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1 CHAPTER  Introduction 

 

1.1 Thesis motivation 

From human prehistory to the new media of the future, speech communication has been and will be 

the dominant mode of the human social bonding and information exchange. In addition to human-

human interaction, this human preference for spoken language communication finds a reflection in 

human-machine interaction as well. Designing a machine that mimics human behavior, in particular 

the capability of speaking naturally and responding properly to spoken language, has intrigued 

engineers and scientists for centuries. Homer W. Dudley was the pioneering electronic and acoustic 

engineer in this field, by creating the first electronic voice synthesizer for Bell Labs in the 1930s 

and leading the development of a method of sending secure voice transmissions during World War 

Two. 

New machine learning algorithm can lead to significant advances in automatic speech recognition. 

The biggest single advance occurred nearly four decades ago with the introduce of the Expectation-

Maximization (EM) algorithm for training Hidden Markov Models (HMMs). Through the EM 

algorithm, it became possible to develop speech recognition systems for real world tasks using 

richness of Gaussian mixture models (GMM) to represent the relationship between the acoustic 

input and the HMM states. In these systems the acoustic input is created by concatenating Mel 

Frequency Cepstral Coefficients (MFCCs), computed from the raw waveform, and their first- and 

second-order temporal differences. This pre-processing of the input signal is designed to discard the 

large amount of information in waveforms that is considered irrelevant. 

The field of Automatic Speech Recognition (ASR) exploded in the last decades, since people tend 

to be more and more busy and look after hands-free and eyes-free interfaces to devices. The object 

of ASR is to capture an acoustic signal representative of speech and determine the words that were 

spoken by pattern matching. To do this, a set of acoustic and language models have to be stored in a 

computer database, that represent the actual patterns. These models result after training and are then 

compared to the capture signals 

1.2 The field of speech recognition 

Recognition and understanding of spontaneous unrehearsed speech remains an elusive goal. To 

understand speech, a human considers not only the specific information conveyed to the ear, but 

also the context in which the information is being discussed. For this reason, people can understand 

spoken language even when the speech signal is corrupted by noise. However, understanding the 

context of speech is, in turn, based on broad knowledge of the world. And this has been the source 

of the difficulty and over forty years of research. 

Automatic speech recognition is the recognition of the information embedded in a speech signal and 

its transcription in terms of a set of  characters. The ASR process addresses the problem of mapping 

an acoustic signal to a sequence of words. When the input acoustic signal contains speech uttered 

by different speakers, the ASR task can be regarded as a two-step process : speaker diarisation (who 

spoke when?) and speech-to-text transcription (what did he say?). 
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The task of speech recognition can be formulated through a source-channel model. The speaker’s 

mind decides the source word sequence W that is delivered through his/her text generator. The 

source is passed through a noisy communication channel that consists of the speaker’s vocal 

aparatus to produce the speech waveform and the speech signal processing component of the speech 

recognizer. At the last stage, the decoder aims to decode the acoustic signal X into a word sequence 

, which should be as close as possible to the original sequence W. 

 

Figure 1.1 A source-channel model for speech recognition system[8] 

The speech signal is processed in the signal processing model that extracts feature vectors for the 

decoder. The decoder uses both acoustic and language models to generate the word sequence that 

has the maximum probability for the input feature vectors. Acoustic models refer to the 

representation of the information and knowledge about acoustics, phonetics, environment 

variability, gender, different pronunciations and dialect differences among speakers etc. Language 

models refer to a system’s intuition of what constitutes a valid word and what words are most likely 

to occur.  

Several problems appear when building an ASR, and mostly depend on the type of language. For a 

vast number of languages, called low-resourced language, there are no text and speech resources 

available. These language are spoken by a large number of people, but no prior work of collecting 

and organizing speech and/or text resources has been made. In this case, the task of implementing 

an ASR includes gathering the necessary resources for creating a wide database. 

Other languages, like French and Romanian, are categorized as rich-morphology language. 

Compared to English, a poor-morphological language, these languages have a large vocabulary. 

For example the word to learn in Romanian  has six morphologically different forms : „învăţ”, 

„înveţi”, „învaţă”, „învăţăm”, „învăţaţi”, „învaţă”. In French it has four : „apprends”, „apprend”, 

„apprenons”, „apprenez”, „apprennent”. The right morphological variant depends on various 

factors, like constraints or grammatical gender. In English, the same verb has only two forms : 

„learn” and „learns”. German and Turkish are some of the so-called agglutinative languages. 

Agglutination is a process in which complex words are formed by stringing together morphemes, 

each with a single grammatical or semantic meaning. This process translates into a very large 

vocabulary, which makes the task of speech recognition even more challenging. 

The size of vocabulary is also an important factor which settles the difficulty when designing an 

ASR. The task of recognizing a set of commands, with a limited number of words, is much simpler 

than a spontaneous recognizing task (with 64k words vocabulary). Nevertheless, a large vocabulary 

does not always translate into a more difficult ASR task. The linguistic uncertainty of the possible 

speech utterances plays a significant role. For instance, an ASR targeted to recognize tourism 
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related words (which can form a 64k words vocabulary) is not as difficult as a spontaneous speech 

recognition task with an equals-size vocabulary. The low linguistic uncertainty, also called 

perplexity, of the tourism-specific ASR task makes it less difficult. 

After years of research and development, accuracy of automatic speech recognition remains one of 

the most important research challenges. A number of well-known factors determine accuracy: those 

most noticeable are variations in context, in speaker and in environment. Acoustic modeling plays a 

critical role in improving accuracy and is arguably the central part of any speech recognition 

system.  

One of the factors that influences the accuracy of the speech recognition system is the acoustic 

environment in which the speaker is placed, along with any transmission channel. In this cases, it is 

a demanding task to separate the different acoustic signals found in an environment, which can be 

other talkers or environmental noise. This factor is also influenced by microphones, which can have 

a great impact on the speech recognition accuracy. In laboratories, the research is done with high-

quality, head-mounted microphones. Other types of microphones can cause problems due to 

movements of the speaker’s head relative to the microphone. In a similar manner to speaker-

independent training, we can build a system by using a large amount of data collected from a 

number of environments; this is referred to as multistyle training. Nevertheless, despite the progress 

being made in the field, environment variability remains as one of the most severe challenges facing 

today’s state-of-the-art speech systems. 

The accuracy of a speech recognition process is also influenced by the speaker characteristics. By 

speaker characteristics, one refers to the speaker accent, the gender, the speech rate, different 

pronunciations or even dialect differences. Every individual speaker is different. As such, one 

person’s speech patterns can be entirely different from those of another person. Even if these 

interspeaker differences could be excluded, the same speaker is unable to precisely produce the 

same utterance. Along with these, the speaking style also plays an important role in designing an 

ASR. The speaking style refers to how fluent, natural or conversational the speech is. The inter-

speaker variability could be dealt with by simply designing speaker-dependent ASR systems. 

Nevertheless, even if this would translate into a small error rate, the drawback is that a new acoustic 

model should be trained for every new speaker. Consequently, speaker-independent ASR systems 

are more flexible, since they can be used to recognize the speech of any speaker.  

Another factor to be taken into consideration is style variability. To deal with acoustic realization 

variability, a number of constrains can be imposed on the use of the speech recognizer. For 

instance, there are isolated speech recognition systems, in which users have to pause between each 

word. Because the pause provides a clear boundary for the word, we can easily eliminate errors 

such as Ford or  and Four Door. In continuous speech recognition, the error rate is usually much 

higher than in the case of isolated speech recognition. If a person whispers, or shouts, to reflect his 

or her emotional changes, the variation increases more significantly. 

1.3 Thesis objectives and outlines 

The main objective of this thesis was to develop a speaker-independent large-vocabulary continuous 

speech recognition system for Albanian, a under-resourced language. This system should be able to 

recognize general Albanian continuous speech produced by any speaker with a decent performance. 

Several stages were followed to achieve this final goal : 
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1. The acquisition of a phonetic, speech and text resources. A speech database is needed to 

train the acoustic model, while a text database is required to create a general purpose 

language model. A phonetic model links the acoustic model, a spectral representation of 

sounds and words, to the language models, that is a representation of the grammar or syntax 

of the task. 

2. The development of specific tools to process the necessary resources presented above. 

3. The design, implementation and evaluation of an Albanian large vocabulary continuous 

speech recognition system using state-of-the-art techniques : the HMM framework for 

acoustic modeling and the n-gram paradigm for language modeling. 

The thesis is organized in four chapters as follows. 

Chapter 1 presents a brief summary of the main issues in the field of speech recognition and the 

important factors that influence the accuracy of a large vocabulary continuous speech recognition 

system. 

Chapter 2 presents a brief summary of the main issues in the field of speech recognition. The 

second chapter introduces the reader the concepts of acoustic, phonetic and language modeling, 

which represent the engines of a continuous speech recognition system. This chapter ends with 

presenting some metrics computed in order to evaluate the ASR. 

In Chapter 3, in the first sections, we focus on presenting the steps and difficulties in developing an 

ASR from zero. Our targeted language is Albanian, a low-resourced language. In the beginning of 

this chapter are illustrated acquisition tools for a speech database (audios clips and transcripts), The 

chapter continues with the stages of training the acoustic and the language models for a small 

Albanian database. After that it describes our efforts to extend this database, in order to have more 

accurate models, and smaller word error rates. Chapter 3 ends with the final results we obtained. 

The last part of Chapter 3 is dedicated to Romanian and English speech recognition systems, for 

which there are speech databases available. There are presented problems we encountered on the 

way, and the solutions we have come up with. Moreover, a demo is described in order to evaluate 

each of the three targeted languages. 

Chapter 4 summarizes the main conclusions of this thesis and underlines the author’s contributions. 

This chapter ends with briefly discusses regarding future developments for increasing the systems’ 

accuracy. 
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2 CHAPTER  Necessary resources for building an ASR 

 

2.1 Recognition formalism 

The process of automatic speech recognition is the translation of spoken words into text.  This 

speech-to-text task can be characterized in a probabilistic framework. Probability theory and 

statistics provide the mathematical language to analyze and describe ASR systems. The speech-to-

text task can be formulated in a probabilistic manner :  

What is the most likely sequence of words W* in a certain Language L, given the speech utterance 

X? 

The formal representation uses the arg max function, in order to select the argument which 

maximizes the probability of the word sequence is : 

 

 
 

 (2.1) 

The Equation 2.1. points to the most probable sequence of words as the one with the highest 

posterior probability, given the speech utterance. This posterior probability is computed using 

Bayes rule, so the most probable word sequence becomes: 

 

 

 

(2.2) 

p(X), the probability of the speech utterance is independent of the sequence of words W, and can 

be ignored. The problem of recognition is simply reduced to :  

 

 
 

(2.3) 

 

Equation 2.3. points out two terms that can be directly estimated : a) the apriori probability of the 

word sequence p(W) and b) the probability of the acoustic data, given the word sequence, 

p(X/W).The first factor can be estimated using a language model, while the second factor can be 

estimated with the help of an acoustic model. The two models can be built independently, but will 

be used together in order to decode the spoken data, as shown by equation 2.3. The general 

architecture of an ASR is presented in Figure 2.1. In can be seen that the speech recognition process 

is mainly described by two essential phases : a) extracting useful information from speech signal 

and b) compressing these representations for efficient transmission and storage. [1] 
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Figure 2.1 Necessary resources for building an ASR 

Besides the acoustic model and the language model, which have been already mentioned above, the 

general architecture of the ASR also includes a phonetic model. Its purpose is to connect the acoustic 

model to the language model.  

Figure 2.1. also shows that the system performs, in the early phase, a feature extraction. This block 

has the role to extract specific acoustic features which are further used to create the acoustic model. 

Consequently, the same feature extraction block is used in the decoding process. 

Section 2.2. continues with the analysis and description of the several blocks in Figure 2.1. 

2.2 Language modeling 

The language model (grammar) is used in the decoding phase to describe how likely, in a 

probabilistic sense, is a sequence of language symbols that can appear in the speech signal. A 

statistical language model assigns a probability to a sequence of n words  by 

means of probability distribution. The main purpose of the grammar is to estimate the probability 

that a word sequence , is a valid sentence in the researched language. The 

probability of these word sequences help the acoustic model in the decision process. [1] 

In other words, a language model is used to restrict word search. It defines which word could follow 

previously recognized words and helps to significantly restrict the matching process by stripping 

words that are not probable. 

The probability of the word sequence can be decomposed as follows  

 

 

 
 

 

(2.4) 



19 

 

 

where  is the probability that  will follow, given that the word sequence 

 was present previously.  

