

University “Politehnica” of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

Navigarea Autonomă utilizând Codarea Video

Distribuită

Free Navigation with Distributed Video

Coding (DVC)

Dissertation Thesis

submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the domain Telecommunications, study program

Services and Networks Management

Thesis Advisors Student

Prof. PhD. Corneliu BURILEANU Elena-Diana ȘANDRU

Assoc. Prof. PhD. Eduard-Cristian POPOVICI

2016

Copyright © 2016, Elena-Diana ȘANDRU

All rights reserved.

The author hereby grants to UPB permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part.

TABLE of CONTENTS

TABLE of CONTENTS... 9

LIST of FIGURES ... 11

LIST of TABLES ... 13

LIST of ACRONYMS ... 15

INTRODUCTION ... 19

1. CHAPTER 1 .. 23

Video Coding and Multi-View Video .. 23

1.1 Basic Concepts of Video Coding ... 25

1.2 H.264/AVC Standard for Video Coding .. 27

1.3 Multi-View Video .. 34

2. CHAPTER 2 .. 37

Distributed Video Coding .. 37

2.1 Distributed Source Coding ... 39

2.1.1 Slepian-Wolf Theorem – Lossless Transmission.. 40

2.1.2 Wyner-Ziv Theorem – Lossy Transmission ... 42

2.2 Distributed Video Coding – Architecture .. 44

2.2.1 PRISM Architecture .. 44

2.2.2 DISCOVER Architecture .. 46

2.3 Multi-View Distributed Video Coding .. 49

3. CHAPTER 3 .. 53

Free Navigation with DVC Application .. 53

3.1 Architectural Solution – Schema ... 55

3.2 Architectural Solution – Parameters .. 57

3.3 fn_dvc – Deployment and Implementation .. 62

3.3.1 Development ... 62

3.3.2 User Experience .. 70

4. CHAPTER 4 .. 75

Free Navigation with DVC – Results and Observations.. 75

4.1 Comparison Applications, Parameters and Metrics ... 77

4.2 DVC – H.264/AVC all Intra RD Performance Comparison .. 82

4.3 RD Performance Points of DVC Decoding Strategies for WZ Frames 89

CONCLUSIONS .. 97

REFERENCES... 103

APPENDIX 1 ... 105

APPENDIX 2 ... 109

APPENDIX 3 ... 113

APPENDIX 4 ... 115

LIST of FIGURES

Figure 1.1 Transform Coding (1) ... 26
Figure 1.2 Chronology of the International Video Coding Standards ... 27

Figure 1.3 H.264/AVC Encoder .. 28

Figure 1.4 H.264/AVC Decoder .. 29

Figure 1.5 Inter Modes for H.264/AVC ... 32
Figure 1.6 SIMULCAST Coding Structure for 4 Cameras (1) .. 34

Figure 1.7 Fully Hierarchical Coding Structure for 7 Cameras (1) ... 35
Figure 1.8 View Progressive Coding Structure for 4 Cameras (1) .. 36
Figure 2.1 Traditional Coding Architecture ... 39
Figure 2.2 Distributed Source Coding Architecture .. 40

Figure 2.3 Admissible Rate Region - Joint Coding ... 41
Figure 2.4 Admissible Rate Region - Distributed Coding ... 41
Figure 2.5 Wyner-Ziv Codec Architecture .. 42
Figure 2.6 PRISM Architecture (Encoder and Decoder) ... 44
Figure 2.7 DISCOVER codec, based on Stanford architecture (GOP=4) ... 46

Figure 2.8 MVDVC - Asymmetric Scheme... 50

Figure 2.9 MVDVC - Hybrid Scheme ... 50

Figure 2.10 MVDVC - Symmetric Scheme ... 51
Figure 3.1 Architectural Solution... 56
Figure 3.2 Hybrid Scheme used in Free Navigation with DVC .. 58
Figure 3.3 DISCOVER Interpolation Method ... 60
Figure 3.4 H.264/AVC Codec Results ... 66

