerko.png]” and the footer : “

[24]Facebook”. With the help of a Java Program, we removed the text above the Header and below

the Footer.

The next cleaning operation was to eliminate the new lines and also the lines which contained the

word “IFRAME”, since it appeared after the Header, but it did not contain any useful information.

One line represents, in fact, one sentence. I chose to do this with the help of a Linux script, since it

was easier to implement.

The third cleaning operation deals with the punctuation marks and other special characters. In ASR

we do not output punctuation marks, so we do not need to estimate their occurrence probability.

Consequently, all punctuation marks have to be removed or properly replaced by a word sequence.

For instance : a) dots, question marks and exclamation marks are replaced with a new line character

(this way, we will have one sentence per line in the output file) , b) commas are removed, c)

38

brackets are deteleted, d) characters like “$” and “=” are replaced with their naming “dollars" and

“i barabartë”.

The fourth cleaning operation was to remove the numbers. We chose this approach for this project,

since we decided to focus all our energy in creating a wide Albanian database.

In the end, all letters were lowercased and the empty line were removed.

Figure 3.2 Cleaned Albanian text

3.2.2.1 Diacritics

Albanese is a language that does not make intensive use of diacritics, but, nevertheless, it uses 2 (”ë”

and “ç”). The occurrence frequency of ” ë” is very high. Even though for a human reader the meaning

of a text still makes sense in the absence of diacritics (given the paragraph context), the diacritics

restoration task is not trivial for a computer. In order to simplify this operation, we chose to

substitute ”ë” with “ww” and “ç” with “cc” in the transcription files, since these combinations do

not exist in Albanian language.

3.3 Building and acoustic, a language and a phonetic model for a small

albanian database

The next step consisted in creating the necessary models used in speech recognition from a small

database (13 speakers, 2h), for which we had both the transcriptions and the corresponding wavs.

database name type #no of phrases #no of words #no of unique

words MediaEval2013 recordings 969 14063 1165

Table 3-1 MediaEval 2013 database

3.3.1 Building the language model

Language model is the representation of the grammar or syntax of the task. We used a Linux script

which took as input a transcription file and returned as output the counts file, the vocabulary file and

the sorted and sphinx format language model file. The language model toolkit expects its input to be

in the form of normalized text files, with utterances delimited by <s> and </s> tags.

Figure 3.3 transcription file for language model

39

<s> : beginning-utterance silence

<sil> : within-utterance silence

</s> : end-utterance silence

Note that the words <s>, </s> and <sil> are treated as special words and are required to be present

in the filler dictionary.

The vocabulary file contains a list of all the unigrams in the input file, while the counts file contains

the number of occurrences of the unigrams, bigrams and trigrams.

More data will generate better language models. The albanian1.transcription contains 968 lines, but

this is only the start.

3.3.2 Building the phonetic model

The phonetic model is a pronunciation dictionary that maps all the words in the vocabulary to a

sequence of phonemes.. It is needed to link the acoustic model, which estimates phonemes acoustic

likelihoods, to the language model, which estimates word sequence probabilities. The phonetic

model works as an interface between the acoustic model which works with phonemes, and the

language model, which works with words.

Developing a phonetic dictionary is a quite difficult task. Since a manually created dictionary would

have required a good knowledge of the language and also a tedious work, we have preferred an

automatically approach. Thus, the need for a graphemes-to-phonemes tool which could

automatically create phonetic transcriptions for a given vocabulary is obvious. Our need for a

graphemes-to-phonemes tool is not singular, since the task of automatically creating phonetic

transcriptions for words in a vocabulary is very important in speech recognition and it has been

approached by several researchers.

With the help of a Matlab program we obtained the phonetic dictionary.

3.3.2.1 Graphemes-to-phonemes method description

We adopted a SMT-based approach for the task of automatically creating the phonetic

transcriptions. A Statistical machine translation (SMT) is a machine translation paradigm where

translations are generated on the basis of statistical models whose parameters are derived from the

analysis of bilingual test corpora.[20] A SMT system translates text in a source language into text in

a target language. Two components are required for training :

 A parallel corpus consisting of sentences in the source language and their corresponding

sentences in the target language

 A language model for the target language.[1]

First of all, a grapheme represents the smallest semantically distinguished unit in a written

language, analogous to the phonemes of spoken languages. In this case, we consider graphemes

(letters) as “words” in the source language and sequences of graphemes (words) as “sentences” in

the source language. As for the target language, its “words” are actually phonemes and its

“sentences” are actually sequences of phonemes.

3.3.2.2 Phones list

The total number of phones in the Albanian language is 37 : 7 vowels and 30 consonants. This list

of phones was generated automatically with the help of a Linux script. In Table 3-2 is the list of all

40

the phones used in our Automatic Speech Recognition System, together with word samples with

both they written and phonetic form.

Phoneme Words Samples

Type IPA

symbol

Used

symbol

Written form Phonetic form

v
o
w

el
s

i i ali a l i
ɛ e atyre a t y r e
a a artistik a r t i s t i k
ə ë bëjmë b e1 j m e1
ɔ o ciko c i k o
y y bymehet b y m e h e t
u u buxheti b u xh e t i

co
n

so
n

a
n

ts

p p publike p u b l i k e
b b problem p r o b l e m
t t pritjen p r i t j e n
d d presidenti p r e s i d e n t i
c q paqena p a q e n a
ɟ gj energji e n e r gj i
k k hipokrizi h i p o k r i z i
ɡ g gyl g y l
 c cope c o p e
dz x xhirua xh i r u a
 ʃ ç siç s i c1
dʒ xh xhirua xh i r u a
θ th rrethanave rr e th a n a v e
ð dh radhe r a dh e
f f njoftoi nj o f t o i
v v investime i n v e s t i m e
s s fiskal f i s k a l
ʃ sh ashtu a sh t u
z z muzika m u z i k a
ʒ zh zhvillim zh v i ll i m
h h ish i sh
m m fillimi f i ll i m i
n n barnat b a r n a t
ɲ nj njohjes nj o h j e s
ŋ ng ngjallur n gj a ll u r
j j arsyeja a r s y e j a
l l alarmit a l a r m i t
ɫ ll abdullah a b d u ll a h
r ɾɾ merrej m e rr e j
ɾ r adresuar a d r e s u a r