Now, the task of estimating the probability of a word sequence has been split into several tasks of 

estimating the probability of one word given a history of preceding words. In Eq. 2.4 the choice of 

 thus depends on the entire part history of the input. For a vocabulary of size  there are  

different histories and in order to specify   completely,  values would have 

to be estimated. In reality, the probabilities  are impossible to estimate for 

even moderate values of , since most histories  are unique or have occurred only a 

few times. A practical solution is to assume that  depends only on some 

equivalence classes. The equivalent class can be simply based on the several previous words 

. This leads to an n-gram language model. The trigram is a particular case, 

and has proven to be very powerful, since most words have a strong dependence on the previous 

two words. [2] 

2.2.1 N-gram models 

The n-gram model, which characterizes the word relationship within a span of n words, is a very 

powerful statistical representation of a grammar. Its effectiveness in building a word search was 

strongly validated by the famous word game of Claude Shannon which consisted in a competition 

between a human and a computer. In this competition, both the human and the computer were asked 

to sequentially guess the next word in an arbitrary sentence. The human guessed based on native 

experience with language, while the computer based its answers on maximum likelihood principle, 

using the accumulated word statistics. This experiment showed that, when n, the number of 

preceding words, exceeds 3, the computer was very likely to make a better guess of the next word in 

the sentence than the human. Unigrams are terrible at this game, but is easy to understand why. 

Currently, n-gram models are indispensable in large vocabulary speech recognition systems.[3] 

2.2.2 Approach of the data sparseness problem 

The text available for building a model is called a training corpus. For n-gram models, the amount 

of training data used is typically many millions of words. 

Data sparseness is a problem which may appear even in the cases when there is a large training 

corpus put on disposal. No matter the size of the training corpus, there may  always appear n-grams 

in the decoding phase, which were not found in this text. 

 

2.2.2.1 Back-off methods 

Sometimes it helps to use less context than more. In the cases when a trigram appears a very large 

number of times, it can be considered a very good estimator. But sometimes, a trigram does not 

appear that often, so a better solution is to back-off and to use a bigram. If the bigram is not trust 

worthy, as well, a unigram may provide a more useful information. The interpolation method 

proposes the mix of unigrams, bigrams and trigrams,  in order to get benefits from all of them. In 

practice, it was proven to have really good results. 
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There are two kinds of interpolation : 

a) Simple linear interpolation : 

 

 
 

(2.5) 

 

Where , for them to be probabilities. The task is simply to compute the probability of a 

word, when given the previous two, by interpolating the three models. 

b) Lambdas conditional on context :  

 

 

 

 

 

 

(2.6) 

This method also mixes the three models, but λs are here dependant on what the previous words 

were. This translates in the possibility to train a richer and more complex context conditioning for 

deciding how to mix the trigrams, the bigrams and the unigrams.[4] 

The next encountered step is to set lambdas and this is done by using a held-out corpus. 

 

Figure 2.2 Necessary sets for training a language model 

Lambdas are chosen to maximize the likelihood of held-out data. The first step is to train some n-

grams, using the training set. Then look after λs to use to interpolate those n-grams such that to give 

the highest probability of this held-out set.  

So far, the case of switching from a bigram to a unigram has been approached, when the bigram has 

few or even 0 appearances. But what about the case when the actual word does not appear at all in 

the training set? Here can be discussed two situations. The first one is the case of a command menu. 

It is characterized by a fixed vocabulary V, and no other words can be said, except the ones 

included in the menu. This is called a closed vocabulary task and shall be discussed in more detail 

in a Section 2.3. The second situation deals with unseen words in the training set, called out of 

vocabulary words or OOV. This task is known as open vocabulary task and consequently, these 

words cannot be predicted by the language model. 

In such situations, firstly we create a special token <UNK>  (i.e. "unknown") and a fixed lexicon L 

of size v. At text normalization phase, we take the most unimportant words, with the lowest 
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probabilities and change them to <UNK>. Next step is to train the probabilities of UNK like a 

normal word. 

So, instead of having in the training set : W.. where   is a really low probability 

word, we will have : .. In the decoding process, if a word appears which has not 

been seen before, that word is replaced with UNK and its bigram and trigram probabilities are given 

from the UNK word in the training set. 

2.2.2.2 Smoothing methods 

The main idea of these methods is that they extract a part of the probability assigned to n-grams 

seen in the training phase, and redistribute it to unknown n-grams. As a result, they tend to make 

distributions more uniform, by adjusting low probabilities such as zero probabilities upward, and 

high probabilities upward. Smoothing methods have proven to be very effective, since they attempt 

to improve the accuracy of the model as a whole. Whenever a probability is estimated from a small 

number of occurrences, smoothing has the potential to significantly improve the estimation so that it 

has a better generalization capability. 

The Good-Turning method deals with infrequent n-grams. The basic idea is to look after how many 

times the n-grams appear in the training data. On this basis, divide the n-grams into groups, 

depending on their frequency, such that the parameter can be smoothened based on the n-gram 

frequency. 

To wrap this up, if a n-gram occurs r times, we should pretend that it occurs times : 

 

 

 

(2.7) 

where  represents the number of n-grams that appear exactly r times in the training data. In order 

to convert it to probability : 

 

 
 

(2.8) 

 

where  , so N is equal with the number of counts in 

the distribution.[2] 

The Good-Turing method is not very reliable for large values of r, for which  is typically 0. This 

drawback can be overcome by leaving aside the counts for frequent n-grams. 

2.2.3 Evaluating the performance of the language model 

A good language model is a model that assigns a higher probability to „real” or „frequently 

observed” sentences than to „ungrammatical” or „rarely observed” sentences. The process starts 

with training the parameters of the model on a training set and then, test the model’s performance 

on  unseen data. In order to be a fair evaluation, this data should be really different from the training 

data. An evaluation metric is used to see how well the model does on the test data. 
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2.2.3.1 Perplexity 

The best evaluation for comparing  two models, for example A and B, is to put each model in a 

task, run the task, and get an accuracy for A and B. In the end, the only thing left to do is to 

compare the accuracy for A and B. This is called extrinsic evaluation of n-gram models(in-vivo). 

The drawback of this kind of evaluation is that it is time-consuming, can take days or even 

weeks.[5] 

Instead, one can use intrinsic evaluation, that is perplexity. The perplexity of the test data is the 

most widely-used metric to evaluate the performance of n-gram smoothing. In information theory, 

the perplexity is a measurement of how well a probability distribution or probability model predicts 

a sample. So, the intuition of perplexity comes down to the simple question : How well can the 

model predict the next word in a sentence? The best language model is one that best predicts an 

unseen test set. 

Translated in a mathematical language, perplexity is the probability of the test set, normalized by 

the number of words. If we consider the sentence has N-words: 

                                                                   

 

 

(2.9) 

 

Where  is the probability of a string of words. The longer the sentence, the less 

probable it is going to be. Another mathematical expression of the perplexity is obtained through 

the chain rule : 

 

 

 

(2.10) 

A particular case of Equation 2.10 for bigrams has the following expression:    

          

 

 

(2.11) 

 

Because of this inversion, minimizing perplexity is the same as maximizing probability.[6] To 

conclude this section, there is a strong correlation between the test-set perplexity and the word error 

rate. Smoothing algorithms leading to lower perplexity generally result in a lower error rate.[2] 

2.2.3.2 Out Of Vocabulary words 

In the case of unseen words in the training set, the evaluation of the performance of the language 

model is very difficult. As mentioned previously, these words are known as out of vocabulary OOV 

and cannot be predicted by the language model. The perplexity of such words is infinity and thus, 
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cannot be added to the perplexity of the other n-grams. Thus, the perplexity of the entire word 

sequence cannot be computed. In order to fully evaluate the performance of a language model, one 

must specify both the perplexity and the OOV. 

 

(2.12) 

 

2.2.3.3 N-gram hits 

N-gram hits represents another method to evaluate how good can a language model predict a word. 

As it was discussed previously, sometimes, if a trigram does not seem trust worthy, it is better to 

back-off, and use a bigram. Moving on, a bigram could back off, due to insufficient data, to a 

unigram. In the case of a trigram model, this metric gives the percentage of how many times the 

model could use the full two-preceding words history over how many times had the model to back-

off to find the probability for the current n-gram :  

 

 

 

(2.13) 

 

This metric has proven to be very useful when comparing different domain-specific language 

models. 

2.3 FSG grammar 

For the systems that deal with recognition of simple commands and control, it is more convenient to 

describe the user language by a grammar model. A finite state grammar (FSG) is a graph model in 

which the nodes correspond to the vocabulary words, and the transitions between the words are 

represented through the links of the graph. If the task is relatively small (digits recognition, phone 

dial, etc. ) than this type of language model can be successfully used. Moreover, finite state 

grammar can be successfully used in word spotting applications.  

This model explicitly describes all possible word sequences allowed by the grammar of the 

recognition task. Moreover, a cost can be attached to each link to specify the probability of  finding 

that word preceded by another word. A grammar is composed of a set of rules that together define 

what may be spoken. This type of grammar can be successfully used when the vocabulary is only a 

few thousands or hundreds words wide. 

2.4 Phonetic modeling 

In the context of state-of-the-art continuous speech recognition systems, the acoustic models do not 

model the words of the source language in a direct manner, but in an indirect one. For Large-

Vocabulary Continuous Speech Recognition Systems(LVCSR), where large-vocabulary generally 

means that the systems have roughly 5,000 to 60,000 words, it is difficult to build  whole-word 

models because :  
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 There are simply too many words, with different acoustic representations and it is unlikely 

to have sufficient occurrences of these words in the training set to build context-dependant 

models. 

 Every new ASR task comes with new specific words, without any available training data, 

such as newly invented jargons and proper nouns.[7] 

The term continuous refers to the fact that the words are run together naturally, and not isolated, 

where each word would be preceded and followed by a pause. 

The purpose of the phonetic model is to link the acoustic model, which estimates the acoustic 

probabilities of the phonemes, to the language model, which estimates the probability of sequences 

of words.  The phonetic analysis component converts the processed text into the corresponding 

phonetic sequence.[8] In other words, the phonetic dictionary is a linguistic instrument, which 

makes the correspondence between the written form and the phonetic form of the words in the 

source language. This is followed by a prosodic analysis to attach the corresponding pitch and 

duration information to the phonetic sequence. In linguistics, prosody is the stress, the rhythm and 

the intonation of speech. Prosody may indicate several features of the speaker or the utterance, like 

the emotional state of the talker, or the form of the utterance (statement, command or question) or 

the presence of irony or sarcasm and many other elements of language that cannot be encoded by 

grammar or by choice of vocabulary.[9] 

The difficulty with which a phonetic dictionary is developed depends on the size of the vocabulary. 

Even though a manually created dictionary would guarantee a perfect phonetisation, this task might 

prove to be extremely time-consuming when designing a large-vocabulary speech recognition 

system. Moreover, it would require a good command of the respectively language.[1] 

2.5 Acoustic modeling 

Acoustic models refer mainly to the representation of knowledge about phonetics, acoustics, 

different pronunciations, gender and dialect differences among the speakers, environment 

variability and so on. A speech recognition system which can be applied to a vast number of talkers, 

without the need to be trained individually on every one, is called a speaker-independent system. 

Such a system is based on some clustering algorithms with the final goal of creating word and 

sound reference patterns, which can be used across large range of speakers and accents. In the early 

stages, these patterns were characterized by a more intuitive template-based approach, but gradually 

evolved in more rigorous statistical models.[3] 

The popularity and use of the Hidden Markov Model as the main foundation for automatic speech 

recognition has remained constant over the past two decades. HMM is today the preferred method 

for speech recognition mainly because of the steady stream of improvements of the technology. 

Another reason why HMMs are popular is because they can be trained automatically and are simple 

to use. 

Hidden Markov model (HMM) can provide an efficient way to build trust worthy parametric 

models and also incorporate the dynamic programming principle in its core for unified pattern 

segmentation and pattern classification of time-varying data sequences. The underlying assumption 

of the HMM is that the data samples can be well characterized as a parametric random process, and 

the parameters of the stochastic process can be estimated in a precise and well-defined framework. 

The HMM has become one of the most powerful statistical methods for modeling speech signals. Its 
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principles have been successfully used in automatic speech recognition, formant and pitch tracking, 

spoken language understanding and machine translation. 

 

2.5.1 Feature extraction 

Since HMMs do not model directly the waveform of the acoustic signal, in this section it will be 

discussed a kind of acoustic processing commonly called feature extraction or signal analysis in 

speech recognition literature. The term features refers to the vector of numbers which represent one 

time-slice of speech signal. Most commonly used kinds of features are LPC features, PLP features 

and MFCC features. They are called spectral features because they represent the waveform in terms 

of the distribution of different frequencies which make up the waveform.[10] 

Speech parameters are often processed by filters. The most common filtering occurs at the spectral 

level, where the power spectrum is processed through filter bank channels. The MFCC features use 

the Mel-scale filter bank while the PLP features utilize the Bark scale for its critical band analysis. 