Figure 3.5 DVC Decoder in FN_DVC.m .. 67
Figure 3.6 SI Generation Method .. 68
Figure 3.7 Raw Videos Creation .. 70
Figure 3.8 H.264/AVC all Intra Encoding & Decoding .. 70
Figure 3.9 DVC – Encoding Parameters .. 71
Figure 3.10 DVC Codec - Encoding .. 72

Figure 3.11 DVC Codec – Decoding [1] ... 72
Figure 3.12 DVC Codec – Decoding [2] ... 73

Figure 4.1 Path 1, Frame 2 – Original .. 78
Figure 4.2 Path 1, Frame 2, KF – H.264/AVC all Intra QP=22 .. 78
Figure 4.3 Path 1, Frame 2, KF – H.264/AVC all Intra QP=37 .. 79
Figure 4.4 Rate-Distortion Performance of DVC, for GOP = 2, with respect to H.264/AVC all Intra,

for Path 1 (a), Path 2 (b), Path 3 (c), Path 4 (d), Path 5 (e), Path 6 (f), Path 7 (g), Path 8 (h), Path 9

(i), Path 10 (j) ... 87
Figure 4.5 Rate-Distortion Performance of DVC, for GOP = 2, with respect to H.264/AVC all Intra

for Global Average of the 10 Paths .. 88
Figure 4.6 Rate-Distortion Performance of DVC, for all 10 Paths .. 90

Figure 4.7 Rate-Distortion Performance of DVC, for all 10 Paths; Zoom In for QP = 37 (a), QP =

32 (b), QP = 27 (c), QP = 22 (d) .. 92
Figure 4.8 Rate-Distortion Performance of DVC, for the Decoding Strategies (Interpolation

Configurations) .. 95

LIST of TABLES

Table 1.1 Intra-16x16 Prediction Modes ... 30

Table 1.2 Intra-4x4 Prediction Modes ... 31

Table 3.1 Cameras Positions .. 57
Table 3.2 Quantization table for WZF ... 61
Table 4.1 Experimental Paths .. 77

Table 4.2 Rate-Distortion (RD) Performance Gain of DVC (H.264/AVC all Intra as Reference) for

all the 10 Paths (GOP = 2), obtained with Bjontegaard metric ... 83

Table 4.3 Rate-Distortion (RD) Performances Gain of DVC (H.264/AVC all Intra as Reference) for

the Global Average of the 10 Paths (GOP = 2), obtained with Bjontegaard metric 87

Table 4.4 Rate-Distortion (RD) Performances Gain of DVC Paths (6-10 and 2-7), obtained with

Bjontegaard metric ... 90
Table 4.5 Decoding Strategies for WZFs (Interpolation Configurations) – Configuration 1: Orange,

Configuration 2: Blue, Configuration 3: Green, Configuration 4: Red ... 93
Table 4.6 Average RD Performance Points (computed per Frame) for WZFs Interpolation

Configurations with respect to QP Values ... 94
Table 4.7 Rate-Distortion (RD) Performances Gain of the 4 Interpolation Configuration (Decoding

Strategies) for WZFs, obtained with Bjontegaard metric .. 96

LIST of ACRONYMS

A

AVC = Advanced Video Coding

 C

CRC = Cyclic Redundancy Check

D

dB = Decibel

DCT = Discrete Cosine Transform

DISCOVER = DIStributed Coding for Video

sERvices

DSC = Distributed Source Coding

DVC = Distributed Video Coding

G

GOP = Group Of Pictures

H

HDTV = High-Definition Television

K

KF = Key Frame

KBPS = Kilobits Per Second

L

LPDC = Low-Density Parity Check

M

MAE = Mean Absolute Error

MB = MacroBlock

MCTI = Motion-Compensated Temporal

Interpolation

MPEG = Motion Picture Experts Group

MSE = Mean Square Error

MV-DVC = Multi-View Video DVC

MVV = Multi-View Video

 P

PRISM = Power-efficient, Robust, hIgh

compression, Syndrom-based Multimedia

coding

PSNR = Peak Signal-to-Noise Ratio

Q

QI = Quantization Index

QP = Quantization Parameter

R

R = Reference

RD = Rate-Distortion

S

SI = Side Information

V

VCEG = Video Coding Experts Group

VLC = Variable Length Coder

W

WZ = Wyner-Ziv

WZF = Wyner-Ziv Frame

19

INTRODUCTION

Our world is constantly changing and evolving and the technological developments are

increasing spectacularly. Phrases such as “Century of Speed” or “Information Century” are well

known nowadays; the reality is that we live in an era in which, at first, man became dependent on

machines due to their ability to facilitate work. Currently, the population growth, the need for

communication, globalization, scientific developments have led this man dependency on technology

to another level. The challenge of having a society life, rest periods or the help needed with daily

chores, pushed technology as indispensable in daily life.

