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Abstract—This paper presents the main improvements brought 

recently to the SpeeD automatic speech recognition system. Several 

aspects, such as speech and text resources acquisition, noise-robust speech 

features and feature transforms are discussed. All the updates in our ASR 

system are accompanied by experimental results illustrating significant 

improvements: between 30% and 35% relative WER reductions for 

various case studies (read/spontaneous speech, noisy/clean speech). In the 

last part of the paper, our ASR system is also compared with Google’s 

ASR system and a brief analysis of the results is presented. 
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I.  INTRODUCTION 

Large vocabulary continuous speech recognition (LVCSR) is still 
an unsolved topic for many languages. The reasons for this are (i) there 
is a lack of acoustic and linguistic resources needed for development 
(it is the case of so-called under-resourced languages) and (ii) the 
scientific research community is not stimulated by any national or 
international evaluation campaigns (as opposed to languages such as 

English, French or Chinese). The Romanian language is affected by 
both the aforementioned problems. In this context, the development of 
speech and language resources for automatic speech recognition (ASR) 
is a critical issue that must be addressed to push forward the research 
in this direction and create LVCSR systems comparable to those 
available for other languages. This is one of the main goals of the 
Speech and Dialogue (SpeeD) research group1. 

To the best of our knowledge, at the moment there are three 

LVCSR systems developed for the Romanian language. In 2011 we 
published the first LVCSR results for Romanian [1, 2], in August 2012 
Google launched their online speech recognizer 2  for Android and 
Chrome and in December 2012 THINKTech Research Center3 also 
published a paper [3] on broadcast news recognition for Romanian. 

The goal of this paper is to present the main improvements brought 
to SpeeD’s LVCSR system since 2011 and thoroughly evaluate the 
current version of the system. In Section II, we present the new ASR 

resources (speech and text corpora) that were recently collected and 
used in acoustic and language modeling. Section III deals with the 
novelties introduced in the ASR front-end (noise-robust speech 
features and feature transforms), which aim at providing a more robust 
phoneme-level modeling. In Section IV, we briefly describe the 
experimental setup for the large number of experimental results 
presented in Section V. Finally, Section VI is dedicated to the closing 
conclusions. 

II. NEW ASR RESOURCES 

For under-resourced languages, the most important obstacle in 

obtaining good ASR results is the lack of proper speech and language 
resources. Consequently, during the previous years, significant efforts 
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were made to extend the size of the training read speech corpus and to 
create a spontaneous speech corpus. The text corpus was also extended 

by collecting and pre-processing new text data from the Internet. 

A. Speech Corpus Extensions 

In [1] we presented the (Romanian) continuous speech corpora 
available for training and evaluation in 2011. Since then we continued 
with the acquisition of acoustic data, extending the read speech corpus 
and creating a spontaneous speech corpus. 

The read speech corpus was extended by recording various 
predefined texts representing news articles and literature. The 
recordings were made using an online recording application. The 
speakers were involved voluntarily in the speech corpus extension 
project and were mostly university students. Table I presents the read 
speech corpus (further called RSC), underlining its various components 
(the parts in bold were collected between 2011 and 2013). 

As one can infer from Table I, the RSC corpus sums up to a total 

of 106 hours of speech and contains speech uttered by 165 different 
speakers. For the purpose of ASR development the RSC corpus was 
split into two parts: the RSC-train (to be used for ASR training) and 
the RSC-eval (to be used for ASR evaluation). The RSC-train corpus 
consists of 145k utterances (WORDS, 90% of CS_01 and CS_06), 
spoken by 157 different speakers, summing up to a total of 100 hours 
of speech. The RSC-eval corpus consists of 2,604 read utterances 
(10% of CS_01, CS_04 and CS_05), spoken by 22 different speakers, 

summing up to a total of 5.5 hours of speech. The RSC-eval corpus is 
freely available for download on SpeeD’s website. 