The first feature we use is the speech waveform itself. The fact that humans, and to some extant 

machines, are capable of transcribing and understanding speech just given the sound wave leads to 

the conclusion that the waveform contains enough information to make this task possible. 

Sometimes, this information is hard to unlock just by looking at the waveform, but even so a visual 

inspection is sufficient to retrieve some relevant characteristics. For instance, the difference 

between vowels and some consonants is relatively clear on a waveform. Vowels are characterized 

by an open configuration of the vocal tract so there is no build-up of air pressure above the glottis. 

This contrasts with consonants, which are characterized by a constriction or closure at one or more 

points along the vocal tract. This translates in a visible difference of energy. Researchers are able to 

look at the spectrogram and indentify several vowels or consonants on account on their amplitude. 

In Figure 2.3 is a Matlab energy figure of vowels (“a”, “e”, “i”, “o”, “u”). Between them, the areas 

where the energy is almost zero, are the moments of silence, when the speaker pauses before 

moving on to the next vowel. 

 

 

Figure 2.3Matlab figure illustrating the amplitude of vowels 

 

Moving on, since the speech signal is not a stationary one, the spectral analysis cannot be done on 

the entire signal, but on short frames(20-30ms), on which the signal is quasi-stationary. The original 
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signal is segmented in the time domain, using a Hamming window, and the feature extraction 

process is performed on every single window. In general, time-domain features are much less 

accurate than frequency-domain features such as the mel-frequency cepstral coefficient(MFCC). 

This is said because many features such as formants, useful in discriminating vowels, are better 

characterized in the frequency domain. When computing the MFCC coefficients, a non-linear 

frequency scale is used, since it better approximates the human hearing system. This analysis 

process takes into account that the seizing of  different sound tones is done on a logaritmic scale 

inside the ear, proportional with the fundamental frequency of the sound.  In this manner, the 

human ear response in non-linear with respect to frequency, since it is able to sense small frequency 

differences among the low frequency components easier than among the high ones. 

In order to determine the cepstral coefficients, the spectrum, computed using FFT, is smoothened 

through some triangular filter banks, each centered on a frequency found on the Mel scale. The Mel 

scale is a perceptual scale of pitches built according to some listeners which are equal in distance 

from one another.[11] The purpose of this set of triangular filters is that of splitting the signal over 

the  frequency bandwidths associated with the Mel scale. For a vocal signal with a bandwidth of 

8kHz, a number of 24 filter sets is considered sufficient to compute the MFCC parameters. 

Nevertheless, in speech recognition systems this number is configurable and through experiments, 

one can find its optimum value for the respective application. By applying the logaritmic 

compression at the output of the set of filtres, the distribution of the coefficients follow a Gaussian 

law. Then, over each band it is computed the mean energy. The MFCC coefficients are obtained 

after applying the Discrete Cosine Transform, which is a very convenient instrument. It deals only 

with real numbers, it has a strong „energy compaction” property : most of the signal information 

tends to be concentrated in a few low-frequency components and decorrelates these values.[12] 

 

 

 

Figure 2.4 The stages for extracting the MFC coefficients 

 

 

In other words, in order to obtain the MFCC coefficients: 

 First the Fourier transform of (a windowed excerpt of) a signal is computed: 

 

 

 

(2.14) 
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 The set of M ( triangular overlapping windows is defined, so that to map the 

powers of the spectrum obtained above onto the mel scale: 

 

 

 

 

(2.15) 

 

The formula can be, also, expressed like this: 

 

 

 

 

(2.16) 

 

 

In this case . The only thing that differs between the two representations is a 

vector of constants for all the input signals, so as long as the same filter is used among everywhere, 

the choice of which one is applied is unimportant.[12] 

This set of filters computes the spectrum around the central frequency of each band. Their band 

increases along the index m.[13] 

The first filter bank will start at the first point, reach its peak at the second point, then return to zero 

at the third point. The second filter bank will start at the second point, reach its peak at the third 

point, then be zero at the fourth point and so on. The final plot of the M filters overlaid on each 

other looks like this: 

 

 

Figure 2.5 Frequency bands on Mel scale[12] 
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Let us consider that : and  are the lowest, respectively the highest frequency in the filter bank, 

expressed in Hz,  is the sampling frequency, expressed as well in Hz, M the number of filters and 

N the size of the FFT window. The boundary point  are placed uniformly, along the Mel scale:  

 

 

  

(2.17) 

Where Mel scale B is : 

 

 

(2.18) 

And its inverse, is : 

  

(2.19) 

 

 

 Next, the logs of the powers at each mel frequency are taken. 

 

 

(2.20) 

 

 The DCT is applied on the list of M Mel log powers, as if it were a signal 

 

 

(2.21) 

 

 The MFCCs are the amplitudes of the resulting spectrum. Only the 2-13 DCT coefficients 

are taken, the rest being discarded.[13] 

 

Temporal changes in the spectra play an important role in human perception. Even though each set 

of coefficients is computed over a short Hamming window, the information contained by the 

temporal dynamics of these parameters is very useful in automatic speech recognition. One way to 

capture this information is by using delta coefficients , that measure the change in coefficients over 

time. They are also known as differential and acceleration coefficients. It turns out that computing 

the MFCC trajectories and appending them to the original feature vector would significantly 

increase the performance of the automatic speech recognition system. Temporal information is 

particularly complementary to HMMs, since HMMs assume each frame is independent of the past, 

in contrast with these dynamic features that broaden the scope of the frame.[7] 

When 16-kHz sampling rate is used, a typical state-of-art speech system can be build based on the 

following features: 
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 is included in the feature vector. In conclusion, the feature vector used for speech recognition 

is generally a combination of these features :  

 
 

(2.22) 

and have proven to give very good results. It is formed of 39 coefficients : 12 MFCC + energy, 

together with their first and second order temporal derivatives. 

2.5.2 HMM framework 

HMMs are very popular in speech recognition domain, mainly because of the advantages they offer. 

Compared to simple Markov models, in the case of HMMs there is no bijection between the state 

and the output. This offers a greater flexibility and it matches perfectly the speech signal, in which 

the same phoneme can have different durations depending on the case.  A hidden Markov model is 

a stochastic process, which models the intrinsic variability of the speech signal and the structure of 

the spoken language in a consistent statistical modeling framework. HMMs are probabilistic finite 

state machines, which can be combined to obtain word sequence models out of smaller units. In the 

task of large-vocabulary speech recognition, sequences of words are built hierarchically from word 

models, which in turn are built from sub-word models with the help of a pronunciation dictionary. 

For good recognition results, these sub-word models have to be context-dependent phone 

models.[1] 

Through its nature, a speech signal is significantly variable, due to variations of pronunciation or 

environmental factors. When the same word is said by several speakers, the acoustic signals may be 

amazingly different, even though the underlying linguistic structure may be the same. HMM uses a 

Markov chain to establish the linguistic structure and a set of probability distributions to score the 

variability in the acoustic realization of the sounds in the utterance. Given a sufficient collection of 

the variations of the words of interest, one can obtain the most „suited” set of parameters that define 

the corresponding model or models, through an efficient estimation method, known as Baum-Welch 

algorithm. This estimation of parameters can be translated through training and learning of the 

system. In the end, the resulted model should be able to indicate whether an unknown utterance is 

indeed a realization of the word represented by the model.[3] 

The hidden Markov model introduces a non-deterministic process that generates output observation 

symbols in any give state. Thus, the observation is a probabilistic function of the state. It can be 

viewed as a double-embedded stochastic process with an underlying stochastic process (the state 

sequence) not directly observable. This underlying process can only be probabilistically associated 

with another observable stochastic process producing the sequence of features we can observe. A 
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hidden Markov model is basically a Markov chain where the output observation is a random 

variable X generated according to a output probabilistic function associated with each state.[14] 

 

Figure 2.6 HMM-based phone model with 5 states[15] 

The entry and the exit states are non-emitting. These are included to simplify the process of 

concatenating phone models to make words. Although the definition of an HMM allows the 

transition from any state to another state, in speech recognition the models are created in such a 

manner to disallow arbitrary transition. Due to the sequential nature of speech, there are placed 

strong constraints on transitions backward or on skipping transitions. Self-loops allow a sub-

phonetic unit to repeat so as to cover a variable amount of the acoustic input.[1] Formally speaking, 

a hidden Markov model is defined by :  

  - an output observation alphabet. The observation symbols correspond to 

the physical output of the system being modeled. 

  – a set of states representing the state space.  

  -  a transition probability matrix, where  is the probability of taking a transition 

from state i to state j : 

 

 
(2.24) 

  - an output probability matrix, where  is the probability of emitting 

symbol  when state i is entered. Let  be the observed output of the 

HMM. The state sequence  is not observed (hidden), and  can be 

rewritten as follows : 

 

 
(2.25) 

 

  - a initial state distribution where : 

 

 
(2.26) 

 

Since ,  and  are probabilities, they must satisfy the necessary properties : 
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(2.28) 

 

 

 

(2.29) 

 

 

 

(2.30) 

The acoustic model parameters  are efficiently estimated from a corpus of training 

utterances using the forward-backward algorithm, which is an example of expectation-

maximization. 

In conclusion, the complete description of a HMM includes two-size parameters, N and M, 

representing the total number of states and the size of observation alphabets, observation alphabet Y, 

and three matrices of probability measures A, B, . The following notation :  

 
 

(2.31) 

is used to indicate the whole parameter set of an HMM. 

Given the above definition of HMMs, the three basic problems can be formulated now before they 

can be applied to real-world applications: 

A. The Evaluation Problem : Given a model  and a sequence of observations                  

 what is the probability  that this sequence Y to have been 

generated by the model   

B. The Decoding Problem : Given a model and a sequence of observations 

, what is the most likely state sequence  in the model that 

produces the observations? 

C. The Learning Problem – Given a model  and a set of observations, how can we adjust the 

  model parameters to maximize the joint probability(likelihood)  

By solving the evaluation problem, we are able to evaluate how well a given HMM matches a given 

observation sequence. Therefore, HMM is used to do pattern recognition, since the likelihood 

 can be used to compute posterior probability , and the HMM with the highest 

posterior probability is determined as the desired pattern for the observation sequence. By solving 

the decoding problem, we can find the best matching state sequence given an observation sequence, 

or in other words, we can uncover the “hidden” state sequences. And by solving the learning 

problem, we will have the means to automatically estimate the model parameter from the training 
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set.[14] The hardest task is the learning one, since from the training data one must estimate the 

HMM’s parameters such that they can characterize the chosen speech unit. 

The vocal signal is split in elementary units, like : words, phonemes, tri-phonemes. To each unit, a 

HMM is associated, and to each state of a HMM a time window, with the voice parameters 

computed for this specific window. During speech, the vocal tract passes through a sequence of 

states (which are modeled with the HMM states) and in each state a segment from the vocal speech 

is emitted with a vector of parameters which constitute the output of the HMM’s state.  

 This output vector of the HMM must take continuous values, since the voice parameters take 

values in a continuous space. For this reason, Gaussian mixtures are used to model the observations 

of the HMMs’ states. Each parameter of the output vector can be modeled through a weight sum of 

functions with normal distributions :  

 

 

(2.32) 

where : 

 

 

(2.33) 

Where Y=[ ] is the n-dimensional observation vector, n is the number of the voice 

parameters which are extracted from the observations, |  | is the covariance’s diagonal matrix 

determinant, G is the number of components of the mixture and  is the weight of the component 

g of the state j.[12] 

Modeling speech using hidden Markov models makes two assumptions :  

 Markov process : the state sequence in an HMM is assumed to be a first-order Markov 

process, in which the probability of the next state transition depends only on the current 

state, so that means the history of previous states is not necessary. 

 Observation independence : observations are conditionally independent of all other 

observations given the state that generated it.[1] 

These two assumptions may lead to an unrealistic model of speech, but they are needed due to the 

mathematically and computationally simplifications they bring. The estimation and decoding 

problems would be very difficult to be addressed without these two assumptions. Nevertheless, the 

last two decades of HMMs success in speech signal modeling prove that these „limitations” are not 

significant. 

2.5.3 Choosing the basic unit 

In other words, the task of choosing an appropriate modeling unit is not as simple as it may appear 

at a first glance. In order to design a workable system, there are some important issues to be taken 

into consideration when selecting the most basic units : 

 The unit should be accurate, to represent the acoustic realization that appears in different 

contexts. 

 The unit should be trainable. To estimate the parameters of the unit, there should be enough 

available data. Here it is pointed out again why words are the least trainable choice in 
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building a recognition system, since, despite their accuracy, it is almost impossible to get 

several hundred repetitions for all the words. Words are a proper choice of basic units only 

in the cases when speech recognition is domain specific i.e. for digits only. 