Soon, the lack of time has become a major problem, together with the human convenience, so

they tried to simplify interaction with machines, to make it faster and easier. The first important

achievement was the telephony; fixed and after that mobile. The ability to talk to anyone located

anywhere in the world and to be permanently connected was a huge step of evolution. At the same

time, man is regarded as a social being, a being who likes to be surrounded by other people, to be

able to interact with them, at last virtually if not physically. So did the idea of integrated video feature

appear; nowadays, this feature is available on more and more devices. Smartphones, tablets, smart

TV, laptops and PCs, airplanes, cars are now equipped with the video feature.

Living in the “Century of Speed” has its disadvantages; most of the time, people complain

about the lack of time. Automatically, everyone tries to make up for this by using the time spent

between work and home talking to loved ones, watching their favorite show. So, the development of

certain methods to enhance the quality of video feature was the next step of technological evolution.

Most of them have been focused on video compression.

20

In recent years, the improvements in video compression and transmission technologies are

increasingly pushing towards a new paradigm called immersive communication, where users have

the impression of being present at a real event. Immersive communication includes free-view point

video, holography, 3D video and immersive teleconference. The goal of these applications is to offer

to users a more realistic experience than the traditional video (where viewers have only a passive way

to observe the scene) (1).

Over the last one and a half decades, digital video compression technologies have become an

integral part of the way we create, communicate, and consume visual information. The Rate-

Distortion performance of modern video compression schemes is the result of an interaction between

motion representation techniques, intra-picture prediction techniques, waveform coding of

differences, and waveform coding of various refreshed regions (2).

The basic communication problem may be posed as conveying source data with the highest

fidelity possible within an available bit rate, or it may be posed as conveying the source data using

the lowest bit rate possible while maintaining a specified reproduction fidelity. In the end, everything

is about video compression; but a new concept began to attract the attention of specialists in the field,

namely free navigation inside multi-view sequence videos.

Since 2002, Distributed Video Coding has become a major paradigm, because of its attractive

theoretical results, and its promising target applications (3). Classical video encoding systems imply

complex encoders, due to motion estimation and very simple decoders. But DVC can be summed up

as coding of multiple correlated sources by separated encoders, while the decoding is computed by a

joint decoded. From its many advantages, one can mention that such a compression system implies a

complexity reduction of the encoder and also, in the case of multi-view compression, an independent

encoding.

Thus, combining two important technological trends nowadays, namely the Distributed Video

Coding and Free Navigation inside multi-view sequence videos, is the strongest motivation for

choosing the theme of this thesis.

Following the observations made above, the main objective of this thesis is designing and

implementing the MATLAB solution for the Free Navigation with DVC, in order to analyze

Distributed Video Coding (DVC) performances compared to H.264 Advanced Video Coding

(MPEG-4 AVC) performances, in the case of free navigation inside multi-view sequence videos. In

order to do this, a number of specific objectives were considered:

 Theoretical study of the DVC and H.264 concepts and working principles;

 Understanding the existing MATLAB scripts, implemented for the two video

compression techniques (by the TSI Department from Telecom ParisTech) and

performing their customization for the proposed solution;

 Designing the software solution of Free Navigation with DVC and deciding its

parameters (such as number of frames of the video, the path between multi-view

sequence);

 Developing the MATLAB script for the proposed solution;

21

 Drawing the conclusions based on the RD (Rate-Distortion) performances of DVC

with respect to H.264/AVC all Intra and choosing the best suitable solution for Free

Navigation concept;

 Deciding the best decoding strategy (interpolation configurations) of WZ frames for

the chosen scenario, in terms of RD performances.