Table 3-2 Albanian Phoneme set

http://en.wikipedia.org/wiki/Open_front_unrounded_vowel
http://en.wikipedia.org/wiki/Open-mid_back_rounded_vowel
http://en.wikipedia.org/wiki/Close_back_rounded_vowel
http://en.wikipedia.org/wiki/Voiced_bilabial_stop
http://en.wikipedia.org/wiki/Voiced_alveolar_stop
http://en.wikipedia.org/wiki/Voiced_palatal_stop
http://en.wikipedia.org/wiki/Voiced_velar_stop
http://en.wikipedia.org/wiki/Voiced_alveolar_sibilant_affricate
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Voiced_dental_fricative
http://en.wikipedia.org/wiki/Voiced_labiodental_fricative
http://en.wikipedia.org/wiki/Voiceless_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Bilabial_nasal
http://en.wikipedia.org/wiki/Palatal_nasal
http://en.wikipedia.org/wiki/Palatal_approximant
http://en.wikipedia.org/wiki/Velarized_alveolar_lateral_approximant
http://en.wikipedia.org/wiki/Alveolar_flap

41

3.3.3 Building the acoustic model

The acoustic model is the representation of the grammar or syntax of the task. As it was concluded

in Section 2.5, the state-of-the-art large vocabulary speech recognition systems use Bakis-type

Hidden Markov Models (HMMs) with Gaussian Mixture Models (GMMs) as output distributions to

model sub-words speech units such as context-dependent phones (tri-phones) or senones.[1] The

HMMs model these speech units using acoustic feature vectors (MFCC coefficients) extracted out

of the original time-domain speech signal.

3.3.3.1 Speech unit selection

The selection of the speech units was the first issue to be approached. As discussed in Section 2.5.3,

words cannot be used as basic speech units when designing a large-vocabulary continuous speech

recognition system. They are neither trainable, meaning there are not enough occurrences for every

word to robustly train a model, nor generalizable, for every new ASR task, with a new vocabulary,

a new set of models needs to be constructed. Thus, sub-words speech units such as context-

independent phones (simply called phones), context-dependent phones (called tri-phones) or

syllables were taken into consideration. The trainable attribute narrowed our possibilities to phones

and tri-phones, since we do not have a large amount of training data to train syllable models.

3.4 Data preparation for training and testing an ASR

3.4.1 Training

CMU Sphinx project offers the possibility to create acoustic models for a new language. The trainer

learns the parameters of the models of the sound units using a set of sample speech signals. This is

called a training database.

The trainer needs to be told which sound units he has to learn the parameters of, and at least the

sequence in which they occur in every speech signal in your training database. This information is

provided to the trainer through a file called the transcript file, in which the sequence of words and

non-speech sounds are written exactly as they occurred in a speech signal, followed by a tag which

can be used to associate this sequence with the corresponding speech signal.

The trainer then looks into a dictionary which maps every word to a sequence of sound units, to

derive the sequence of sound units associated with each signal. The are two dictionaries, one in

which legitimate words in the language are mapped sequences of sound units (or sub-word units),

and another in which non-speech sounds are mapped to corresponding non speech or speech-like

sound units. They are referred as the language dictionary and the latter as the filler dictionary.[21]

The file structure for the database is:

 etc

 database.dic - Phonetic dictionary

 database.phone - Phoneset file

 database.lm.DMP - Language model

 database.filler - List of fillers

 database.fileids - List of files for training

 database.transcription - Transcription for training

42

 wav

 fileID.wav – Recording of speech utterances

Let’s go through the files and describe their format and the way to prepare them :

Fileids (database.fileids) file is a text file listing the names of the recordings (utterance ids), one by

line, in the format speaker_1/file_1.

Fileids file contains the path in a filesystem relative to wav directory. Note that fileids file should

have no extensions for audio files, just the names.

Transcription file (database.transcription) is a text file listing the transcription for each audio file.

It is important that each line starts with <s> and ends with </s> followed by id in parentheses. The

parenthesis must contain only the fileid. It is critical to have the fileids and the transcription file

perfectly synchronised. The number of line in both should be identical and the last part of the fileids

file (speaker1/file_1) and the utterance id file_1 must be the same on each line.

Speech recordings (wav files) - Recording files must be in MS WAV format with specific sample

rate - 16 kHz, 16 bit, mono for desktop application. Audio files should not be very long and should

not be very short. Optimal length is between 5 seconds and 30 seconds. Amount of silence in the

beginning of the utterance and in the end of the utterance should not exceed 0.2 seconds Audio

format mismatch is the most common training problem.

Phonetic Dictionary (database.dic) , as discussed in Section 2.4, should have one line per word

with word following the phonetic transcription.

It is important not to use case-sensitive variants like “a” and “A”. Also, Sphinxtrain does not

support some special characters like ‘*’ or ‘/’ and support most of others like ‘+’ or ‘:’. To avoid

potential errors, it is better to use alphanumeric-only phone-set.

Phoneset file (database.phones) should have one phone per line. The number of phones should

match the phones used in the dictionary plus the special SIL phone for silence:

Language model file (database.lm.DMP) should be in CMU binary format, that is DMP format.

Filler dictionary (database.filler) contains filler phones (not-covered by language model non-linguistic

sounds like breath, hmm or laugh).

The next step in the training process is to edit the configuration file, sphinx_train.cfg, found in the etc

subfolder. Here must be specified the paths to the above mentioned files and also the model

paramaters, the number of senones and the number of Gaussian densities. The more senones model

has, the more precisely it discriminates the sounds. But on the other hand if there are too many

senones, model will not be generic enough to recognize unseen speech. That means that the WER

will be higher on unseen data. The optimal numbers of these parameters depend on the database. To

train the model properly, we tried different values and selected the ones which give the best WER

for a development set.

After this, the training process is done in two steps : a) the feature vectors (MFCCs) are extracted

from the wav files and b) the acoustic model is trained.

Figure 3.4 Example of output during decoding

43

Figure 3.4 represents the typical output during decoding .

The logdir sub-folder will have the following structure :

000.comp_feat

05.vector_quantize
 20.ci_hmm

30.cd_hmm_untied

40.buildtrees

45.prunetree

50.cd_hmm_tied
Table 3-3Structure of decoding process

On the stage 000.comp_feat the feature files are extracted. The system does not directly work with the

speech signals. The signals are first transformed into a sequence of feature vectors, which are used

further.