 The unit should be generalizable, so that any new word may be derived from a predefined 

unit archives for task-independent speech recognition. If this record would consist in a fixed 

set of word models, there would be no possible way to derive the new word model.[7] 

A practical challenge is how to balance these three important criteria. Thus, instead of modeling 

words, large-vocabulary recognition systems use sub-words as basic speech units, such as phones, 

since words are neither trainable, nor generalizable. 

Phonetic models provide no training problem, since sufficient occurrences for all phones can be 

found in just a couple of thousand phrases. They can be trained on one task and tested on another 

because they are vocabulary independent. These make phones trainable and generalizable. 

However, this phonetic model assumes that a phoneme is identical in any context and any word is 

obtained by concatenating independent phones. This is not the case, because phonemes are not 

produced independently and the realisation of a phoneme strongly depends by its immediately 

neighboring phonemes. To sum up, these phonetic models lead to less accurate models. 

This drawback can be overcome if we consider context dependent units.  If we have a large enough 

training set to estimate these context-dependent parameters, we could significantly improve the 

recognition accuracy. Here we introduce the notion of triphone model, a phonetic model that takes 

into consideration both the left and the right neighboring phones. If two phones have the same 

identity but different left or right context, they are considered different triphones. The different 

realizations of a phoneme are denoted with the term allophone.[1] 

Triphone models are very powerful phonetic models and they are more consistent than context-

independent units, but in this case the training becomes a challenging task. Since every triphone 

context is different, the main idea is to find instances of similar contexts and merge them, so that to 

obtain a manageable number of models that can be better trained.[1] 

Moving one step further, with the purpose of balancing trainability and accuracy between phonetic 

and word models, the modeling  of sub-phonetic events is observed. For sub-phonetic modeling, we 

can treat the state in phonetic HMMs as the basic sub-phonetic unit. In this context, the concept of 

clustering hidden Markov models has been proposed and generalized to the state-dependent output 

distributions across different phonetic models. Each cluster represents a set of similar Markov states 

and is called a senone. A  sub-word is thus composed of a sequence of senones after the clustering 

process is finished. The optimal number of senones for a system is mainly determined by the 

available training set and can be tuned. 

2.6 ASR Evaluation 

As a sanity check, it is better to use a small sample from the training data to measure the 

performance of the training set. Training-set performance is useful in the development stage to 

identify potential implementation bugs. Eventually, the tests must be done on a development set that 

typically consists of data never used in training. 

A way to evaluate the performance of the language model is to evaluate the word error rate(WER) 

yielded when placed in a recognition system. The WER is a very convenient tool used when 

comparing different language models, as well as for evaluating  improvements within one system. 

The general difficulty when using this method lies in the fact that the recognized word sequence can 
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have a different length from the reference sequence, which is supposed to be correct. These two 

sequences of words are aligned through a algorithm which has as final goal minimizing the cost of 

editing the recognized sentence, so that to look alike the reference one. The WER can be computed  

as :[16] 

 

 

 

(2.34) 

There are typically three types of word recognition errors in speech recognition : 

o Substitution : an incorrect word was substituted for the correct word 

o Deletion : a correct word was omitted in the recognized sentence 

o Insertion : an extra word was added in the recognized sentence. 

 

This kind of evaluating the performance provides, however, no specific details regarding the nature 

of the translation errors and further work is required in order to find the source of the error. 

Moreover, this kind of measurement does not keep count that a substitution error could be easily 

removed if the number of erroneous characters is small ( like „look”, ”looks”), or  difficult if the 

number of erroneous characters would be high( like „maintain”, ”sustain”). In order to overcome 

this drawback, sometimes it is used an evaluation done at the character level. 

 

 

 

(2.35) 

The last method of evaluation is done at the sentence level, and is useful only in the cases when the 

erroneous transcription of a single word in a word sequence makes the recognition useless. 

 

 

 

(2.36) 

From these three performance criteria used in evaluating a recognition system, the most commonly 

used is WER. 

2.7  Speech Recognition Tools 

For this project I have used CMU Sphinx. It is an open source toolkit and it is available online. 

CMU Sphinx system successfully integrated the statistical method of hidden Markov models and 

hence, it was able to train and embed context-dependent phone models in a sophisticated lexical 

decoding network. [3] It is a very popular and commonly used speech recognition tool because it 

offers the possibility of developing speaker-independent, large-vocabulary, continuous speech 

recognition systems with remarkable results.[1] This tool also presents summaries of the most 

inserted/deleted/substituted words and can compute the sentence/word error rates in a per speaker 

manner. 
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3 CHAPTER Automatic Speech Recognition Systems 

 

3.1 Current stage for Automatic Recognition System for Albanian 

One of my targeted languages was Albanian, a language with poor resources. These languages are 

spoken by a large number of people, but so far too few acoustic resources (speech data bases) and 

linguistic resources (text corpuses) were  acquired in order to develop an unconstrained continuous 

speech recognition system.  

The Baum-Welch training paradigm requires speech audio clips along with their textual 

transcriptions in order to estimate the models parameters.  Thus, speech databases are critical 

resources along with their characteristics, such like the number of hours of speech, number of 

speakers, etc, in developing a speech recognition system. 

As previously remarked, Albanese has no speech resources available, neither freely, nor 

commercially. Moreover, the speaker-independency desiderate implies resources from a large 

number of speakers. The inter-speaker speech variability is an important factor and can be 

overcome by completely and accurately modeling the various possible pronunciations of every 

phone. This can, in turn, be achieved by using recordings from a vast number of speakers. 

3.2 Speech database acquisition for Albanian ASR 

A complete speech database is formed from : 

 a set of speech signal samples. 

 a set of transcriptions, which must be perfectly synchronized with what is spoken in each 

speech sample. 

 additional information regarding speech type (isolated words, continuous, spontaneous). 

Since direct recording was not a possible solution, we have started to build speech databases by 

extracting fragments from website news. These audio clips also had correspondent transcriptions, 

which, in most of the cases, were related. We had access at 4 news databases : www.balkanweb.tv, 

www.topchannel.tv, www.topchannel2.tv and www.vizionPlus.tv. SpeeD gave us access to each 

database’s .php files. By processing the .php files specific for each database, we searched for the 

URL in each file and created two lists : one containing the fileids of the files, and the other one the 

correspondent link. 

3.2.1 Acquisition tools for audio clips for Albanian ASR 

With the help of a Java Program, we processed all the files having the php extension. We looked 

after the pattern „www.youtube.com” and extracted the substring corresponding to the URL in a 

list. We also checked if the URLs were still available, by removing the URLs which returned the 

code „404”  to the ”checksURL” method. After procesing all the files in the four databases, we had 

as output four lists in the format : ”ID : URL”. 

The next step was to separate each list in two separate lists : one with just one column, containing 

all the fileids, and the other one with the corresponding youtube links. We chose to do this with a 

script, since it was faster. We used ”sed”[17], which is a stream editor. 
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Problems encountered at this step :  

 For 50 files in www.topchannel2.tv database  it worked perfectly, but when we tested it on 

1000 files, there appeared more URLs than IDs. The problem was that some of the .php files 

contained the same links. We resolved this error with the help of a Linux command which 

sorted uniquely the elements after the second column, that of the URLs. 

So far, for each database we created two lists : one with the IDs corresponding to the .php file 

names and one with the URLs found in those .php files. 

The next step was to download the content of those audio clips, and then convert them in files with 

“wav” extension, as requiered by Sphinx. To do this, we used ffmpeg tool.[18] All the audio clips in 

the databases share the same sampling frequency (16kHz) and the same sample size (16 bits). 

During acquisition of these databases, one significant issue gained our attention. Some audio files 

had to be split into smaller samples (5  seconds to 25 seconds, as CMU Sphinx suggests). For this 

we used diarisation. Speaker diarisation is the process of partioning an input audio stream into 

homogeneous segments according to the speaker identity. It is a combination of speaker 

segmentation and speaker clustering. The first one aims to find speaker change points in an audio 

stream, while the second one aims at grouping together speech segments on the basis of speaker 

characteristics.[19]Through speaker diarisation process we have managed to transform the audio 

clips from the website news’ databases into audio data ready to be further used in speech 

recognition. 

3.2.2 Acquisition tools for transcriptions for Albanian ASR 

As stated before, Albanian is a low-resourced language. That is a language spoken by a large 

number of people, but so far no prior work has been done to collect and/or organize resources for 

developing an automatic speech recognition system. Given the lack of availability of Albanian text 

corpora and the need of large amount of text to create a language model suitable for an automatic 

speech recognition system, one of our goals was to acquire this type of language resources. Our 

only solution, given also the lack of time, was to gather the resources from the website news’ 

databases and organize them in the purpose of making a trust worthy text corpora. For every 

downloaded file with the extension “wav”, we had to find the correspondent transcription file. The 

first step was to convert the files from the “php” extension to “txt” conversion. We changed the 

extension from “php” to “html”, and then we converted the files from “html” to “txt” format using 

lynx tool. [22] Lynx is a Web browser that only reads text. We preferred lynx because it parses the 

raw HTML. The difference from wget, another Web Browser, is that lynx will render the HTML (it 

hides all the tags, arranges the text etc). After this, the files had to be encoded in UTF-8. This was 

done using “iconv” command. [23] Iconv converts string to requested character encoding. The .php 

files were intially encoded with UCS-2 little endian, and in order to move further we needed them 

encoded with UTF-8. The second step was to parse the files, in order to bring them in the format 

required by Sphinx. As can be seen from Figure 3.1, the useful information, that is the actual news, 

was surrounded by a Header and a Footer. Luckily for us, all the files belonging to a website news’ 

database had the same Header and Footer. Moreover, the text contained special characters (like “, #, 

$, etc), punctuation signs, uppercases and numbers and also had an undesired format. In this shape, 

the text was useless for Sphinx speech recognition toolkit, that is why these files had to be 

processed and brought in the required shape.  
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Figure 3.1 Example of Albanian .txt file in raw form 

We created a tool for the purpose of cleaning the text corpora, and bring .txt files in the needed 

format. This cleaning application is, mainly, written in the Java programming and can run on any 

operating system which has a Java Virtual Machine (JVM) installed. Besides Java, we also used a 

couple of Linux scripts to correct things that passed the Java filtering. The cleaning application 

takes a corpus as an input and, after applying several processing operations, it  returns a text without 

any digits, punctuation marks or special characters. All the programs that we used work as a 

pipeline, meaning the output of one program is the input of the following program. 

The first thing was to look for a specific header and footer for each database. For example, for the 

www.topchannel2.tv database, we noticed that in every raw file, the useful information, that is the 

actual news, was included between the header : “      [22][kerko.png]” and the footer : “   

[24]Facebook”. With the help of a Java Program, we removed the text above the Header and below 

the Footer.  

The next cleaning operation was to eliminate the new lines and also the lines which contained the 

word “IFRAME”, since it appeared after the Header, but it did not contain any useful information. 

One line represents, in fact, one sentence. I chose to do this with the help of a Linux script, since it 

was easier to implement.  

The third cleaning operation deals with the punctuation marks and other special characters. In ASR 

we do not output punctuation marks, so we do not need to estimate their occurrence probability. 

Consequently, all punctuation marks have to be removed or properly replaced by a word sequence. 

For instance : a) dots, question marks and exclamation marks are replaced with a new line character 

(this way, we will have one sentence per line in the output file) , b) commas are removed, c) 
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brackets are deteleted, d) characters like “$”  and “=”  are replaced with their naming “dollars" and 

“i barabartë”. 

The fourth cleaning operation was to remove the numbers. We chose this approach for this project, 

since we decided to focus all our energy in creating a wide Albanian database.  

In the end, all letters were lowercased and the empty line were removed. 

 

Figure 3.2 Cleaned Albanian text 

 

3.2.2.1 Diacritics 

Albanese is a language that does not make intensive use of diacritics, but, nevertheless, it uses 2 (”ë” 

and “ç”). The occurrence frequency of ” ë” is very high. Even though for a human reader the meaning 

of a text still makes sense in the absence of diacritics (given the paragraph context), the diacritics 

restoration task is not trivial for a computer. In order to simplify this operation, we chose to 

substitute ”ë” with “ww” and “ç” with “cc” in the transcription files, since these combinations do 

not exist in Albanian language. 

3.3 Building and acoustic, a language and a phonetic model for a small 

albanian database 

The next step consisted in creating the necessary models used in speech recognition from a small 

database (13 speakers, 2h ), for which we had both the transcriptions and the corresponding wavs. 

database name type #no of phrases #no of words #no of unique 

words MediaEval2013 recordings 969 14063 1165 

Table 3-1 MediaEval 2013 database 

 

3.3.1 Building the language model 

Language model is the representation of the grammar or syntax of the task. We used a Linux script 

which took as input a transcription file and returned as output the counts file, the vocabulary file and 

the sorted and sphinx format language model file. The language model toolkit expects its input to be 

in the form of normalized text files, with utterances delimited by <s> and </s> tags. 