This thesis is structured in four chapters; first two show the theoretical aspects of video coding

and Multi-View videos, along with the main characteristics and architectural aspects of DVC and

H.264/AVC all Intra. The last two chapters reveal the author's contribution to the development of the

practical part of this thesis. The personal contribution can be summarized as follows:

 Creating an achievable architectural solution for the main objective;

 Designing and implementing the MATLAB application (FN_DVC.m), application

simulating the Free Navigation concept for a given path and obtaining the Rate-

Distortion performance points for each frame of the path, for both video coding

standards (DVC and H.264/AVC all Intra);

 Deciding the set of parameters for the proposed scenario (values of the quantization

parameters and indexes – [22 27 32 37] and [8 7 6 5], parameters of encoding and

decoding for H.264/AVC all Intra and DVC);

 Establishing the path configuration for the 10 paths used for the experiments;

 Choosing the SI generation method and the multi-view scheme (Hybrid), along to the

decoding strategies and narrowing their number to four;

 Customizing the function decodWZF to fit the solution; this implied changing the set

of the codec parameters in order to implement the function linking QI and QP;

 Obtaining the RD performance points for both coding strategies; the rate and the PSNR

per each frame (Intra and KF/WZF) as a function of QP;

 Deciding the entities of the RD performance comparison; DVC – H.264/AVC all Intra

(each path individually, global average of 10 paths) and DVC (all 10 paths,

interpolation configurations);

 Choosing the Bjontegaard metric and the RD curves as a basis for the comparison;

 Designing and implementing MATLAB scripts (allIntra-DVC_Comparison.m and

Global_and_All_Comparison.m), in order to obtain the comparison results by

processing the RD performance points obtained from FN_DVC.m for both coding

strategies; the rate and the PSNR per each frame (Intra and KF/WZF) as a function of

QP;

 Drawing the conclusions and observations; deciding if Free Navigation with DVC is

a suitable solution (if its RD points outperforms H.264/AVC all Intra) and which

decoding strategy for WZ frames is better (from the four interpolation configurations).

The thesis was realized in cooperation with the University TELECOM ParisTech (F

PARIS083), from Paris, France, under the guidance of Prof. PhD. Beatrice PESQUET-POPESCU

and Prof. PhD. Marco CAGNAZZO, during an ERASMUS+ placement, between 25th of March and

24th of June 2016, identified by 2275/05.02.2016.

22

23

1. CHAPTER 1

Video Coding and Multi-View Video

 Videos are three-dimensional signals 𝐼𝑘(𝑚, 𝑛): the pair (𝑚, 𝑛) defines the space, while k the

time. Referring to digital videos, the three variables m, n and k are discrete. Each image 𝐼𝑘(𝑚, 𝑛) is

called frame and f frames per second are displayed for giving the illusion of fluid movement. The

parameter f is called frame rate. Video signals require a large amount of data to be stored and

transmitted. The goal of video compression is to reduce the size of the video file, with an acceptable

loss in quality. Traditional video coding techniques focus on eliminating the redundant elements of

the signal (psychophysical and statistical). (4)

 The main property of the video signals is the large correlation in time and in space. For several

decades, video compression has been the research topic aimed to mobilize many researchers, along

with industrial partners. If its main goal was only reducing the rate necessary for the descriptions of

the video sequence, as years passed by the compromise between a lower rate and high decoded quality

became more present and all new paradigms are aimed to improve this compromise.

In recent years, the improvements in video compression and transmission technologies

increased; in this way, immersive communication appeared. This paradigm refers to the users feeling

as being present at a real event. Immersive communication includes free-view point video,

24

holography, 3D video and immersive teleconference. The goal of these applications is to offer to users

a realistic experience than the traditional video (where viewers have only a passive way to observe

the scene).

 In this chapter, the basic concepts of predictive video coding are reviewed along with the date

compression standard, H.264/AVC, which will serve as basis for comparison in this thesis. Moreover,

Multi-View video is presented and the most common compression architectures are described.

25

1.1 Basic Concepts of Video Coding

 Studies has shown that the human visual system can form, transmit and analyze somewhere

between 10 and 12 images per second and perceive them individually. This represents the principle

of the video sequence representation; this is due to the continuity illusion created when more than 12

images per second are submitted to the human visual system.