Starting from approximate transcriptions of broadcast news and 
talk shows collected over the Internet and using lightly supervised 
ASR training, we have also recently developed a spontaneous speech 
corpus. The methodology used in the acquisition is thoroughly 
described in [4]. The resulted spontaneous speech corpus consists of 
approximately 54k utterances and sums up to a total of 27.5 hours of 

speech.  This corpus is further used for ASR training and is called 
SSC-train. A part of the speech data collected was manually annotated 
to create an error-free spontaneous speech corpus for evaluation only. 
This part is further called SSC-eval and consists of 3.5 hours of speech, 
among which 2.2 hours of clean speech. The remaining 1.3 hours of 
speech contains speech in degraded conditions (background noise, 
background music, telephone speech, etc.). 

TABLE I. THE READ SPEECH CORPUS (NEWLY COLLECTED PARTS IN BOLD) 

Corpus 

Name 
Domain Utterances 

Hours of 

Speech 
Speakers 

WORDS n/a 110k 42 17 

CS_01 
news, 

interviews 

12.2k 22 12 

CS_04 900 2.1 9 

CS_05 504 1.1 7 

CS_06 literature 23.8k 38.1 155 

 



 

 

B. Text Corpus Extensions 

Regarding the acquisition of text corpora for language modeling, 

the text corpus available in 2011, called europarl + 9am + hotnews 
and described in [1] was extended by collecting and pre-processing 
new text data from the Internet. The europarl + 9am + hotnews corpus 
comprised online news, had about 169M words and required in-depth 
pre-processing (including diacritics restoration) before it could be used 
for language modeling. In 2012, we collected another text corpus 
composed of meeting and discussion transcriptions, with a size of 
about 40M words. In this new corpus, further called meetings, the 

diacritics do not need to be restored, as the text contains correct 
diacritical words.  

III. NEW SPEECH FEATURES 

A. Noise Robust Speech Features 

In recent years, the ASR noise robustness has been addressed by 

many speech research groups and by different approaches: speech 
enhancement, noise robust features, model compensation, etc. Among 
all these techniques, the noise robust features introduced in [5] and 
called Power Normalized Cepstral Coefficients (PNCCs) tend to bring 
the most important gains in accuracy. Major new distinctive attributes 
of PNCC processing include: 

a) the use of a power-law nonlinearity that replaces the 
traditional log nonlinearity used in Mel Frequency Cepstral 
Coefficients (MFCC), 

b) a noise-suppression algorithm based on asymmetric filtering 
that suppresses background excitation, and 

c) a module that accomplishes temporal masking. 

Moreover, PNCCs use medium-time power analysis, in which 
environmental parameters are estimated over a longer duration than is 
commonly used for speech, as well as frequency smoothing. 

We experimented with these new features as replacements for the 

traditional MFCCs and obtained better results for all the various types 
of noisy speech. We therefore decided to use PNCCs by default in our 
LVCSR system. In 2013, a variation of these features was 
implemented in the CMU Sphinx4 speech recognition toolkit, which is 
the core of our LVCSR system. Our research group also contributed to 
the integration of the features in the Sphinx4 Java decoder. 

B. Feature Transforms (LDA+MLLT) 

State-of-the-art LVCSR systems use cepstral features augmented 
with dynamic information from the adjacent speech frames (temporal 
derivates of the features). The standard MFCC + Δ + ΔΔ scheme, 
while performing relatively well in practice, has no real basis of 
existence from a discriminant analysis point of view. The same 
argument applies for the computation of the cepstral coefficients from 
the spectral features: it is not clear that the discrete cosine transform, 

among all linear transformations, has the best discriminatory properties 
even if its use is motivated by orthogonality considerations [6]. 

This was the argument for introducing the linear discriminant 
analysis (LDA) technique in the ASR front-end computation [7]. LDA 
is a linear projection transformation that maps the vector obtained by 
concatenating several feature vectors to a lower-dimensional space, 
with the goal of maximally separating the phonetic classes in the 
transformed space. 