 

Figure 3.3 transcription file for language model 
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<s> : beginning-utterance silence 

<sil> : within-utterance silence 

</s> : end-utterance silence 

Note that the words <s>, </s> and <sil> are treated as special words and are required to be present 

in the filler dictionary.  

The vocabulary file contains a list of all the unigrams in the input file, while the counts file contains 

the number of occurrences of the unigrams, bigrams and trigrams. 

More data will generate better language models. The albanian1.transcription contains 968 lines, but 

this is only the start. 

3.3.2 Building the phonetic model 

The phonetic model is a pronunciation dictionary that maps all the words in the vocabulary to a 

sequence of phonemes.. It is needed to link the acoustic model, which estimates phonemes acoustic 

likelihoods, to the language model, which estimates word sequence probabilities. The phonetic 

model works as an interface between the acoustic model which works with phonemes, and the 

language model, which works with words. 

Developing a phonetic dictionary is a quite difficult task. Since a manually created dictionary would 

have required a good knowledge of the language and also a tedious work, we have preferred an 

automatically approach. Thus, the need for a graphemes-to-phonemes tool which could 

automatically create phonetic transcriptions for a given vocabulary is obvious. Our need for a 

graphemes-to-phonemes tool is not singular, since the task of automatically creating phonetic 

transcriptions for words in a vocabulary is very important in speech recognition and it has been 

approached by several researchers. 

With the help of a Matlab program we obtained the phonetic dictionary. 

3.3.2.1 Graphemes-to-phonemes method description 

We adopted a SMT-based approach for the task of automatically creating the phonetic 

transcriptions. A Statistical machine translation (SMT) is a machine translation paradigm where 

translations are generated on the basis of statistical models whose parameters are derived from the 

analysis of bilingual test corpora.[20] A SMT system translates text in a source language into text in 

a target language. Two components are required for training : 

 A parallel corpus consisting of sentences in the source language and their corresponding 

sentences in the target language 

 A language model for the target language.[1] 

First of all, a grapheme represents the smallest semantically distinguished unit in a written 

language, analogous to the phonemes of spoken languages. In this case, we consider graphemes 

(letters) as “words” in the source language and sequences of graphemes (words) as “sentences” in 

the source language. As for the target language, its “words” are actually phonemes and its 

“sentences” are actually sequences of phonemes. 

3.3.2.2 Phones list 

The total number of phones in the Albanian language is 37 : 7 vowels and 30 consonants. This list 

of phones was generated automatically with the help of a Linux script. In Table 3-2 is the list of all 
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the phones used in our Automatic Speech Recognition System, together with word samples with 

both they written and phonetic form. 

 

Phoneme Words Samples 

Type IPA 

symbol 

Used 

symbol 

Written form Phonetic form 

v
o
w

el
s 

i i ali  a l i 
ɛ e atyre  a t y r e 
a a artistik  a r t i s t i k 
ə ë bëjmë b e1 j m e1 
ɔ o ciko  c i k o 
y y bymehet  b y m e h e t 
u u buxheti b u xh e t i 

co
n

so
n

a
n

ts
 

p p publike  p u b l i k e 
b b problem p r o b l e m 
t t pritjen  p r i t j e n 
d d presidenti  p r e s i d e n t i 
c q paqena p a q e n a 
ɟ gj energji e n e r gj i 
k k hipokrizi  h i p o k r i z i 
ɡ g gyl  g y l 
    c cope  c o p e 
dz x xhirua  xh i r u a 
  ʃ ç siç s i c1 
dʒ xh xhirua  xh i r u a 
θ th rrethanave  rr e th a n a v e 
ð dh radhe  r a dh e 
f f njoftoi  nj o f t o i 
v v investime  i n v e s t i m e 
s s fiskal  f i s k a l 
ʃ sh ashtu  a sh t u 
z z muzika  m u z i k a 
ʒ zh zhvillim zh v i ll i m 
h h ish  i sh 
m m fillimi  f i ll i m i 
n n barnat  b a r n a t 
ɲ nj njohjes  nj o h j e s 
ŋ ng ngjallur  n gj a ll u r 
j j arsyeja  a r s y e j a 
l l alarmit  a l a r m i t 
ɫ ll abdullah a b d u ll a h 
r ɾɾ merrej  m e rr e j 
ɾ r adresuar a d r e s u a r 

Table 3-2 Albanian Phoneme set 

 

http://en.wikipedia.org/wiki/Open_front_unrounded_vowel
http://en.wikipedia.org/wiki/Open-mid_back_rounded_vowel
http://en.wikipedia.org/wiki/Close_back_rounded_vowel
http://en.wikipedia.org/wiki/Voiced_bilabial_stop
http://en.wikipedia.org/wiki/Voiced_alveolar_stop
http://en.wikipedia.org/wiki/Voiced_palatal_stop
http://en.wikipedia.org/wiki/Voiced_velar_stop
http://en.wikipedia.org/wiki/Voiced_alveolar_sibilant_affricate
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Voiced_dental_fricative
http://en.wikipedia.org/wiki/Voiced_labiodental_fricative
http://en.wikipedia.org/wiki/Voiceless_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Bilabial_nasal
http://en.wikipedia.org/wiki/Palatal_nasal
http://en.wikipedia.org/wiki/Palatal_approximant
http://en.wikipedia.org/wiki/Velarized_alveolar_lateral_approximant
http://en.wikipedia.org/wiki/Alveolar_flap
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3.3.3 Building the acoustic model 

The acoustic model is the representation of the grammar or syntax of the task. As it was concluded 

in Section 2.5, the state-of-the-art large vocabulary speech recognition systems use Bakis-type 

Hidden Markov Models (HMMs) with Gaussian Mixture Models (GMMs) as output distributions to 

model sub-words speech units such as context-dependent phones (tri-phones) or senones.[1] The 

HMMs model these speech units using acoustic feature vectors (MFCC coefficients) extracted out 

of the original time-domain speech signal. 

3.3.3.1 Speech unit selection 

The selection of the speech units was the first issue to be approached. As discussed in Section 2.5.3, 

words cannot be used as basic speech units when designing a large-vocabulary continuous speech 

recognition system. They are neither trainable, meaning there are not enough occurrences for every 

word to robustly train a model, nor generalizable, for every new ASR task, with a new vocabulary, 

a new set of models needs to be constructed. Thus, sub-words speech units such as context-

independent phones (simply called phones), context-dependent phones (called tri-phones) or 

syllables were taken into consideration. The trainable attribute narrowed our possibilities to phones 

and tri-phones, since we do not have a large amount of training data to train syllable models. 

3.4 Data preparation for training and testing an ASR 

3.4.1 Training 

CMU Sphinx project offers the possibility to create acoustic models for a new language. The trainer 

learns the parameters of the models of the sound units using a set of sample speech signals. This is 

called a training database.  

The trainer needs to be told which sound units he has to learn the parameters of, and at least the 

sequence in which they occur in every speech signal in your training database. This information is 

provided to the trainer through a file called the transcript file, in which the sequence of words and 

non-speech sounds are written exactly as they occurred in a speech signal, followed by a tag which 

can be used to associate this sequence with the corresponding speech signal.  

The trainer then looks into a dictionary which maps every word to a sequence of sound units, to 

derive the sequence of sound units associated with each signal. The are two dictionaries, one in 

which legitimate words in the language are mapped sequences of sound units (or sub-word units), 

and another in which non-speech sounds are mapped to corresponding non speech or speech-like 

sound units. They are referred as the language dictionary and the latter as the filler dictionary.[21] 

The file structure for the database is: 

 etc 

 database.dic - Phonetic dictionary 

 database.phone - Phoneset file 

 database.lm.DMP - Language model 

 database.filler - List of fillers 

 database.fileids - List of files for training 

 database.transcription - Transcription for training 
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 wav 

 fileID.wav – Recording of speech utterances 

Let’s go through the files and describe their format and the way to prepare them : 

Fileids (database.fileids) file is a text file listing the names of the recordings (utterance ids), one by 

line, in the format speaker_1/file_1. 

Fileids file contains the path in a filesystem relative to wav directory. Note that fileids file should 

have no extensions for audio files, just the names. 

Transcription file (database.transcription) is a text file listing the transcription for each audio file. 

It is important that each line starts with <s> and ends with </s> followed by id in parentheses. The 

parenthesis must contain only the fileid. It is critical to have the fileids and the transcription file 

perfectly synchronised. The number of line in both should be identical and the last part of the fileids 

file (speaker1/file_1) and the utterance id file_1 must be the same on each line. 

Speech recordings (wav files) -  Recording files must be in MS WAV format with specific sample 

rate - 16 kHz, 16 bit, mono for desktop application. Audio files should not be very long and should 

not be very short. Optimal length is between 5 seconds and 30 seconds. Amount of silence in the 

beginning of the utterance and in the end of the utterance should not exceed 0.2 seconds Audio 

format mismatch is the most common training problem. 

Phonetic Dictionary (database.dic) , as discussed in Section 2.4, should have one line per word 

with word following the phonetic transcription. 

It is important not to use case-sensitive variants like “a” and “A”. Also, Sphinxtrain does not 

support some special characters like ‘*’ or ‘/’ and support most of others like ‘+’ or ‘:’. To avoid 

potential errors, it is better to use alphanumeric-only phone-set. 

Phoneset file (database.phones) should have one phone per line. The number of phones should 

match the phones used in the dictionary plus the special SIL phone for silence: 

Language model file (database.lm.DMP) should be in CMU binary format, that is DMP format. 

Filler dictionary (database.filler) contains filler phones (not-covered by language model non-linguistic 

sounds like breath, hmm or laugh). 

The next step in the training process is to edit the configuration file, sphinx_train.cfg, found in the etc 

subfolder. Here must be specified the paths to the above mentioned files and also the model 

paramaters, the number of senones and the number of Gaussian densities. The more senones model 

has, the more precisely it discriminates the sounds. But on the other hand if there are too many 

senones, model will not be generic enough to recognize unseen speech. That means that the WER 

will be higher on unseen data. The optimal numbers of these parameters depend on the database. To 

train the model properly, we tried different values and selected the ones which give the best WER 

for a development set. 

After this, the training process is done in two steps : a) the feature vectors (MFCCs) are extracted 

from the wav files and b) the acoustic model is trained.  

 

Figure 3.4 Example of output during decoding 
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Figure 3.4 represents the typical output during decoding . 

The logdir sub-folder will have the following structure :  

000.comp_feat 

05.vector_quantize 
 20.ci_hmm  

30.cd_hmm_untied 

40.buildtrees 

45.prunetree 

50.cd_hmm_tied 
Table 3-3Structure of decoding process 

On the stage 000.comp_feat the feature files are extracted. The system does not directly work with the 

speech signals. The signals are first transformed into a sequence of feature vectors, which are used 

further. 

The script slave_feat.pl will compute, for each training utterance, a sequence of 13-dimensional 

vectors (feature vectors) consisting of the Mel-frequency cepstral coefficients (MFCCs). The 

MFCCs will be placed automatically in a directory called ‘feat’. 

Once the jobs launched from 20.ci_hmm have run to completion, the Context-Independent (CI) 

models for the sub-words units in the dictionary have been trained. 

When the jobs launched from the 30.cd_hmm_untied directory run to completion, the models for 

Context-Dependent sub-word units (triphones) with united states have been trained. These are 

called CD-untied models and are necessary for building decision trees in order to tie states.  

The jobs in 40.buildtrees will build decision trees for each state of each sub-word unit. 

The jobs in 45.prunetree will prune the decision trees and tie the states. 

Following this, the jobs in 50.cd-hmm_tied will train the final model for the triphones in the training 

corpus. These are called CD-tied models and are trained in many begins. It begins with 1 Gaussian 

per state HMMs, followed by 2 Gaussian per state HMMs and so on till the desired number of 

Gaussians per State have been trained. The jobs in 50.cd-hmm_tied automatically train all the 

intermediate CD-tied models. 