As already stated, videos are three-dimensional signals 𝐼𝑘(𝑚, 𝑛): the pair (𝑚, 𝑛) defines the

space, while k the time. Referring to digital videos, the three variables m, n and k are discrete. Each

image 𝐼𝑘(𝑚, 𝑛) is called frame and f frames per second are displayed for giving the illusion of fluid

movement. The parameter f is called frame rate. Due to the above statement, the frame rate is between

15 and 30 frames per second, in order to represent a visual scene by a digital video sequence. There

are situations when the frame rate is 60.

Digital videos are characterized by redundancy and digital coding tries to minimize it in each

domain (time and space). Unfortunately, coding and compression lead to distortions of the video, so

it is a matter of choice between the total bit rate R used for coding the video and the distortion D

between the coded and the original frames. As it can be easily intuited, the distortion should be

minimized, while the total bit rate should be constant. Therefore, the cost function is:

J = D + λ*R (1.1)

where λ is a Lagrangian multiplier.

Typically, for images, the coding rate R can be defined in bits per pixel

𝑅𝑏/𝑝 =
𝐵

𝑁∗𝑀
 (1.2)

where B represents the numbers of bit used for compressing the video and M * N represents the spatial

resolution of the video. In order to convert it in bits per second, the following multiplication is done:

𝑅𝑏/𝑠 = 𝑅𝑏/𝑝 ∗ 𝑁 ∗ 𝑀 ∗ 𝑓 (1.3)

 Let us consider I – the original image and 𝐼 – the decoded image. The distortion between

these two images can be measured with an objective metric. Popular objective metrics are the Mean

Square Error (MSE) and the Mean Absolute Error (MAE), but the most conclusive on is the Peak

Signal-to-Noise Ratio (PSNR), defined as:

𝑃𝑆𝑁𝑅 = log10 10
(2𝑏−1)2

1

𝑀∗𝑁
∗ ∑ ∑ |𝐼𝑘(𝑚,𝑛)−𝐼𝑘(𝑚,𝑛)|2𝑀

𝑛=1
𝑁
𝑚−1

 (1.4)

where (2𝑏 − 1)2 is the maximum possible pixel value (usually b = 8).

26

 Although desired, lossless compression is not very efficient because it provides a moderate

amount of compression. On the other hand, lossy compression is necessary in order to obtain a lower

rate and a fair distortion.

Spatial correlation is used in image coding in order to reduce the size of that image. The spatial

correlation represents the correlation among neighboring samples (5). The most used method of

spatial compression in image and video coding is Direct Cosine Transform (DCT). Temporal

correlation is the correlation among successive frames of a video sequence. In almost all the cases, in

a video sequence one can exploit both types of correlation.

In order to optimize the Rate-Distortion performance, each frame is compressed at a time, as

shown in Figure 1. It is composed of a cascade of transform, quantization and variable length coder

(VLC). The first step is to explore the correlation, then to educes the total bit rate and in the end,

lossless coding performed by the VLC eliminates other statistical redundancies.

Figure 1.1 Transform Coding (1)

The coding is performed in the transform domain because it allows the decorrelation, both

spatial and temporal, permitting a more compact parametric representation of the information. The

main advantages of the DCT are: for real signal, DCT image is also real; it presents a high degree of

compactness.

Transform Quantization VLC

27

1.2 H.264/AVC Standard for Video Coding

 Video coding standards are developed by two important groups, namely MPEG – Moving

Image Experts Group and VCEG – Video Coding Expert Group. As the topic of this thesis is video

coding, in Figure 2 it can observed the chronology of the international video coding standards. MPEG

developed MPEG-1 and two MPEG-2 and MPEG-4 standards for coding video and audio. MPEG-2

and MPEG-4 are commonly used for transmission and storage of video sequences.

 H.261 was the first video telephony standard and H.263 was its successor; both of them were

standardized by VCEG (6). The joint of these two groups created H.264/AVC (also referred as

H.264/MPEG-4 AVC).