The script slave_feat.pl will compute, for each training utterance, a sequence of 13-dimensional

vectors (feature vectors) consisting of the Mel-frequency cepstral coefficients (MFCCs). The

MFCCs will be placed automatically in a directory called ‘feat’.

Once the jobs launched from 20.ci_hmm have run to completion, the Context-Independent (CI)

models for the sub-words units in the dictionary have been trained.

When the jobs launched from the 30.cd_hmm_untied directory run to completion, the models for

Context-Dependent sub-word units (triphones) with united states have been trained. These are

called CD-untied models and are necessary for building decision trees in order to tie states.

The jobs in 40.buildtrees will build decision trees for each state of each sub-word unit.

The jobs in 45.prunetree will prune the decision trees and tie the states.

Following this, the jobs in 50.cd-hmm_tied will train the final model for the triphones in the training

corpus. These are called CD-tied models and are trained in many begins. It begins with 1 Gaussian

per state HMMs, followed by 2 Gaussian per state HMMs and so on till the desired number of

Gaussians per State have been trained. The jobs in 50.cd-hmm_tied automatically train all the

intermediate CD-tied models.

After the training is finished, a new sub-folder will appear, called model_parameters. This sub-

folder contains :

 mixture weights : the weights given to every Gaussian in the Gaussian mixture

corresponding to a state

 transition matrices : the matrix of state transition probabilities

 means : means of all Gaussians

 variances : variances of all Gaussians

 noisedict : contains SIL

 mdef : model definition file for context independent phones CI. The function of a model

definition file is to define or provide a unique numerical identity to every state of every

HMM that you are going to train, and to provide an order which will be followed in writing

out the model parameters in the model parameter files. During the training, the states are

referenced only by these numbers.

44

3.4.1.1 The hierarchical training strategy

The core acoustic models of a modern speech recogniser typically consist of a set of tied three-state

HMMs with Gaussian output distributions. This core is commonly built in the following steps :

1. HMM system design. This step consists in choosing the speech units to be modeled, the

voice features to be used as modeling paramteres, the HMM topology and the number of

Gaussian mixtures per state. The output of this stage is a set of „prototypes” – all the models

are given default values.

2. System initialization. The set of „prototypes” resulted from the previous stage is initialized

using the isolated speech unit training technique. The small isolated phones database

(PHONES) is utilized for this purpose. The alternative to this type of system initialization

would be „flat starting”, which involves computing the voice features for each frame of each

speech utterance, and using the statistical results as initial model parameters. The output of

this stage is a set of roughly initialized HMMs.

3. Embedded phone HMM training. Now, the initialized models are trained using the isolated

words database (WORDS). Whereas isolated unit training is sufficient for building whole

word models, the main HMM training procedures for building sub-word systems revolve

around the concept of embedded training. This method is employed because the WORDS

database provides only information on the order of the phones and not on their temporal

borders. In the end, the output of this stage is a robustly trained HMM set. When performing

embedded training, it is good practice to monitor the performance of the models on unseen

test data and stop training when no further improvement is obtained.

4. Embedded triphones HMM training. This stage consists in two steps : the first one is a

design adjustment that aims to create triphone models x – q + y and the second one is

another training session. Given the best set of phone |HMMs trained at the previous step, we

can build triphone HMMs by cloning the phone models (a triphone HMM is created by

cloning the phone HMM for the central state). The newly created triphone HMM set is

retrained (through embedded-training) by using the WORDS database. After this training

session the performance of the system is reevaluated. (x – q + y denotes the triphone

corresponding to phone q spoken in the context of a preceding phone x and a following

phone y)

5. Embedded triphone HMMs training. This step uses models obtained at step four and retrains

them using the WORDS database. Finally, the continuous speech ASR system performance

is evaluated.

3.4.2 Testing

It is critical to test the quality of the trained database in order to select best parameters, understand

how application performs and optimize parameters. To do that, a test decoding step is needed. The

decoding is now a last stage of the training process.

After testing the models built on the small database, the next step was to try to extend them, in order

to obtain an accurate speech recognition system.

45

3.5 Final Results for Albanian ASR

Table 3-3 presents the speech databases that we built during our research period. The total amount

of training speech data summed up to about 8 hours of speech from 23 different speakers and 6

hours of audio clips extracted from the websites’ databases. SD2 contains audio clips which are not

of god quality, being filtered at 5.5 kHz. SD4 contains audio clips extracted from

www.topchannel2.tv in which several speakers are present. Even though we have the transcriptions

for all the spoken text, the clips are too long. Consequntly, Sphinx toolkit fails to perfectly align the

audio to the transcription.

ID database Duration

[h]

filtered low-pass [kHz] type comments

SD1 MediaEval 2013 2 8 recordings native speakers

SD2 Chunk1-6 3:20 5.5 broadcastnews expert

transcribed

SD3 Chunk 7-10 2 8 broadcastnews expert

transcribed

SD4 topchannel2 5:40 8 broadcastnews loose

transcriptions Table 3-4 Albanian Speech database

Table 3-4 summarizes the data regarding the text corpora that were collected and further used in the

experiments. The numbers are computed on the clean corpora (after the processing operations

described in the previous section).

ID database #total words #unigrams #phrases

TD1 MediaEval2013 14063 1165 969

TD2 topchannel+vizionPlus+balkanweb 48560551 377170 4841049

TD3 MediaEval2013+Chunk 1-10 74063 11342 3340

TD4 Chunk 7-10 22003 11342 845

TD5 topchannel2 57129 12310 187

Table 3-5 Albanian Text copora

The acoustic models were created using the CMU Sphinx toolkit and the default training strategy.

We employed (–states) HMMs to model context-dependent phones (triphones) using Mel-

Frequency Cepstral Coefficients (MFCCs). The total number of HMM states (called senones) was

limited to 1000. Every senone was modelated with a Gaussian Mixture Model (GMM) with 8

Gaussian components.