After the training is finished, a new sub-folder will appear, called model_parameters. This sub-

folder contains :  

 mixture weights : the weights given to every Gaussian in the Gaussian mixture 

corresponding to a state 

 transition matrices : the matrix of state transition probabilities 

 means : means of all Gaussians 

 variances : variances of all Gaussians 

 noisedict : contains SIL 

 mdef : model definition file for context independent phones CI. The function of a model 

definition file is to define or provide a unique numerical identity to every state of every 

HMM that you are going to train, and to provide an order which will be followed in writing 

out the model parameters in the model parameter files. During the training, the states are 

referenced only by these numbers. 
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3.4.1.1 The hierarchical training strategy 

The core acoustic models of a modern speech recogniser typically consist of a set of tied three-state 

HMMs with Gaussian output distributions. This core is commonly built in the following steps :  

1. HMM system design. This step consists in choosing the speech units to be modeled, the 

voice features to be used as modeling paramteres, the HMM topology and the number of 

Gaussian mixtures per state. The output of this stage is a set of „prototypes” – all the models 

are given default values. 

2. System initialization. The set of „prototypes” resulted from the previous stage is initialized 

using the isolated speech unit training technique. The small isolated phones database 

(PHONES) is utilized for this purpose. The alternative to this type of system initialization 

would be „flat starting”, which involves computing the voice features for each frame of each 

speech utterance, and using the statistical results as initial model parameters. The output of 

this stage is a set of roughly initialized HMMs. 

3. Embedded phone HMM training. Now, the initialized models are trained using the isolated 

words database (WORDS). Whereas isolated unit training is sufficient for building whole 

word models, the main HMM training procedures for building sub-word systems revolve 

around the concept of embedded training. This method is employed because the WORDS 

database provides only information on the order of the phones and not on their temporal 

borders. In the end, the output of this stage is a robustly trained HMM set. When performing 

embedded training, it is good practice to monitor the performance of the models on unseen 

test data and stop training when no further improvement is obtained.  

4. Embedded triphones HMM training. This stage consists in two steps : the first one is a 

design adjustment that aims to create triphone models x – q + y and the second one is 

another training session. Given the best set of phone |HMMs trained at the previous step, we 

can build triphone HMMs by cloning the phone models (a triphone HMM is created by 

cloning the phone HMM for the central state). The newly created triphone HMM set is 

retrained (through embedded-training) by using the WORDS database. After this training 

session the performance of the system is reevaluated. (x – q + y denotes the triphone 

corresponding to phone q spoken in the context of a preceding phone x and a following 

phone y) 

5. Embedded triphone HMMs training. This step uses models obtained at step four and retrains 

them using the WORDS database. Finally, the continuous speech ASR system performance 

is evaluated. 

3.4.2 Testing 

It is critical to test the quality of the trained database in order to select best parameters, understand 

how application performs and optimize parameters. To do that, a test decoding step is needed. The 

decoding is now a last stage of the training process.  

After testing the models built on the small database, the next step was to try to extend them, in order 

to obtain an accurate speech recognition system. 
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3.5 Final Results for Albanian ASR 

Table 3-3 presents the speech databases that we built during our research period. The total amount 

of training speech data summed up to about 8 hours of speech from 23 different speakers and 6 

hours of audio clips extracted from the websites’ databases. SD2 contains audio clips which are not 

of god quality, being filtered at 5.5 kHz. SD4 contains audio clips extracted from 

www.topchannel2.tv in which several speakers are present. Even though we have the transcriptions 

for all the spoken text, the clips are too long. Consequntly, Sphinx toolkit fails to perfectly align the 

audio to the transcription. 

ID database Duration 

[h] 

filtered low-pass [kHz] type comments 

SD1 MediaEval 2013 2 8 recordings native speakers 

SD2 Chunk1-6 3:20 5.5 broadcastnews expert 

transcribed  

SD3 Chunk 7-10 2 8 broadcastnews expert 

transcribed  

SD4 topchannel2 5:40 8 broadcastnews loose 

transcriptions Table 3-4 Albanian Speech database 

 

Table 3-4 summarizes the data regarding the text corpora that were collected and further used in the 

experiments. The numbers are computed on the clean corpora (after the processing operations 

described in the previous section). 

 

ID database #total words #unigrams #phrases 

TD1 MediaEval2013 14063 1165 969 

TD2 topchannel+vizionPlus+balkanweb 48560551 377170 4841049 

TD3 MediaEval2013+Chunk 1-10 74063 11342 3340 

TD4 Chunk 7-10 22003 11342 845 

TD5 topchannel2 57129 12310 187 

Table 3-5 Albanian Text copora 

The acoustic models were created using the CMU Sphinx toolkit and the default training strategy. 

We employed (–states) HMMs to model context-dependent phones (triphones) using Mel-

Frequency Cepstral Coefficients (MFCCs). The total number of HMM states (called senones) was 

limited to 1000. Every senone was modelated with a Gaussian Mixture Model (GMM) with 8 

Gaussian components. 

 

ID trained on 

AM01 SD1 

AM02 SD1+SD2 

AM03 SD1+SD2+SD4 

AM04 SD3 

AM05 SD3+SD4 

Table 3-6 Albanian Acoustic Models 
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Finally, the large-vocabulary attribute of our continuous speech recognition system was achieved by 

creating a general language model for Albanian using all the text corpora available, that we had 

processed from the website news databases. This language model is denoted LM02.  

ID trained on 

LM01 TD2 

LM02 TD3 

LM03 TD4 

LM04 TD1+TD5(90%)+TD2(10%) 

LM05 TD4+TD5 

Table 3-7 Albanian Language Models 

Table 3-8 presents the various experiments made during a period of one year, consequently 

revealing the evolution of our ASR system. 

Exp ASR System Used Models Evaluation set Accuracy [%] Error rate [%] 

1 ASRS-1 AM05+LM05 SD1 14.46 85.54 

2 ASRS-2 AM02+LM02 SD1+SD2 45.63 54.37 

3 ASRS-3 AM04+LM01 SD3 38.88 61.62 

4 ASRS-4 AM02+LM01 SD3 25.21 74.79 

5 ASRS-5 AM04+LM03 SD3 72.39 27.61 

6 ASRS-6 AM02+LM03 SD3 66.14 33.86 

7 ASRS-7 AM04+LM04 SD3 40.87 59.13 

Table 3-8 Albanian experimental results 

Several conclusions can be drawn from Table 3-7. First, ASRS-1 had a low accuracy percentage. 

From these results, we drawn the conclusion that topchannel2 was not a trust worthy speech 

database. The audio clips were too long, and the Sphinx toolkit failed to align the whole clip to the 

audio. Moreover, since the clips were raw news broadcasts, the environment in which they were 

recorded presented different disadvantages. These wavs contained high additive noice, multiple 

acoustic sources, like music or other people talking in the back, or reverberant environments.  

Another issue worth mentioning is the difference between ASRS-4 and ASRS-6.  Even though they 

are tested on the same database, that is SD3, and use the same acoustic model, that is AM02, their 

performance is very different. Obviously, the difference lies in the language model. ASRS-6 has a 

greater accuracy percentage because the language model is trained on the same database on which it 

is tested. Even though ASRS-6 would seem a good ASR at a first glance, these are called artificially 

improved results. 

In the end, the best configuration seems to be ASRS-5. But this configuration uses models that are 

trained and tested on the same database, that is SD3. In order to properly evaluate an ASR, it must 

be tested on unseen data. Consequently, we trained an interpolated language model LM04 

(MediaEval2013 + topchannel2 (90%) + all news corpora (10%)) in order to obtain some real 

results. ASRS-7 reflects the real performances of our continuous recognition system. 

3.6 Automatic Speech Recognition System for English 

Our next targeted language was English. Here, our job was simplified because we had access to a 

very large speech database. TIMIT is a corpus of phonemically and lexically transcribed speech 

of American English speakers of different sexes and dialects and is designed for the development 
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and evaluation of automatic speech recognition systems. TIMIT contains broadband recordings of 

630speakers of eight major dialects of American English, each reading ten phonetically rich 

sentences. The TIMIT corpus includes time-aligned orthographic, phonetic and word transcriptions 

as well as a 16-bit, 16kHz speech waveform file for each utterance. Our task consisted in creating 

the models necessary for speech recognition. 

3.6.1 Building the language model 

The main goal of our work regarding English language was to develop a language model suitable 

for English continuous speech. The n-gram paradigm and the theoretical deails about the 

construction of n-gram language models were presented in Section 2.2.1. As already mentioned, a 

large amount of textual data is requiered to create a general language model, one that is suitable in 

various domains. We used all the textual transcriptions of the audio files in the TIMIT speech 

database to create a tri-gram language model. The total number of phrases was 6300. Table 4-1 

summarizes the available text corpora for training a language model.  

 

database #total words #unigrams #phrases Duration [h] 

TIMIT 54375 6103 6300 5 
Table 3-9 TIMIT Text corpora 

 

Before using it for continuous speech recognition, we wanted to evaulate the language model in 

terms of perplexity (PPL) and out-of-vocabulary (OOV) rate. For this, we made a new language 

model with 90% of the text corpora and evaluated it on the remaining 10%. The concepts of 

perplexity and out-of-vocabulary rate were discussed in Section 2.2.3.  

Exp Language model built with corpus Evaluation test set OOV PPL 

1 90% of Timit database 10% of Timit database 1680 12.93 
Table 3-10Language model evaluation for TIMIT database 

 

Perplexity is a measurement of how well a probability distribution predicts a sample. In other 

words, it determines how well can the model predict the next word in a sentence. It is the 

probability of the test set, normalized by the number of words. The out-of-vocabulary words are 

words that cannot be predicted by the language model, since they were not found in the training set. 

3.6.2 Building the phonetic model 

As it was discussed in Section 2.4, a phonetic model is used to link the acoustic model to the 

language model. 

3.6.2.1 Phones list 

The list of phones (24 consonants and 20 vowels) in English language is presented below, in Table 

3-11 
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IPA 

Symbol 

Phone Example Phonetic 

Form ɑː aa fAther f aa1 dh axr 

 æ ae fAt fat f ae1 t 

ʌ ah bUt b ah1 t 

ɔː ao dOOr, 

lAWn 

d ao1 r 

aʊ aw hOW hh aw1 

ə ax About ax b aw1 t 

a ɪ ay hIde hh ay1 d 

e eh gEt g eh1 t 

   el tabLE t ey1 b el 

   em systEM s ih1 s t ax m 

   en takEN t ey1 k ix n 

ɜː er sEARch s er1 ch 

e ɪ ey gAte g ey1 t 

ɪ ih bIt b ih1 t 

i iy happY hh ae1 p iy 

iː iy bEAt b iy1 t 

əʊ ow nOse n ow1 z 

ɔɪ oy tOY t oy1 

ʊə uh fUll f uh1 l 

u uw fOOd f uw1 d 

b b Book b uh1 k 

  ʃ ch CHart ch aa1 r t 

d d baD b ae1 d 

ð dh  faTHer f aa1 dh axr 

f f  lauGH l ae1 f 

g g Good g uh1 d 

h hh Hello hh eh2 l ow1 

  ʒ jh Jacket jh ae1 k ix t 

k k Kill k ih1 l 

l l Late l ey1 t 

m m gaMe g ey1 m 

n n maN m ae1 n 

ŋ ng sittiNG s ih1 t ix ng 

p p Path p ae1 th 

r r Reason r iy1 z en 

ʂ s maSS m ae1 s 

ʃ sh SHip sh ih1 p 

t t baT b ae1 t 

θ th THeatre th iy1 t axr 

v v Various v ae1 r iy ax s 

w w Water w ao1 t axr 

j y Yellow y eh1 l ow2 

z z boyS b oy1 z 

ʒ zh viSion v ih1 zh ix n 

 pau Short 

silence 

 

Table 3-11Phoneme set in English 

 



49 

 

3.6.3 Building the acoustic model 

In order to properly evaluate the ASR, the models need to be tested on unseen data. For that, we 

used 80% of the database for training the acoustic model, and the rest of 20% for testing the models, 

in order to be able to draw some conclusions. 

After many experimental setups, we decided to set the number of senones to 1000 and the final 

number of Gaussian densities at 32.  

 

Exp #no of senones Accuracy [%] Error [%] 

1 1000 39.22% 60.78% 

2 4000 29.71% 70.29% 

Table 3-12 Results for TIMIT database 

 

From table 4-3 can be drawn the conclusion that the number 4000 set for senones resulted in a 

model not generic enough, that translated into a higher WER on unseen data. The difference 

between the experiment 2 with 4000 senones and experiment 1 with 1000 senones is reflected in an 

average of 9.51% performance drop (expressed as the error increases). 

3.7 Automatic Speech Recognition System for Romanian 

The last targeted language was romanian. As in the case for english, we had access to a very large 

speech database. SpeeD Research Laboratory staff  provided us 1.5G of speech resources, which we 

further used in the Romanian ASR implementation. 