Figure 1.2 Chronology of the International Video Coding Standards

H.264/AVC represents one of the most common standards for video coding. Obviously,

H.264/AVC contains an important part of the basic modules that can be found in its predecessors

(MPEG-1-4 or other H.26x), such as: transform, prediction, quantization. Moreover, the

standardization team took those modules and enhanced them as follows.

 Figure 1.3 describes the architecture of a H.264/AVC Encoder. The first characteristic is the

fact that all the frames are divided into two categories: Intra-Frames and Inter-Frames. Firstly, in

Intra-coding mode, the encoder exploits only the spatial correlation, by estimating a good prediction

of the sample based on neighboring samples. Secondly, Inter-coding mode is characterized by

28

exploiting the temporal correlation as well; inter-frames temporal prediction, such as motion

compensation using already decoded frames. Essentially, the encoder tries to estimate motion vectors

and to identify the reference frame which will help predict the samples of the frame to be coded. In

either way, a residual prediction is computed as the difference between the original frame and the

predicted frame. This residual is further transformed in order to obtain the transform coefficients that

are quantized and in the end entropy encoded.

Figure 1.3 H.264/AVC Encoder

The architecture of the H.264/AVC Decoder can be observed in Figure 1.4. It can be easily

observed that the encoder and the decoder have common parts; since the encoder estimates the same

prediction as in the decoder, its architecture includes also a part of the decoder. In this way, the

encoder and the decoder have the same prediction for the samples. The decoding flow is the following

one: the quantized coefficients are first inversed scaled, followed by an inverse transform; these

operations try to reconstruct the residual. Then, the prediction process is performed (using the motion

compensation) and in the end, the approximated residual is added to the predicted samples, and

filtered by a deblocking filter.

In H.264/AVC the color space is YCbCr; its advantage is the following one: by separating the

luma information from the chroma information, the luma can be stored at high resolution, while the

chroma can be stored at low resolution. Y represents the brightness and is called luma, while Cb and

Cr are chroma components: blue-difference and red-difference. This separation is performed because

the human eye is more sensitive to luma than to chroma.

29

Figure 1.4 H.264/AVC Decoder

The subjective correlation of the chroma components can be reduced using the subsampling

(or decimation) of these components with respect to luma. Considering the notation Y:Cb:Cr,

H.264/AVC typically uses 4:2:0 sampling (the chroma component has one fourth the number of

samples of the luma component (5)).

A. Division of a Frame

Each frame of a video sequence is structured into small divisions called macroblocks (MB),

areas of 16x16 samples of luma component and 8x8 samples of the difference chroma components.

The samples of a MB can be spatially or temporally predicted; the resulting residual in divided into

blocks, integer transformed, quantized and entropy coded.

Further, macroblocks are grouped in slices (group of successive MBs). There are five possible

slide-coding types, as follows:

 I slice: only Intra-prediction is possible; it contains intra-coded MBs predicted from

previously decoded samples of the same slice;

 P slice: Skip, Intra-prediction and Inter-prediction is possible; it can contain inter-

coded MBs predicted from previously decoded samples of other frames, intra-coded

MBs or even skipped MBs;

 B slice: prediction from future slices and from average of past and future slices is

possible; it contains inter-coded MBs predicted from previous decoded frames and

future slices;

 Switching I slice: specific for efficient switching between bit-streams coded at various

bit rates;

 Switching P slice: specific for efficient switching between bit-streams coded at

various bit rates (5).

Moreover, each MB from a slide can be coded as:

 Skip mode – no information is sent for that particular MB;

30

 Intra mode – used for spatial prediction;

 Inter mode – used for temporal prediction;

 Direct mode – the particular MB is coded in the same way (using the same motion

vectors) the previous MB was coded.

Obviously, each mode generates a different number of coded bits and also a different

distortion. If Rate-Distortion optimization is performed, the goal of the encoder is to minimize the

decoded distortion D and to minimize the bit rate R. The encoder searches for the mode that minimizes

the function J = D + λR.

Large values of λ tends to give more emphasis to the rate than to the distortion. In literature,

an optimal value for λ depending on the quantization parameter (QP) has been obtained empirically

as (1)

λ =
0.852(𝑄𝑃−12)

3
 (1.5)

B. Spatial Prediction (Intra)

The spatial prediction is possible for I-slices. The predicted samples of a block are formed

from the neighboring previously encoded and reconstructed samples, leading to Intra-prediction.