ID trained on

AM01 SD1

AM02 SD1+SD2

AM03 SD1+SD2+SD4

AM04 SD3

AM05 SD3+SD4

Table 3-6 Albanian Acoustic Models

46

Finally, the large-vocabulary attribute of our continuous speech recognition system was achieved by

creating a general language model for Albanian using all the text corpora available, that we had

processed from the website news databases. This language model is denoted LM02.

ID trained on

LM01 TD2

LM02 TD3

LM03 TD4

LM04 TD1+TD5(90%)+TD2(10%)

LM05 TD4+TD5

Table 3-7 Albanian Language Models

Table 3-8 presents the various experiments made during a period of one year, consequently

revealing the evolution of our ASR system.

Exp ASR System Used Models Evaluation set Accuracy [%] Error rate [%]

1 ASRS-1 AM05+LM05 SD1 14.46 85.54

2 ASRS-2 AM02+LM02 SD1+SD2 45.63 54.37

3 ASRS-3 AM04+LM01 SD3 38.88 61.62

4 ASRS-4 AM02+LM01 SD3 25.21 74.79

5 ASRS-5 AM04+LM03 SD3 72.39 27.61

6 ASRS-6 AM02+LM03 SD3 66.14 33.86

7 ASRS-7 AM04+LM04 SD3 40.87 59.13

Table 3-8 Albanian experimental results

Several conclusions can be drawn from Table 3-7. First, ASRS-1 had a low accuracy percentage.

From these results, we drawn the conclusion that topchannel2 was not a trust worthy speech

database. The audio clips were too long, and the Sphinx toolkit failed to align the whole clip to the

audio. Moreover, since the clips were raw news broadcasts, the environment in which they were

recorded presented different disadvantages. These wavs contained high additive noice, multiple

acoustic sources, like music or other people talking in the back, or reverberant environments.

Another issue worth mentioning is the difference between ASRS-4 and ASRS-6. Even though they

are tested on the same database, that is SD3, and use the same acoustic model, that is AM02, their

performance is very different. Obviously, the difference lies in the language model. ASRS-6 has a

greater accuracy percentage because the language model is trained on the same database on which it

is tested. Even though ASRS-6 would seem a good ASR at a first glance, these are called artificially

improved results.

In the end, the best configuration seems to be ASRS-5. But this configuration uses models that are

trained and tested on the same database, that is SD3. In order to properly evaluate an ASR, it must

be tested on unseen data. Consequently, we trained an interpolated language model LM04

(MediaEval2013 + topchannel2 (90%) + all news corpora (10%)) in order to obtain some real

results. ASRS-7 reflects the real performances of our continuous recognition system.

3.6 Automatic Speech Recognition System for English

Our next targeted language was English. Here, our job was simplified because we had access to a

very large speech database. TIMIT is a corpus of phonemically and lexically transcribed speech

of American English speakers of different sexes and dialects and is designed for the development

47

and evaluation of automatic speech recognition systems. TIMIT contains broadband recordings of

630speakers of eight major dialects of American English, each reading ten phonetically rich

sentences. The TIMIT corpus includes time-aligned orthographic, phonetic and word transcriptions

as well as a 16-bit, 16kHz speech waveform file for each utterance. Our task consisted in creating

the models necessary for speech recognition.

3.6.1 Building the language model

The main goal of our work regarding English language was to develop a language model suitable

for English continuous speech. The n-gram paradigm and the theoretical deails about the

construction of n-gram language models were presented in Section 2.2.1. As already mentioned, a

large amount of textual data is requiered to create a general language model, one that is suitable in

various domains. We used all the textual transcriptions of the audio files in the TIMIT speech

database to create a tri-gram language model. The total number of phrases was 6300. Table 4-1

summarizes the available text corpora for training a language model.

database #total words #unigrams #phrases Duration [h]

TIMIT 54375 6103 6300 5
Table 3-9 TIMIT Text corpora

Before using it for continuous speech recognition, we wanted to evaulate the language model in

terms of perplexity (PPL) and out-of-vocabulary (OOV) rate. For this, we made a new language

model with 90% of the text corpora and evaluated it on the remaining 10%. The concepts of

perplexity and out-of-vocabulary rate were discussed in Section 2.2.3.

Exp Language model built with corpus Evaluation test set OOV PPL

1 90% of Timit database 10% of Timit database 1680 12.93
Table 3-10Language model evaluation for TIMIT database

Perplexity is a measurement of how well a probability distribution predicts a sample. In other

words, it determines how well can the model predict the next word in a sentence. It is the

probability of the test set, normalized by the number of words. The out-of-vocabulary words are

words that cannot be predicted by the language model, since they were not found in the training set.

3.6.2 Building the phonetic model

As it was discussed in Section 2.4, a phonetic model is used to link the acoustic model to the

language model.

3.6.2.1 Phones list

The list of phones (24 consonants and 20 vowels) in English language is presented below, in Table

3-11

48

IPA

Symbol

Phone Example Phonetic

Form ɑː aa fAther f aa1 dh axr

 æ ae fAt fat f ae1 t

ʌ ah bUt b ah1 t

ɔː ao dOOr,

lAWn

d ao1 r

aʊ aw hOW hh aw1

ə ax About ax b aw1 t

a ɪ ay hIde hh ay1 d

e eh gEt g eh1 t

 el tabLE t ey1 b el

 em systEM s ih1 s t ax m

 en takEN t ey1 k ix n

ɜː er sEARch s er1 ch

e ɪ ey gAte g ey1 t

ɪ ih bIt b ih1 t

i iy happY hh ae1 p iy

iː iy bEAt b iy1 t

əʊ ow nOse n ow1 z

ɔɪ oy tOY t oy1

ʊə uh fUll f uh1 l

u uw fOOd f uw1 d

b b Book b uh1 k

 ʃ ch CHart ch aa1 r t

d d baD b ae1 d

ð dh faTHer f aa1 dh axr

f f lauGH l ae1 f

g g Good g uh1 d

h hh Hello hh eh2 l ow1

 ʒ jh Jacket jh ae1 k ix t

k k Kill k ih1 l

l l Late l ey1 t

m m gaMe g ey1 m

n n maN m ae1 n

ŋ ng sittiNG s ih1 t ix ng

p p Path p ae1 th

r r Reason r iy1 z en

ʂ s maSS m ae1 s

ʃ sh SHip sh ih1 p

t t baT b ae1 t

θ th THeatre th iy1 t axr

v v Various v ae1 r iy ax s

w w Water w ao1 t axr

j y Yellow y eh1 l ow2

z z boyS b oy1 z

ʒ zh viSion v ih1 zh ix n

 pau Short

silence

Table 3-11Phoneme set in English

49

3.6.3 Building the acoustic model

In order to properly evaluate the ASR, the models need to be tested on unseen data. For that, we

used 80% of the database for training the acoustic model, and the rest of 20% for testing the models,

in order to be able to draw some conclusions.