For database4, several speakers denoted 01,02,03..  20 recorded several sets of audio clips, as 

follows : 

ID Type of speech Domain 

00 - 10000 isolated words one word per file 

01 - 1019 continuous read speech newspaper articles 

02 - 244 continuous (dialogue) read speech library related 

03 - 150 spontaneous read speech tourism related - media corpus 

04 - 150 spontaneous read speech tourism related - media corpus 

Table 3-13 Romanian database 

 

Gathering all these audio clips, we created a speech database of 65 hours, from which we used 97% 

for training and 3% for testing.  

3.7.1 Building the language model 

As can be seen in Table 4-6, we had access to a very large database. Due to this amount of data, we 

had the possibility to design a large-vocabulary continuous speech recognition system for 

Romanian. 
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database #total no. of words #unique words Duration [h] 

database4 254 347 10038 35 
Table 3-14 number of words for Romanian database 

 

3.7.2 Building the phonetic model 

As it was discussed in Section 3.2.2., a phonetic model is used to link the acoustic model to the 

language model. SpeeD provided us with the automatic phonetisation, so we successfully built the 

phonetic dictionary.  

3.7.2.1 Phones list 

In our studies we have employed the set of 34 phones. The table lists the standard IPA symbols 

along with the used symbols and also gives some words examples. 

Phoneme Words 

examples 

 

Type IPA 

Symbol 

Used 

Symbol 

Written 

form 

Phonetic 

form 

v
o

w
e
ls

 

a a sAt s a t 

ə a1 gurĂ g u r a1 

e e marE m a r e 

i i lIft l  i f t 

j i1 tarI t a r i1 

ɨ i2 Între i2 n t r e 

o o lOc l o c 

u u şUt s1 u t 

y y ecrU e c r y 

∅ o2 blEU b l o2 

se
m

i-

v
o

w
e
ls

    e1 dEal d e1 a l 

j i3 fIară f i3 a r a1 

   o1 Oase o1 a s e 

w w saU s a w 

c
o

n
so

n
a
n

ts
 

c k2 CHem k2 e m 

b b Bar b a r 

p p Par p a r 

k k aCum a k u m 

  ʃ k1 Cenuşă k1 e n u s1 

a1 g g Galben g a l b e n 

  ʒ g1 Girafă g1 i r a f a1 

ɟ g2 unGHI u n g2 

d d Dar d a r 

t t ToT t o t 

f f Faţă f a t1 a 

v v Vapor v a p o r 

h h Harta h a r t a 

ʒ j aJutor a j u t o r 

ʃ s1 coŞ k o s1 

l l Lac l a c 

m m Măr m a1 r 
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n n Nas n a s 

s s Sare s a r e 

z z Zar z a r 

r r Risc r i s k 

    t1 Ţăran t1 a1 r a n 

Table 3-15List of phones in Romanian 

3.7.3 Building the acoustic model 

As in the previous cases, in our attempt to create a continuous speech recognition system for 

Romanian we have decided to use the state-of-the-art mathematical tool : HMMs with GMMs. 

After several experimental setups, we decided to set the number of senones to 1000 and the final 

number of Gaussian densities at 16.  

The selection of the speech units was the first issue that mst be approached. Obviously, for a large-

vocabulary continuous speech recognition system we cannot use words as basic units. They are 

neither trainable, because there are not enough occurences for every word to robustly train a model, 

nor generalizable, because for every new ASR task, with a new vocabulary, a new set of models 

needs to be constructed. The trainable attribute (there should be enough data to estimate the 

parameters of the unit) of a properly chosen speech unit limited our possibilities to phones and 

triphones. The reason is that we do not have enough occurences to train syllable models in the our 

database. 

After training the acoustic model, we tested the obtained models, to be able to evaluate them. 

Problems encountered at this step :  

 The ASR returned 2-3 words per decoded audio clip, even if the decoded audio clip 

contained a phrase (more than 3 words). Our first approach to this problem was to decode 

only wavs that contained phrases, thinking that the decoding of isolated words caused the 

bad recognition. After we eliminated them from fileids list, the fileids corresponding to 

wavs with isolated words, the recognition was still very bad. After several experimental 

setups, we saw that some wavs had 128 kbit/s ratebit, and they were the main cause for the 

bad recognition results.  

 

 

Exp Training set Evaluation set Accuracy [%] Error [%] 

1 97% from database4 3% from database4 36.32 63.68 
Table 3-16 Evaluation for Romanian database 

Table 3-16 summarizes the performance of our continuous speech recognition system for 

Romanian. Database4 consisted in 107,751 audio files ( almost 6700 per speaker ) which were split 

into a training part comprising 104868 ( almsot 6500 per speaker) and an evaluation part 

comprising 2883 files (260 per speaker). The training set contained both isolated words and phrases, 

while the testing set contained only phrases.  
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3.8 Demo Application 

All our experiments presented so far in this thesis were done in an offline, experimental setup. For 

demonstration purposes a demo application was created. This application was provided by Sphinx 

and is developed in the Java programming language. It allows the user to load specific acoustic 

models and specific language models or grammar at his own choice. Having as basis this Java 

application, I implemented a graphical user interface (GUI), in order to be more user-friendly. The 

demo application is very easy to use and is a convenient way to evaluate the recognition system. 

First, the user must specify the desired language. A screenshot illustrating the first frame of the 

application is presented in Figure 3.5 . 

 

Figure 3.5 GUI for Demo application 

The language is selected by direct speaking, after the Record Speech button is pressed. Obviously, a 

microphone has to be connected to the computer so the application can record the spoken word. I 

implemented this task using a JSGF grammar. 

 

 

Figure 3.6 The language word graph 
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Figure 3.6 illustrates the word graph with all the words and the allowable transitions. The nodes 

named N are null nodes. A transition through one of these nodes does not output any word. These 

nodes serve as start and end points in the word graph. All three words have the same equally 

probability. The nodes marked as sil stand for silence zones in the audio data. 

 

Figure 3.7 FSG Grammar for Demo application 

 

After a language was selected, the frame specific to the language pops-up. From the Combo Box the 

user can select an ID, corresponding to a wav file and a transcription file specific to the chosen 

language. I have selected more wavs for each of the targeted language, such that the user to be able 

to perform several tests, in order to evaluate the performance of the automatic recognition systems. 

Once the user presses the Start button, in the second TextArea appears the transcription file and in 

the first TextArea what our system recognized. The JFrame is illustrated in Figure 3.8. 

 

 

Figure 3.8 GUI  for Romanian Recognition 
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Similar JFrames are made for Albanian and English recognition. The user can perform several tests 

and draw some conclusions regarding the performance of our Multilingual Automatic Speech 

Recognition System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

4 Conclusions 
 

The main objective of this thesis was to create an automatic speech recognition system for three 

languages : Albanian, English and Romanian. Albanian is a so called low-resourced language, a 

language that is spoken by a large number of people, but no prior work of collecting and organizing 

speech and/or text resources has been done. At this part, our contribution was to acquire a speech 

database in order to train and evaluate the ASR. In the second part, we designed ASRs for English 

and Romanian, two languages with available resources.  

This thesis presents the successive steps which were employed in order to create a multilingual 

speech recognition system. Chapter 1 and 2 describes the theoretical aspects regarding speech 

recognition. Chapter 3 presents the processing tools required to create an ASR and the stages of 

training the necessary models. Phonemes were chosen as basic speech units for the HMM-based 

recognition system, therefore a phonetic dictionary that maps words to their phonetic form is 

mandatory.  

The first sections of Chapter 3 describe explicitly the steps in designing an ASR from zero. It 

presents the problems encountered when gathering resources for building a speech database. After 

the required resources are described, together with the cleaning tools for the text corpora, several 

experiments are presented. As a conclusion, we have managed to build a 14 hours speech database 

which can be further used to design a large vocabulary-speech recognition system. 

Sections 3.6 and 3.7 present the available databases for Romanian and English. Each text corpora is 

described in terms of total number of words, in number of unique words and in number of phrases. 

For every speech database we have selected 90% for training purpose and 10% for testing one. The 

results presented in this thesis approach the reality, since all the tests are done on unseen data. 

The last section in Chapter 3 presents a GUI demo application. It comes by default with the CMU 

Sphinx toolkit, my contribution being the GUI interface. It is a user-friendly application through 

which one can test our automatic speech recognition systems. 

For all the three targeted languages, the inter-speaker variability could be approached by creating 

even more general acoustic models. The only way to accomplish this is by collecting a larger 

continuous speech database. The attribute “larger” refers to a more representative database, with at 

least 150 speakers of different ages, different social environments, different accents etc. This means 

a more difficult task than the acquisition of the Albanian speech database. 

A second perspective consists in adding also number recognition to our ASRs. This is not a trivial 

task. Take, for example, the spoken representation of the number 1991. The speech signal has 

nothing in common with the actual digits 1, 9, 9 and , but is, in fact, the spoken representation of the 

word sequence one thousand nine hundred ninety one. The ASR language model must predict the 

different words which compose this number and not the digits-written form. Additionally, the range 

of numbers is potentially infinite, while the range of words used to compose the numbers is limited. 

Another issue, similar with that of the numbers’ recognition, regards abbreviations. The fact that the 

speaker utters the unabbreviated form makes this task very challenging. Consequently, a new 

cleaning operation should be added, one that would replace abbreviated word forms with full word 

forms based on a list of abbreviations. 
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Annex 1 
Source code of the main Java program for the demo application : 

package edu.cmu.sphinx.demo.transcriber; 

import edu.cmu.sphinx.api.Configuration; 

import edu.cmu.sphinx.api.LiveSpeechRecognizer; 

import edu.cmu.sphinx.api.SpeechResult; 

import java.io.IOException; 

import javax.sound.sampled.LineUnavailableException; 

 

/** 

 * 

 * @author ioanacalangiu 

 */ 

public class MainFrame extends javax.swing.JFrame { 

 

    private boolean recEnabled; 

    private String afisare; 

    private Configuration configuration; 

    private Configuration configuration1; 

    private SpeechResult result; 

    /** 

     * Creates new form MainFrame 

     */ 

    public MainFrame() { 

        initComponents(); 

         setLocationRelativeTo(null); 

         

        configuration = new Configuration(); 

        

configuration.setAcousticModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-5prealpha/models/acoustic/wsj_8kHz"); 

        

configuration.setDictionaryPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/models/acoustic/wsj_8kHz/dict/cmudict.0.6d"); 
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configuration.setGrammarPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/src/apps/edu/cmu/sphinx/demo/dialog/"); 

        configuration.setGrammarName("language"); 

        configuration.setUseGrammar(true); 

    } 

 

    /** 

     * This method is called from within the constructor to initialize the form. 

     * WARNING: Do NOT modify this code. The content of this method is always 

     * regenerated by the Form Editor. 

     */ 

    @SuppressWarnings("unchecked") 

    // <editor-fold defaultstate="collapsed" desc="Generated Code">                           

    private void initComponents() { 

 

        jButton1 = new javax.swing.JButton(); 

        jLabel1 = new javax.swing.JLabel(); 

        jLabel2 = new javax.swing.JLabel(); 

        jLabel3 = new javax.swing.JLabel(); 

        jLabel4 = new javax.swing.JLabel(); 

 

        setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); 

        setTitle("Multilingual Speech Recognition"); 

 

        jButton1.setText("Record Speech"); 

        jButton1.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jButton1ActionPerformed(evt); 

            } 

        }); 

 

        jLabel1.setText("english"); 
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        jLabel2.setText("romanian"); 

 

        jLabel3.setText("albanian"); 

 

        jLabel4.setText("Please select your language:"); 

 

        javax.swing.GroupLayout layout = new 

javax.swing.GroupLayout(getContentPane()); 

        getContentPane().setLayout(layout); 

        layout.setHorizontalGroup( 

            

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

            .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, 

layout.createSequentialGroup() 

                .addGap(0, 0, Short.MAX_VALUE) 

                .addComponent(jButton1)) 

            .addGroup(layout.createSequentialGroup() 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                    .addGroup(layout.createSequentialGroup() 

                        .addGap(53, 53, 53) 

                        

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                            .addComponent(jLabel3) 

                            .addComponent(jLabel2) 

                            .addComponent(jLabel1))) 

                    .addGroup(layout.createSequentialGroup() 

                        .addContainerGap() 

                        .addComponent(jLabel4))) 

                .addContainerGap(16, Short.MAX_VALUE)) 

        ); 

        layout.setVerticalGroup( 

            

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

            .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, 

layout.createSequentialGroup() 



62 

 

                .addGap(37, 37, 37) 

                .addComponent(jLabel4) 

                .addGap(18, 18, 18) 

                .addComponent(jLabel1) 

                .addGap(30, 30, 30) 

                .addComponent(jLabel2) 

                .addGap(27, 27, 27) 

                .addComponent(jLabel3) 

                

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 49, 

Short.MAX_VALUE) 

                .addComponent(jButton1)) 

        ); 

 

        pack(); 

    }// </editor-fold>                         

 