There are two types of intra coding (7): Intra-16×16 and Intra-4×4.

 Intra-16x16 – is used for smooth image areas; actually, uniform prediction is

performed for all the MBs. Intra_16x16 mode involves 2 blocks: 16x16 luma block

used for coding smooth areas of a picture and 8x8 chroma block. Intra-16x16 has four

prediction modes, as they are listed in Table 1.1:

PREDICTION MODE DETAILS

Vertical Prediction – Mode 0 Involves extrapolation from upper samples

Horizontal Prediction – Mode

1
Involves extrapolation from left samples

DC Prediction – Mode 2
A mix between modes 0 and 1; it implies the

mean of upper and left-hand samples (8)

Plane Prediction – Mode 3
A linear plane function is fitted to the upper

and left-hand samples

Table 1.1 Intra-16x16 Prediction Modes

31

 Intra-4x4 – is used for picture parts rich in details; each 4x4 block is predicted from

spatially neighboring samples. Intra-4x4 has nine prediction modes, as they are listed

in Table 1.2:

PREDICTION MODE DETAILS

Vertical Prediction – Mode 0
Involves extrapolating vertically the upper

samples

Horizontal Prediction – Mode 1
Involves extrapolating horizontally the left

samples

DC Prediction – Mode 2
A mix between modes 0 and 1; it implies the

mean of upper and left-hand samples (8)

Diagonal Down-Left Prediction

– Mode 3

The samples are interpolated at 45 ̊ angle

between lower-left and upper-right

Diagonal Down-Right

Prediction – Mode 4

The samples are interpolated at 45 ̊ angle

down and to the right

Vertical-Left Prediction – Mode

5

Involves extrapolation at an angle

approximatively 26.6 ̊ to the left of vertical

Horizontal-Down Prediction –

Mode 6

Involves extrapolation at an angle

approximatively 26.6 ̊ below horizontal

Vertical-Right Prediction –

Mode 7

Involves extrapolation or interpolation at an

angle of approximatively 26.6 ̊ to the right of

vertical

Horizontal-Up Prediction –

Mode 8

Involves interpolation at an angle of

approximatively 26.6 ̊ above horizontal

Table 1.2 Intra-4x4 Prediction Modes

C. Motion-Compensated Prediction (Inter)

The temporal correlation between the frames is exploited by Inter-prediction modes. The

prediction is estimates based on several previously encoded and decoded frames. They are supported

by P and B-slices. As already stated, while for P-slices, only prediction using past frames is possible,

for B-slices also prediction using future slices can be considered.

Figure 1.5 displays the types of inter coding in H.264/AVC, which offers more flexible block

partition, multiple references and also Enhanced Direct and Skip Macroblock modes:

32

 16x16 16x8 8*16 8x8

 8x4 4x8 4x4

Figure 1.5 Inter Modes for H.264/AVC

 Inter-16x16

 Inter-16x8

 Inter-8x16

 Inter-8x8

If Inter-8 × 8 mode is chosen, an additional syntax element for each 8 × 8 macroblocks is used

to specify if it is partitioned in 8 × 8, 8 × 4, 4 × 8, 4 × 4 blocks:

 Inter-8x4

 Inter-4x8

 Inter-4x4

The motion compensation is performed at a resolution of up to 1 4⁄ pixel. Pixels at quarter-

pixel position are computed using bilinear interpolation. Regarding multiple references, multi-picture

motion-compensated prediction is also possible; each MB of the P-slices can be estimated from one,

more different reference frame or from a weighted sum of a series of reference frames. This new

improvement allows pictures of better quality in scenes where there are changes of plane or zoom.

As for the Direct and Skip modes, they are very frequently used, especially with B-frames.

The first mode, Direct mode consists in choosing, for the current MBs, the previously MBs syntax

elements (mode and vector). The Skip mode is possible for both P and B slices: the MB is coded

without sending residual error or motion vectors. The prediction is the co-located block in the

reference frame: spatial and temporal.