After many experimental setups, we decided to set the number of senones to 1000 and the final

number of Gaussian densities at 32.

Exp #no of senones Accuracy [%] Error [%]

1 1000 39.22% 60.78%

2 4000 29.71% 70.29%

Table 3-12 Results for TIMIT database

From table 4-3 can be drawn the conclusion that the number 4000 set for senones resulted in a

model not generic enough, that translated into a higher WER on unseen data. The difference

between the experiment 2 with 4000 senones and experiment 1 with 1000 senones is reflected in an

average of 9.51% performance drop (expressed as the error increases).

3.7 Automatic Speech Recognition System for Romanian

The last targeted language was romanian. As in the case for english, we had access to a very large

speech database. SpeeD Research Laboratory staff provided us 1.5G of speech resources, which we

further used in the Romanian ASR implementation.

For database4, several speakers denoted 01,02,03.. 20 recorded several sets of audio clips, as

follows :

ID Type of speech Domain

00 - 10000 isolated words one word per file

01 - 1019 continuous read speech newspaper articles

02 - 244 continuous (dialogue) read speech library related

03 - 150 spontaneous read speech tourism related - media corpus

04 - 150 spontaneous read speech tourism related - media corpus

Table 3-13 Romanian database

Gathering all these audio clips, we created a speech database of 65 hours, from which we used 97%

for training and 3% for testing.

3.7.1 Building the language model

As can be seen in Table 4-6, we had access to a very large database. Due to this amount of data, we

had the possibility to design a large-vocabulary continuous speech recognition system for

Romanian.

50

database #total no. of words #unique words Duration [h]

database4 254 347 10038 35
Table 3-14 number of words for Romanian database

3.7.2 Building the phonetic model

As it was discussed in Section 3.2.2., a phonetic model is used to link the acoustic model to the

language model. SpeeD provided us with the automatic phonetisation, so we successfully built the

phonetic dictionary.

3.7.2.1 Phones list

In our studies we have employed the set of 34 phones. The table lists the standard IPA symbols

along with the used symbols and also gives some words examples.

Phoneme Words

examples

Type IPA

Symbol

Used

Symbol

Written

form

Phonetic

form

v
o

w
e
ls

a a sAt s a t

ə a1 gurĂ g u r a1

e e marE m a r e

i i lIft l i f t

j i1 tarI t a r i1

ɨ i2 Între i2 n t r e

o o lOc l o c

u u şUt s1 u t

y y ecrU e c r y

∅ o2 blEU b l o2

se
m

i-

v
o

w
e
ls

 e1 dEal d e1 a l

j i3 fIară f i3 a r a1

 o1 Oase o1 a s e

w w saU s a w

c
o

n
so

n
a
n

ts

c k2 CHem k2 e m

b b Bar b a r

p p Par p a r

k k aCum a k u m

 ʃ k1 Cenuşă k1 e n u s1

a1 g g Galben g a l b e n

 ʒ g1 Girafă g1 i r a f a1

ɟ g2 unGHI u n g2

d d Dar d a r

t t ToT t o t

f f Faţă f a t1 a

v v Vapor v a p o r

h h Harta h a r t a

ʒ j aJutor a j u t o r

ʃ s1 coŞ k o s1

l l Lac l a c

m m Măr m a1 r

51

n n Nas n a s

s s Sare s a r e

z z Zar z a r

r r Risc r i s k

 t1 Ţăran t1 a1 r a n

Table 3-15List of phones in Romanian

3.7.3 Building the acoustic model

As in the previous cases, in our attempt to create a continuous speech recognition system for

Romanian we have decided to use the state-of-the-art mathematical tool : HMMs with GMMs.

After several experimental setups, we decided to set the number of senones to 1000 and the final

number of Gaussian densities at 16.

The selection of the speech units was the first issue that mst be approached. Obviously, for a large-

vocabulary continuous speech recognition system we cannot use words as basic units. They are

neither trainable, because there are not enough occurences for every word to robustly train a model,

nor generalizable, because for every new ASR task, with a new vocabulary, a new set of models

needs to be constructed. The trainable attribute (there should be enough data to estimate the

parameters of the unit) of a properly chosen speech unit limited our possibilities to phones and

triphones. The reason is that we do not have enough occurences to train syllable models in the our

database.

After training the acoustic model, we tested the obtained models, to be able to evaluate them.

Problems encountered at this step :

 The ASR returned 2-3 words per decoded audio clip, even if the decoded audio clip

contained a phrase (more than 3 words). Our first approach to this problem was to decode

only wavs that contained phrases, thinking that the decoding of isolated words caused the

bad recognition. After we eliminated them from fileids list, the fileids corresponding to

wavs with isolated words, the recognition was still very bad. After several experimental

setups, we saw that some wavs had 128 kbit/s ratebit, and they were the main cause for the

bad recognition results.

Exp Training set Evaluation set Accuracy [%] Error [%]

1 97% from database4 3% from database4 36.32 63.68
Table 3-16 Evaluation for Romanian database

Table 3-16 summarizes the performance of our continuous speech recognition system for

Romanian. Database4 consisted in 107,751 audio files (almost 6700 per speaker) which were split

into a training part comprising 104868 (almsot 6500 per speaker) and an evaluation part

comprising 2883 files (260 per speaker). The training set contained both isolated words and phrases,

while the testing set contained only phrases.

52

3.8 Demo Application

All our experiments presented so far in this thesis were done in an offline, experimental setup. For

demonstration purposes a demo application was created. This application was provided by Sphinx

and is developed in the Java programming language. It allows the user to load specific acoustic

models and specific language models or grammar at his own choice. Having as basis this Java

application, I implemented a graphical user interface (GUI), in order to be more user-friendly. The

demo application is very easy to use and is a convenient way to evaluate the recognition system.