One problem with the LDA transformation is that it cannot cope 

with the diagonal modeling assumption (that is imposed on the 
Gaussian models in most ASR systems): if the dimensions of the 
projected subspace are highly correlated then a diagonal covariance 
modeling constraint will result in distributions with large overlap and 
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low sample likelihood. In this case, a maximum likelihood linear 
transformation [8] (MLLT), which aims at minimizing the loss in 
likelihood between full and diagonal covariance models is known to be 
very effective. 

The two feature transforms that were briefly presented in this 

section were recently introduced in our LVCSR system.  

IV. EXPERIMENTAL SETUP 

A. Acoustic Models 

For this study several 5-state HMM-based acoustic models 
(AM001, AM002 and AM005) were developed. In all cases the 36 
phonemes in Romanian were modeled contextually (context dependent 
phonemes) with 4,000 HMM senones. The number of Gaussian 
mixtures (GMs) per senone state was varied to adapt the acoustic 
model setup to the size and variability of the training speech database. 

The last column in Table II lists the maximum number of GMs that 
were trained and can be further used for each acoustic model. The 
acoustic models were created and optimized with the training speech 
corpora described in Section II.A: RSC-train and SSC-train (a total of 
127 hours of speech). AM002 was trained using the traditional speech 
features plus temporal derivates (13 MFCC + Δ + ΔΔ) and AM001 
was trained on the noise robust speech features (13 PNCCs + Δ + ΔΔ). 
The noise robust speech features without temporal derivates were used 

to train AM005. In this case the feature transforms described in 
Section III.B were also used. The features of the three acoustic models 
are presented in Table II. 

The newly developed acoustic models were compared with a 
baseline acoustic model, called AM000. This baseline system is the one 
presented in [1] and was trained with 54 hours of read speech (a part of 
the WORDS corpus and a part of CS_01 corpus). The features of this 
acoustic model are also listed in Table II. 

B. Language Models 

Two tri-gram, closed-vocabulary, language models were created 
(using the SRI-LM Toolkit5) and compared in this study: LM000 and 
LM001. LM000 is the baseline language model described in [1] and 
was trained using the europarl + 9am + hotnews text corpus (169M 
words). LM001 was obtained by the interpolation of LM000 with a 

language model trained on the meetings text corpus (40M words). The 
interpolation was done with the weights 0.1 for LM001 and 0.9 for the 
LM000. The interpolation weights tuning has not been considered for 
the moment. For both LMs the number of unigrams was limited to the 
most frequent 64k, due to an ASR decoder implementation limitation. 

C. Speech Corpora for the Noise Robustness Experiments 

The effect of using noise-robust features instead of the traditional 
MFCCs was assessed on variations of the RSC-eval and SSC-eval 
speech corpora. The reason is that the RSC-eval corpus does not 
contain any noise (it comprises clean recordings) and the SSC-eval 

TABLE II. THE ACOUSTIC MODELS 

Name Training Corpus 
Speech 

Features 
# HMM 
Senones 

# GMs 

AM000 
parts of WORDS and CS_01 

(54 hours) 
MFCCs +  
Δ + ΔΔ 

4,000 16 

AM001 
RSC-train + SSC-train 

(127 hours) 
PNCCs +  
Δ + ΔΔ 

4,000 128 

AM002 
RSC-train + SSC-train 

(127 hours) 
MFCCs +  
Δ + ΔΔ 

4,000 128 

AM005 
RSC-train + SSC-train 

(127 hours) 
PNCCs + 

LDA-MLLT 
4,000 128 

                                                        
5
 SRI-LM Toolkit: http://www-speech.sri.com/projects/srilm 



 

 

corpus contains both clean speech and speech in degraded conditions 
(background noise, background music, telephone speech, etc.). 

In order to evaluate the ASR noise robustness in various noise 
conditions, several types of noise (street, babble and subway) were 
added digitally, at different signal-to-noise ratios (SNRs), over the 

clean speech in RSC-eval. Consequently, Section V.C presents the 
results obtained by the various ASR systems on the corpora: RSC-eval 
+ street noise (5/10/15/20dB), RSC-eval + babble noise 
(5/10/15/20dB) and RSC-eval + subway noise (5/10/15/20dB). 