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        // TODO add your handling code here: 

        if (jButton1.getText().equals("Stop recording")) { 

            //ResponseText.setText(" "); 

            recEnabled = false; 

        } else { 

            recEnabled = true; 

            jButton1.setText("Stop recording"); 

            System.out.println("start"); 

            javax.swing.SwingWorker<String, String> _swingWorker; 

            _swingWorker = new javax.swing.SwingWorker<String, String>() { 

                @Override 

                 

                public String doInBackground() throws LineUnavailableException, 

IOException, Exception { 

                    System.out.println("2"); 

                    LiveSpeechRecognizer recognizer = new 

LiveSpeechRecognizer(configuration); 
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                    System.out.println("3"); 

                    recognizer.startRecognition(true); 

                    System.out.println("4"); 

                    while(recEnabled){ 

                        System.out.println("Select your language:"); 

                        String utterance = 

recognizer.getResult().getHypothesis(); 

                        System.out.println(utterance); 

 

                            if(utterance.equals("english")){ 

                                recognizer.stopRecognition(); 

                                System.out.println("english"); 

                                EnglishFrame_v2 test = new EnglishFrame_v2(); 

                                test.setVisible(true); 

                                break; 

                            } 

                            if(utterance.equals("romanian")){ 

                                recognizer.stopRecognition(); 

                                System.out.println("romanian"); 

                                RomanianFrame test1 = new RomanianFrame(); 

                                test1.setVisible(true); 

                                break; 

                            } 

                            if(utterance.equals("albanian")){ 

                                recognizer.stopRecognition(); 

                                System.out.println("albanian"); 

                                AlbanianFrame test2 = new AlbanianFrame(); 

                                test2.setVisible(true); 

                                break; 

                            } 

                                else { 

                            System.out.println("Please try again :)"); 

                            } 
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                 } 

                 System.out.println("stop"); 

                 recognizer.stopRecognition();     

                 return afisare; 

                } 

 

                @Override 

                protected void done() { 

                    jButton1.setText("Record speech_1"); 

                } 

            }; 

 

            _swingWorker.execute(); 

        } 

    }                                         

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String args[]) { 

        /* Set the Nimbus look and feel */ 

        //<editor-fold defaultstate="collapsed" desc=" Look and feel setting 

code (optional) "> 

        /* If Nimbus (introduced in Java SE 6) is not available, stay with the 

default look and feel. 

         * For details see 

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html  

         */ 

        try { 

            for (javax.swing.UIManager.LookAndFeelInfo info : 

javax.swing.UIManager.getInstalledLookAndFeels()) { 

                if ("Nimbus".equals(info.getName())) { 

                    javax.swing.UIManager.setLookAndFeel(info.getClassName()); 

                    break; 

                } 
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            } 

        } catch (ClassNotFoundException ex) { 

            

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex); 

        } catch (InstantiationException ex) { 

            

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex); 

        } catch (IllegalAccessException ex) { 

            

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex); 

        } catch (javax.swing.UnsupportedLookAndFeelException ex) { 

            

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logg

ing.Level.SEVERE, null, ex); 

        } 

        //</editor-fold> 

 

        /* Create and display the form */ 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new MainFrame().setVisible(true); 

            } 

        }); 

    } 

 

    // Variables declaration - do not modify                      

    private javax.swing.JButton jButton1; 

    private javax.swing.JLabel jLabel1; 

    private javax.swing.JLabel jLabel2; 

    private javax.swing.JLabel jLabel3; 

    private javax.swing.JLabel jLabel4; 

    // End of variables declaration                    

} 
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Source code of the Romanian GUI : (The one for English and Albanian are exactly the same) 

/* 

 * To change this license header, choose License Headers in Project Properties. 

 * To change this template file, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

 

package edu.cmu.sphinx.demo.transcriber; 

 

import edu.cmu.sphinx.api.Configuration; 

import edu.cmu.sphinx.api.SpeechResult; 

import edu.cmu.sphinx.api.StreamSpeechRecognizer; 

import java.io.File; 

import java.io.IOException; 

import java.net.URL; 

import javax.sound.sampled.LineUnavailableException; 

 

/** 

 * 

 * @author ioanacalangiu 

 */ 

public class RomanianFrame extends javax.swing.JFrame { 

     

     

    private SpeechResult result; 

    private boolean recEnabled; 

    private String afisare; 

    private Configuration configuration; 

     

    /** 

     * Creates new form RomanianFrame 
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     */ 

    public RomanianFrame() { 

        initComponents(); 

         setLocationRelativeTo(null); 

        configuration=new Configuration(); 

        

configuration.setAcousticModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-

5prealpha/myProject/models/acoustic/romanian.cd_cont_1000"); 

        

configuration.setDictionaryPath("file:///home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-

5prealpha/myProject/models/phonetic/talkshowPlusTheRest.dic.full"); 

        configuration.setUseGrammar(false); 

        

configuration.setLanguageModelPath("file:///home/ioanacalangiu/Documents/sphinx4

-5prealpha-src/sphinx4-

5prealpha/myProject/models/language/europarl9amHotnews.10k.augmented.3GramLM.sor

ted.dmp"); 

    } 

 

    /** 

     * This method is called from within the constructor to initialize the form. 

     * WARNING: Do NOT modify this code. The content of this method is always 

     * regenerated by the Form Editor. 

     */ 

    @SuppressWarnings("unchecked") 

    // <editor-fold defaultstate="collapsed" desc="Generated Code">                           

    private void initComponents() { 

 

        jSlider1 = new javax.swing.JSlider(); 

        jButton1 = new javax.swing.JButton(); 

        jScrollPane1 = new javax.swing.JScrollPane(); 

        jTextArea1 = new javax.swing.JTextArea(); 

        jScrollPane2 = new javax.swing.JScrollPane(); 

        jTextArea2 = new javax.swing.JTextArea(); 

        jComboBox1 = new javax.swing.JComboBox(); 
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        jButton2 = new javax.swing.JButton(); 

        jTextField1 = new javax.swing.JTextField(); 

        jLabel1 = new javax.swing.JLabel(); 

 

        setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE); 

        setTitle("Romanian Recognition"); 

 

        jButton1.setText("Start"); 

        jButton1.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jButton1ActionPerformed(evt); 

            } 

        }); 

 

        jTextArea1.setColumns(20); 

        jTextArea1.setRows(5); 

        jScrollPane1.setViewportView(jTextArea1); 

 

        jTextArea2.setColumns(20); 

        jTextArea2.setRows(5); 

        jScrollPane2.setViewportView(jTextArea2); 

 

        jComboBox1.setModel(new javax.swing.DefaultComboBoxModel(new String[] { 

"02_01_0532", "02_01_0549", "02_01_0559", "Item 4" })); 

 

        jButton2.setText("Select a file"); 

        jButton2.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jButton2ActionPerformed(evt); 

            } 

        }); 

 

        jTextField1.setText("no file selected"); 
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        jLabel1.setText("Start recognizing file :"); 

 

        javax.swing.GroupLayout layout = new 

javax.swing.GroupLayout(getContentPane()); 

        getContentPane().setLayout(layout); 

        layout.setHorizontalGroup( 

            

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

            .addComponent(jScrollPane1) 

            .addComponent(jButton1, javax.swing.GroupLayout.Alignment.TRAILING) 

            .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, 

layout.createSequentialGroup() 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                    .addGroup(layout.createSequentialGroup() 

                        .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, 

Short.MAX_VALUE) 

                        .addComponent(jComboBox1, 

javax.swing.GroupLayout.PREFERRED_SIZE, 202, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 

                    .addGroup(layout.createSequentialGroup() 

                        .addComponent(jLabel1) 

                        .addGap(4, 4, 4) 

                        .addComponent(jTextField1, 

javax.swing.GroupLayout.PREFERRED_SIZE, 128, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                        .addGap(0, 0, Short.MAX_VALUE))) 

                

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                .addComponent(jButton2)) 

            .addComponent(jScrollPane2, 

javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, 644, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

        ); 

        layout.setVerticalGroup( 

            

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
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            .addGroup(layout.createSequentialGroup() 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                    .addGroup(layout.createSequentialGroup() 

                        .addGap(21, 21, 21) 

                        

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                            .addComponent(jComboBox1, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                            .addComponent(jButton2))) 

                    .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, 

layout.createSequentialGroup() 

                        .addContainerGap(50, Short.MAX_VALUE) 

                        

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                            .addComponent(jTextField1, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                            .addComponent(jLabel1)))) 

                

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                .addComponent(jScrollPane2, 

javax.swing.GroupLayout.PREFERRED_SIZE, 79, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                .addGap(34, 34, 34) 

                .addComponent(jScrollPane1, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                .addGap(18, 18, 18) 

                .addComponent(jButton1)) 

        ); 

 

        pack(); 

    }// </editor-fold>                         

 

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        // TODO add your handling code here: 

          if(jButton1.getText().equals("Stop")){ 
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            recEnabled = false; 

        } else { 

            recEnabled = true; 

            jButton1.setText("Stop"); 

            jTextArea2.setText(" "); 

            System.out.println("1"); 

            javax.swing.SwingWorker<String, String> _swingWorker; 

            _swingWorker = new javax.swing.SwingWorker<String, String>() { 

                @Override 

                 

                public String doInBackground() throws LineUnavailableException, 

IOException, Exception { 

                    System.out.println("2"); 

                    File file = new File("/home/ioanacalangiu/Documents/sphinx4-

5prealpha-src/sphinx4-5prealpha/myProject/romana/02_01_0532.txt"); 

                    String id=jTextField1.getText(); 

                    File targetInput = new 

File("/home/ioanacalangiu/Documents/sphinx4-5prealpha-src/sphinx4-

5prealpha/myProject/romana/"+id+".txt"); 

                    ReadTranscript transcript = new ReadTranscript(targetInput); 

                    String text = transcript.readFile(); 

                    jTextArea1.setText(text); 

                    StreamSpeechRecognizer recognizer = new 

StreamSpeechRecognizer(configuration); 

                    System.out.println("3"); 

                    recognizer.startRecognition(new 

URL("file:///home/ioanacalangiu/Documents/sphinx4-5prealpha-src/sphinx4-

5prealpha/myProject/romana/"+id+".wav").openStream()); 

                    System.out.println("4"); 

               

                    while((result = recognizer.getResult()) != null){ 

                        System.out.println("5"); 

                        if(recEnabled==true){ 

                        System.out.println("6"); 

                        jTextArea2.setText(result.getHypothesis()); 

                        break; 
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                        } 

                    } 

                    

                 recognizer.stopRecognition();     

                 return afisare; 

                } 

 

                @Override 

                protected void done() { 

                    jButton1.setText("Start"); 

                    jTextField1.setText("no file selected"); 

                } 

            };  

            _swingWorker.execute(); 

        } 

         

    }                                         

 

    private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        // TODO add your handling code here: 

        jTextField1.setText(jComboBox1.getSelectedItem().toString()); 

    }                                         

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String args[]) { 

        /* Set the Nimbus look and feel */ 

        //<editor-fold defaultstate="collapsed" desc=" Look and feel setting 

code (optional) "> 

        /* If Nimbus (introduced in Java SE 6) is not available, stay with the 

default look and feel. 

         * For details see 

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html  
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         */ 

        try { 

            for (javax.swing.UIManager.LookAndFeelInfo info : 

javax.swing.UIManager.getInstalledLookAndFeels()) { 

                if ("Nimbus".equals(info.getName())) { 

                    javax.swing.UIManager.setLookAndFeel(info.getClassName()); 

                    break; 

                } 

            } 

        } catch (ClassNotFoundException ex) { 

            

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex); 

        } catch (InstantiationException ex) { 

            

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex); 

        } catch (IllegalAccessException ex) { 

            

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex); 

        } catch (javax.swing.UnsupportedLookAndFeelException ex) { 

            

java.util.logging.Logger.getLogger(RomanianFrame.class.getName()).log(java.util.

logging.Level.SEVERE, null, ex); 

        } 

        //</editor-fold> 

 

        /* Create and display the form */ 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new RomanianFrame().setVisible(true); 

            } 

        }); 

    } 

 

    // Variables declaration - do not modify                      
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    private javax.swing.JButton jButton1; 

    private javax.swing.JButton jButton2; 

    private javax.swing.JComboBox jComboBox1; 

    private javax.swing.JLabel jLabel1; 

    private javax.swing.JScrollPane jScrollPane1; 

    private javax.swing.JScrollPane jScrollPane2; 

    private javax.swing.JSlider jSlider1; 

    private javax.swing.JTextArea jTextArea1; 

    private javax.swing.JTextArea jTextArea2; 

    private javax.swing.JTextField jTextField1; 

    // End of variables declaration                    

} 

 

 