First, the user must specify the desired language. A screenshot illustrating the first frame of the

application is presented in Figure 3.5 .

Figure 3.5 GUI for Demo application

The language is selected by direct speaking, after the Record Speech button is pressed. Obviously, a

microphone has to be connected to the computer so the application can record the spoken word. I

implemented this task using a JSGF grammar.

Figure 3.6 The language word graph

53

Figure 3.6 illustrates the word graph with all the words and the allowable transitions. The nodes

named N are null nodes. A transition through one of these nodes does not output any word. These

nodes serve as start and end points in the word graph. All three words have the same equally

probability. The nodes marked as sil stand for silence zones in the audio data.

Figure 3.7 FSG Grammar for Demo application

After a language was selected, the frame specific to the language pops-up. From the Combo Box the

user can select an ID, corresponding to a wav file and a transcription file specific to the chosen

language. I have selected more wavs for each of the targeted language, such that the user to be able

to perform several tests, in order to evaluate the performance of the automatic recognition systems.

Once the user presses the Start button, in the second TextArea appears the transcription file and in

the first TextArea what our system recognized. The JFrame is illustrated in Figure 3.8.

Figure 3.8 GUI for Romanian Recognition

54

Similar JFrames are made for Albanian and English recognition. The user can perform several tests

and draw some conclusions regarding the performance of our Multilingual Automatic Speech

Recognition System.

55

4 Conclusions

The main objective of this thesis was to create an automatic speech recognition system for three

languages : Albanian, English and Romanian. Albanian is a so called low-resourced language, a

language that is spoken by a large number of people, but no prior work of collecting and organizing

speech and/or text resources has been done. At this part, our contribution was to acquire a speech

database in order to train and evaluate the ASR. In the second part, we designed ASRs for English

and Romanian, two languages with available resources.

This thesis presents the successive steps which were employed in order to create a multilingual

speech recognition system. Chapter 1 and 2 describes the theoretical aspects regarding speech

recognition. Chapter 3 presents the processing tools required to create an ASR and the stages of

training the necessary models. Phonemes were chosen as basic speech units for the HMM-based

recognition system, therefore a phonetic dictionary that maps words to their phonetic form is

mandatory.

The first sections of Chapter 3 describe explicitly the steps in designing an ASR from zero. It

presents the problems encountered when gathering resources for building a speech database. After

the required resources are described, together with the cleaning tools for the text corpora, several

experiments are presented. As a conclusion, we have managed to build a 14 hours speech database

which can be further used to design a large vocabulary-speech recognition system.

Sections 3.6 and 3.7 present the available databases for Romanian and English. Each text corpora is

described in terms of total number of words, in number of unique words and in number of phrases.

For every speech database we have selected 90% for training purpose and 10% for testing one. The

results presented in this thesis approach the reality, since all the tests are done on unseen data.

The last section in Chapter 3 presents a GUI demo application. It comes by default with the CMU

Sphinx toolkit, my contribution being the GUI interface. It is a user-friendly application through

which one can test our automatic speech recognition systems.

For all the three targeted languages, the inter-speaker variability could be approached by creating

even more general acoustic models. The only way to accomplish this is by collecting a larger

continuous speech database. The attribute “larger” refers to a more representative database, with at

least 150 speakers of different ages, different social environments, different accents etc. This means

a more difficult task than the acquisition of the Albanian speech database.

A second perspective consists in adding also number recognition to our ASRs. This is not a trivial

task. Take, for example, the spoken representation of the number 1991. The speech signal has

nothing in common with the actual digits 1, 9, 9 and , but is, in fact, the spoken representation of the

word sequence one thousand nine hundred ninety one. The ASR language model must predict the

different words which compose this number and not the digits-written form. Additionally, the range

of numbers is potentially infinite, while the range of words used to compose the numbers is limited.

Another issue, similar with that of the numbers’ recognition, regards abbreviations. The fact that the

speaker utters the unabbreviated form makes this task very challenging. Consequently, a new

cleaning operation should be added, one that would replace abbreviated word forms with full word

forms based on a list of abbreviations.

56

57

Bibliography

[1] Cucu,H., „Towards a speaker-independent, large-vocabulary continuous speech recognition

system for Romanian”

[2] Huang, X., Acero, A., Wuen-Hon., Chapter 11 „Language Modeling” in Spoken Language

Processing- A Guide to Theory, Algorithm, and System Development, Prentice Hall, 2001

[3] [Juang], Juang, B.H., Rabiner, Lawrence R., „Automatic Speech Recognition – A brief

History of the Technology Development”, Georgia Institute of Technogy, Atlanta

[4] Professor Dan Jurafsky, Lecture 4.6 Interpolation, Stanford NLP,

https://www.youtube.com/watch?v=-aMYz1tMfPg, accessed at 01/06/2014

[5] Professor Dan Jurafsky, Lecture 4.3 Evaluation and Perplexity, Stanford NLP,

https://class.coursera.org/nlp/lecture/129, accessed at 17/06/2014

[6] Wikpedia, Perplexity, http://en.wikipedia.org/wiki/Perplexity, accesed at 29/05/2014

[7] Huang, X., Acero, A., Wuen-Hon., Chapter 9 „Acoustic Modeling” in Spoken Language

Processing- A Guide to Theory, Algorithm, and System Development, Prentice Hall, 2001

[8] Huang, X., Acero, A., Wuen-Hon., Chapter 1 „Introduction” in Spoken Language

Processing- A Guide to Theory, Algorithm, and System Development, Prentice Hall, 2001

[9] Wikipedia, Prosody, http://en.wikipedia.org/wiki/Prosody_(linguistics), accessed at

30/05/2014

[10] Jurafsky, D., Martin, J., “Automatic Speech Recognition,” Chapter 7 “Speech Decoding” in

Speech and Language Processing: An introduction to natural language processing, computational

linguistics, and speech recognition (2nd Ed.), Pearson Education, 2009.