The speech conditions in the SSC-eval corpus are annotated at 
phrase level and this allowed us to split the corpus into two parts: clean 
speech and noisy speech. In Section V.C, we assess the various ASR 
systems on the SSC-eval corpus as a whole, but also separately on its 

clean part and on its noisy part. This experiment aims to evaluate the 
ASR noise robustness in real world noise conditions. 

V. EXPERIMENTAL RESULTS 

In all the subsequent experiments, the acoustic models were 
compared in terms of speech recognition word error rate (WER) on the 
two evaluation speech corpora: RSC-eval and SSC-eval. 

A. Optimal Number of GMs for the New Acoustic Models 

Whenever the training speech corpus is extended, the acoustic 
models core features (number of HMM senones and number of 
Gaussian mixtures per senone) must be re-evaluated. Based on the 
experience obtained in previous experiments, we decided to train 
acoustic models with 4,000 senones for all the experiments presented 
in this paper. The number of GMs per senone was varied in order to 
find the best setup. The experimental results for AM002 are presented 
in Table III. Note that for these experiments we used LM001. 

As the results in Table III show, there is an optimal number of 

Gaussian densities per HMM senone. This was expected, because with 
a particular speech corpus (with its particular size and variability) there 
is an optimal number of AM parameters that can be efficiently trained. 
For our training speech corpus (RSC-train + SSC-train) the optimal 
number of GMMs per HMM state is 64. Similar results were obtained 
for AM001 and AM005 (all models which were trained on the same 
speech corpus). 

B. The Effect of Extending the ASR Resources 

The extension of ASR resources (both speech and text) brought an 
overall relative WER reduction of 30% on the read speech corpus and 
33% on the spontaneous speech corpus (see line 1 vs. 4 in Table IV). 
The effect of extending the speech corpus is much more important (see 
line 1 vs. 3) than the effect of extending the text corpus (see lines 1 vs. 
2 and 3 vs. 4). This can be partially explained by the fact that the 

training speech corpus was extended with more than 130%, while the 
text corpus was extended with less than 25%. 

Another important conclusion that results from this experiment is 
that resource acquisition is still a critical direction which we should 
follow to significantly improve our system’s accuracy (it is even more 
critical than implementing/using the state-of-the-art ASR techniques). 

TABLE III. THE OPTIMAL NUMBER OF GAUSSIAN DENSITIES PER SENONE 

  WER [%] 

Acoustic Model # GMs RSC-eval SSC-eval 

AM002 

16 17.6 41.4 

32 16.8 40.3 

64 16.7 39.4 

128 17.6 39.7 

TABLE IV. ASR IMPROVEMENTS BROUGHT BY  
THE NEW SPEECH AND TEXT CORPORA 

  WER [%] 

Acoustic Model Language Model RSC-eval SSC-eval 

AM000 
LM000 23.8 58.3 

LM001 22.9 57.6 

AM002 
LM000 17.6 40.5 

LM001 16.7 39.4 

C. The Effect of Using Noise Robust Features 

Figure 1 illustrates the results obtained by the MFCC-based 
acoustic model (AM002) and the PNCC-based acoustic model 
(AM001) on the RSC-eval corpora with digitally added noise.  The 
figure shows that regardless of the type of noise and regardless of the 
SNR, the PNCC-based acoustic model is better than the MFCC-based 
acoustic model. Even for clean speech the PNCC-based acoustic model 

obtains a slightly better WER. The relative WER reduction is, in 
average, 10% for an SNR of 20dB, 16% for an SNR of 15dB, 19% for 
an SNR of 10dB, and 13% for an SNR of 5dB. 

Table V presents the results obtained by the two acoustic models 
on speech with real-world noise (line 1 vs. 2). The relative WER 
reduction on noisy speech only (SSC-eval noisy) is smaller (4%) than 
in the previous experiment. Another interesting fact is that for clean 
speech (SSC-eval clean) the noise-robust acoustic model (AM001) 
obtains a slightly worse WER than the MFCC-based acoustic model. 

Nevertheless, the PNCC-based acoustic model is overall better than the 
MFCC-based acoustic model on spontaneous speech (SSC-eval all). 