[11] Wikipedia, Mel scale, http://en.wikipedia.org/wiki/Mel_scale, accessed at 31/05/2014

[12] Buzo, A., “Automatic Speech Recognition over Mobile Communication Networks," Teză de

doctorat, Universitatea Politehnica din Bucureşti, România,

[13] Wikipedia, MFCC, http://en.wikipedia.org/wiki/MFCC, accessed at 31/05/2014

[14] Huang, X., Acero, A., Wuen-Hon., Chapter 8 „Hidden Markov Models” in Spoken

Language Processing- A Guide to Theory, Algorithm, and System Development, Prentice Hall, 2001

[15] Gales, M., Young, S., “The Application of Hidden Markov Models in Speech Recognition”

[16] Wikipedia, WER, http://en.wikipedia.org/wiki/Word_error_rate accessed at 29/05/2014

[17] http://www.grymoire.com/unix/sed.html, accessed at 30/06/2014

[18] https://www.ffmpeg.org/, accessed at 30/06/2014

[19] Wikipedia, http://en.wikipedia.org/wiki/Speaker_diarisation, accessed at 30/06/2014

[20] Wikipedia, SMT, http://en.wikipedia.org/wiki/Statistical_machine_translation accessed at

10/06/2014, accessed at 03/07/2014

[21] CMUSphinx Tutorial, Training Acoustic Model,

http://cmusphinx.sourceforge.net/wiki/tutorialam, accessed at 10/06/2014

[22] https://kb.iu.edu/d/afik, accessed at 02/06/2014

[23] http://www.fileformat.info/tip/linux/iconv.htm, accessed at 03/06/2014

https://www.youtube.com/watch?v=-aMYz1tMfPg
https://class.coursera.org/nlp/lecture/129
http://en.wikipedia.org/wiki/Perplexity
http://en.wikipedia.org/wiki/Prosody_(linguistics)
http://en.wikipedia.org/wiki/Mel_scale
http://en.wikipedia.org/wiki/MFCC
http://en.wikipedia.org/wiki/Word_error_rate%20accessed%20at%2029/05/2014
http://www.grymoire.com/unix/sed.html
https://www.ffmpeg.org/
http://en.wikipedia.org/wiki/Speaker_diarisation
http://en.wikipedia.org/wiki/Statistical_machine_translation%20accessed%20at%2010/06/2014
http://en.wikipedia.org/wiki/Statistical_machine_translation%20accessed%20at%2010/06/2014
http://cmusphinx.sourceforge.net/wiki/tutorialam
https://kb.iu.edu/d/afik
http://www.fileformat.info/tip/linux/iconv.htm

58

59

Annex 1
Source code of the main Java program for the demo application :

package edu.cmu.sphinx.demo.transcriber;

import edu.cmu.sphinx.api.Configuration;

import edu.cmu.sphinx.api.LiveSpeechRecognizer;

import edu.cmu.sphinx.api.SpeechResult;

import java.io.IOException;

import javax.sound.sampled.LineUnavailableException;

/**

 *

 * @author ioanacalangiu

 */

public class MainFrame extends javax.swing.JFrame {

 private boolean recEnabled;

 private String afisare;

 private Configuration configuration;

 private Configuration configuration1;

 private SpeechResult result;

 /**

 * Creates new form MainFrame

 */

 public MainFrame() {

 initComponents();

 setLocationRelativeTo(null);

 configuration = new Configuration();

configuration.setAcousticModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-5prealpha/models/acoustic/wsj_8kHz");

configuration.setDictionaryPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/models/acoustic/wsj_8kHz/dict/cmudict.0.6d");

60

configuration.setGrammarPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/src/apps/edu/cmu/sphinx/demo/dialog/");

 configuration.setGrammarName("language");

 configuration.setUseGrammar(true);

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jButton1 = new javax.swing.JButton();

 jLabel1 = new javax.swing.JLabel();

 jLabel2 = new javax.swing.JLabel();

 jLabel3 = new javax.swing.JLabel();

 jLabel4 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 setTitle("Multilingual Speech Recognition");

 jButton1.setText("Record Speech");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jLabel1.setText("english");

61

 jLabel2.setText("romanian");

 jLabel3.setText("albanian");

 jLabel4.setText("Please select your language:");

 javax.swing.GroupLayout layout = new

javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

 .addGap(0, 0, Short.MAX_VALUE)

 .addComponent(jButton1))

 .addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(53, 53, 53)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel3)

 .addComponent(jLabel2)

 .addComponent(jLabel1)))

 .addGroup(layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(jLabel4)))

 .addContainerGap(16, Short.MAX_VALUE))

);

 layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

62

 .addGap(37, 37, 37)

 .addComponent(jLabel4)

 .addGap(18, 18, 18)

 .addComponent(jLabel1)

 .addGap(30, 30, 30)

 .addComponent(jLabel2)

 .addGap(27, 27, 27)

 .addComponent(jLabel3)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 49,

Short.MAX_VALUE)

 .addComponent(jButton1))

);

 pack();

 }// </editor-fold>

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 if (jButton1.getText().equals("Stop recording")) {

 //ResponseText.setText(" ");

 recEnabled = false;

 } else {

 recEnabled = true;

 jButton1.setText("Stop recording");

 System.out.println("start");

 javax.swing.SwingWorker<String, String> _swingWorker;

 _swingWorker = new javax.swing.SwingWorker<String, String>() {

 @Override

 public String doInBackground() throws LineUnavailableException,

IOException, Exception {

 System.out.println("2");

 LiveSpeechRecognizer recognizer = new

LiveSpeechRecognizer(configuration);

63

 System.out.println("3");

 recognizer.startRecognition(true);

 System.out.println("4");

 while(recEnabled){

 System.out.println("Select your language:");

 String utterance =

recognizer.getResult().getHypothesis();

 System.out.println(utterance);

 if(utterance.equals("english")){

 recognizer.stopRecognition();

 System.out.println("english");

 EnglishFrame_v2 test = new EnglishFrame_v2();

 test.setVisible(true);

 break;

 }

 if(utterance.equals("romanian")){

 recognizer.stopRecognition();

 System.out.println("romanian");

 RomanianFrame test1 = new RomanianFrame();

 test1.setVisible(true);

 break;

 }

 if(utterance.equals("albanian")){

 recognizer.stopRecognition();

 System.out.println("albanian");

 AlbanianFrame test2 = new AlbanianFrame();

 test2.setVisible(true);

 break;

 }

 else {

 System.out.println("Please try again :)");

 }

64

 }

 System.out.println("stop");

 recognizer.stopRecognition();

 return afisare;

 }

 @Override

 protected void done() {

 jButton1.setText("Record speech_1");

 }

 };

 _swingWorker.execute();

 }

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting

code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the

default look and feel.

 * For details see

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

 javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

 }

65

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex);

 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex);

 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex);

 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex);

 }

 //</editor-fold>

 /* Create and display the form */

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new MainFrame().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 // End of variables declaration

}

66

Source code of the Romanian GUI : (The one for English and Albanian are exactly the same)

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package edu.cmu.sphinx.demo.transcriber;

import edu.cmu.sphinx.api.Configuration;

import edu.cmu.sphinx.api.SpeechResult;

import edu.cmu.sphinx.api.StreamSpeechRecognizer;

import java.io.File;

import java.io.IOException;

import java.net.URL;

import javax.sound.sampled.LineUnavailableException;

/**

 *

 * @author ioanacalangiu

 */

public class RomanianFrame extends javax.swing.JFrame {

 private SpeechResult result;

 private boolean recEnabled;

 private String afisare;

 private Configuration configuration;

 /**

 * Creates new form RomanianFrame

67

 */

 public RomanianFrame() {

 initComponents();

 setLocationRelativeTo(null);

 configuration=new Configuration();

configuration.setAcousticModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-

5prealpha/myProject/models/acoustic/romanian.cd_cont_1000");

configuration.setDictionaryPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-

5prealpha/myProject/models/phonetic/talkshowPlusTheRest.dic.full");

 configuration.setUseGrammar(false);

configuration.setLanguageModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-

5prealpha/myProject/models/language/europarl9amHotnews.10k.augmented.3GramLM.sor

ted.dmp");

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jSlider1 = new javax.swing.JSlider();

 jButton1 = new javax.swing.JButton();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTextArea1 = new javax.swing.JTextArea();

 jScrollPane2 = new javax.swing.JScrollPane();

 jTextArea2 = new javax.swing.JTextArea();

 jComboBox1 = new javax.swing.JComboBox();

68

 jButton2 = new javax.swing.JButton();

 jTextField1 = new javax.swing.JTextField();

 jLabel1 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE);

 setTitle("Romanian Recognition");

 jButton1.setText("Start");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jTextArea1.setColumns(20);

 jTextArea1.setRows(5);

 jScrollPane1.setViewportView(jTextArea1);

 jTextArea2.setColumns(20);

 jTextArea2.setRows(5);

 jScrollPane2.setViewportView(jTextArea2);

 jComboBox1.setModel(new javax.swing.DefaultComboBoxModel(new String[] {

"02_01_0532", "02_01_0549", "02_01_0559", "Item 4" }));

 jButton2.setText("Select a file");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 jTextField1.setText("no file selected");

69

 jLabel1.setText("Start recognizing file :");

 javax.swing.GroupLayout layout = new

javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jScrollPane1)

 .addComponent(jButton1, javax.swing.GroupLayout.Alignment.TRAILING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .addComponent(jComboBox1,

javax.swing.GroupLayout.PREFERRED_SIZE, 202,

javax.swing.GroupLayout.PREFERRED_SIZE))

 .addGroup(layout.createSequentialGroup()

 .addComponent(jLabel1)

 .addGap(4, 4, 4)

 .addComponent(jTextField1,

javax.swing.GroupLayout.PREFERRED_SIZE, 128,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(0, 0, Short.MAX_VALUE)))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(jButton2))

 .addComponent(jScrollPane2,

javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.PREFERRED_SIZE, 644,

javax.swing.GroupLayout.PREFERRED_SIZE)

);

 layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

70

 .addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(21, 21, 21)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jComboBox1,

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jButton2)))

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

 .addContainerGap(50, Short.MAX_VALUE)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jTextField1,

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel1))))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(jScrollPane2,

javax.swing.GroupLayout.PREFERRED_SIZE, 79,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(34, 34, 34)

 .addComponent(jScrollPane1,

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18)

 .addComponent(jButton1))

);

 pack();

 }// </editor-fold>

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 if(jButton1.getText().equals("Stop")){

71

 recEnabled = false;

 } else {

 recEnabled = true;

 jButton1.setText("Stop");

 jTextArea2.setText(" ");

 System.out.println("1");

 javax.swing.SwingWorker<String, String> _swingWorker;

 _swingWorker = new javax.swing.SwingWorker<String, String>() {

 @Override

 public String doInBackground() throws LineUnavailableException,

IOException, Exception {

 System.out.println("2");

 File file = new File("/home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/myProject/romana/02_01_0532.txt");

 String id=jTextField1.getText();

 File targetInput = new

File("/home/ioanacalangiu/Documents/sphinx4-5prealpha-src/sphinx4-

5prealpha/myProject/romana/"+id+".txt");

 ReadTranscript transcript = new ReadTranscript(targetInput);

 String text = transcript.readFile();

 jTextArea1.setText(text);

 StreamSpeechRecognizer recognizer = new

StreamSpeechRecognizer(configuration);

 System.out.println("3");

 recognizer.startRecognition(new

URL("file:///home/ioanacalangiu/Documents/sphinx4-5prealpha-src/sphinx4-

5prealpha/myProject/romana/"+id+".wav").openStream());

 System.out.println("4");

 while((result = recognizer.getResult()) != null){

 System.out.println("5");

 if(recEnabled==true){

 System.out.println("6");

 jTextArea2.setText(result.getHypothesis());

 break;

72

 }

 }

 recognizer.stopRecognition();

 return afisare;

 }

 @Override

 protected void done() {

 jButton1.setText("Start");

 jTextField1.setText("no file selected");

 }

 };

 _swingWorker.execute();

 }

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 jTextField1.setText(jComboBox1.getSelectedItem().toString());

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting

code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the

default look and feel.

 * For details see

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

73

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

 javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

 }

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex);

 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex);

 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex);

 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex);

 }

 //</editor-fold>

 /* Create and display the form */

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new RomanianFrame().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

74

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JComboBox jComboBox1;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JScrollPane jScrollPane2;

 private javax.swing.JSlider jSlider1;

 private javax.swing.JTextArea jTextArea1;

 private javax.swing.JTextArea jTextArea2;

 private javax.swing.JTextField jTextField1;

 // End of variables declaration

}