D. The Effect of Using Feature Transforms 

Table V also presents some preliminary results obtained with an 
acoustic model (AM005) trained with discriminative PNCC features 

(processed using the LDA-MLLT transforms). These experiments 
show that the feature transforms bring important ASR improvements 
on clean, read speech (8% relative WER reduction). However, on 
noisy speech the results are worse that those obtained with the noise-
robust ASR system (AM001). The effect of these feature transforms 
needs to be analyzed more deeply before we can draw a solid 
conclusion. 

E. Comparison with Google ASR 

The multi-lingual ASR system created by Google can be accessed 
through the Internet, as a speech transcription web-service. Using an 
HTTP GET request (which comprises metadata, including the 
language, and an audio file) one can obtain the transcription of short 
audio speech files. In December 2013 we transcribed all the utterances 
in the evaluation speech corpora RSC-eval and SSC-eval using the 

Romanian version of this ASR system. 
Google’s ASR system for the Romanian language was probably 

developed as a data-driven system and does not take into account the 
language’s specific issues such as diacritics, hyphenated compound 
words, etc. Therefore, aligning the raw Google output with the  

TABLE V. ASR IMPROVEMENTS BROUGHT BY 
THE NOISE FEATURES + FEATURE TRANSFORMS 

  WER [%] 

Acoustic 
Model 

Speech 
Features 

RSC-eval 
SSC-eval 

(all) 
SSC-eval 
(clean) 

SSC-eval 
(noisy) 

AM002 MFCCs 16.7 39.4 31.4 51.1 

AM001 PNCCs 16.2 38.9 31.7 49.1 

AM005 
PNCCs + 

LDA-MLLT 14.8 39.1 31.2 50.7 



 

 

 

 

Figure 1. ASR improvements brought by the noise robust features + comparison with Google ASR 

 
TABLE VI. SPEED’S ASR SYSTEM VS. GOOGLE’S ASR SYSTEM 

 WER [%] 

ASR System RSC-eval SSC-eval 

AM001 + LM001 16.2 38.9 

Google ASR 43.3 60.0 

Google ASR + post-processing 29.2 51.4 

 
reference transcriptions in our evaluation speech corpora leads to very 
poor WERs (see line 2 in Table VI). In order to do a “fair” comparison 
we restored the diacritics on Google ASR’s output using our diacritics 

restoration system [1] and used these post-processed transcriptions for 
evaluation (see line 3 in Table VI). 

Comparative results between our best ASR system and Google’s 
ASR system are presented in Table VI and Figure 1. Table VI shows 
the results on clean read speech and spontaneous speech and Figure 1 
illustrates the results on noisy read speech. On clean read speech the 
absolute WER obtained by our ASR system is 13% lower, while on 
spontaneous speech (clean and noisy) it is 18.6% lower. On noisy read 

speech the absolute WERs of our system are between 13.1% and 
17.6% lower, depending on the SNR. Regardless of the type of speech 
our ASR system is at the moment much better than Google’s ASR 
system for the Romanian language. 

VI. CONCLUSIONS 

This paper presented the developments made to SpeeD’s ASR 
system for the Romanian language since 2011. We briefly described 
the recently collected speech and text resources and presented the 
significant gains in ASR accuracy obtained by incorporating them in 
the acoustic and language models. Furthermore, we discussed the noise 

robustness approach in our ASR system and showed how the newly 
introduced acoustic features and feature-transforms improve the 
accuracy. Overall, the relative WER reductions obtained by the 2013 
system are: 32.0% for clean read speech and 33.2% for spontaneous 
speech. 

Another important conclusion is that the most significant gain in 
performance (on clean speech) was obtained thanks to the acquisition 
of new training speech corpora. This means that our ASR system is 

still in need of more training data and that, at this particular moment, 
this direction might be even more important than implementing and 
using the state-of-the-art ASR techniques. 

Finally we compared our ASR system with the Google ASR web-
service and showed that we outperform Google on all types of speech 
(read/spontaneous, clean/noisy). 
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