33

D. Transformation & Quantization

This standard can use three transforms; the choice is done based on the residual data, as it

follows:

 Hadamart transform for 4x4 array of luma DC coefficients in Intra MB (16x16 mode)

𝐻 4𝑥4 = (

1 1 1
1 1 −1
1 −1 −1

1

−1
1

1 −1 1 1

) (1.6)

 Hadamart transform for 2x2 array of chroma DC coefficients in Intra MB (16x16

mode)

𝐻 2𝑥2 = (
1 1
1 −1

) (1.7)

 Integer DCT transform for all 4x4 arrays of the residual data

𝐻 𝐷𝐶𝑇 = (

1 1 1
2 1 −1
1 −1 −1

1

−2
1

1 −2 2 1

) (1.8)

 In H.264/AVC there are 52 values for QP; after the transform, the coefficients are scaled and

after that quantized based on the value of QP. The resulting coefficients are scanned in a zig-zag

manner and entropy encoded.

34

1.3 Multi-View Video

For decades now, the video compression is a spread subject in the research circles. Moreover,

the transmission technologies have experienced a rapid growth. This joint increase has given rise to

a new paradigm – the immersive communication. Immersive communication gives the users the

impression of being present at a real event, including a vast series of applications: free-view point

video, holography, 3D video and also immersive teleconference; these applications are aimed to offer

a realistic experience compared to the traditional video, thus increasing the user experience.

In order to deliver a more realistic feeling to the user, he/she should benefit from a broad

perspective of the scene. In order to obtain this, one may use Multi-View Video (MVV). MVV

consists of a series of N cameras filming the same scene from different angles; the cameras used to

record the scene are arranged in different spatial positions, obtaining a set of N 2D videos, namely

multi-view videos.

Nevertheless, when using N cameras to film the same scene, the required storage increases

proportionally with N. But due to better compression algorithms and a high redundancy in time, view

and spatial domain, the amount of data to be stored is kept under normal values. The compression

techniques used in H.264/AVC represents the starting point for techniques aimed for multi-view

videos:

 SIMULCAST: each view is coded independently (9). In figure 1.6 it can be seen an

example of SIMULCAST coding structure for four cameras and a GOP equal to 8.

The advantage of SIMULCAST, from computational point of view, it is a simple

structure which performs only temporal prediction and gives random access to each

view, at any time. The main disadvantage is linked to the inter-view correlation that

is not exploited at all, thus the storage needed is still increased.

Figure 1.6 SIMULCAST Coding Structure for 4 Cameras (1)

35

 H.264/AVC Standard Extensions: derived from H.264/AVC and customized for

Multi-View Video coding. There are 2 possible schemes:

 Fully Hierarchical: figure 1.7 displays an architecture of fully hierarchical

coding structure for seven cameras and a GOP equal to 8. This scheme exploits

both temporal and inter-view correlation for P and B frames (except the frames

of the first view, called base view, still coded independently). The main

disadvantage consists in the impossibility of having random access without

decoding the entire GOP.

Figure 1.7 Fully Hierarchical Coding Structure for 7 Cameras (1)

 View Progressive: represents a trade-off between the other 2 possible

schemes. As in Fully Hierarchical, the first view is coded independently. The

inter-view correlation is exploited along the view axis (for the frames called

I-frames); the other frames (called V-frames) are predicted from the I-frames.

In the case of P-frames, only the temporal correlation is exploited. In this case,

the random access is possible: P-frames can be easily decoded (as in

SIMULCAST architecture), while for the key frames, the reference frames

must be firstly decoded. In figure 1.8 can be depicted the scheme for four

cameras and a GOP size of 8.

36

Figure 1.8 View Progressive Coding Structure for 4 Cameras (1)

37

2. CHAPTER 2

Distributed Video Coding

 Distributed Video Coding is a relatively new paradigm based on two fundamental theorems:

Slepian-Wolf (in case of lossless compression) and Wyner-Zig (in case of lossy compression); as a

matter of fact, DVC is originated in Distributed Source Coding, an important part of information

technology, dealing with the compression of multiple information sources, correlated but not linked

one to another (they do not communicate with each other). By exploiting the correlation between the

sources, the advantages are remarkable.

DSC exploits the correlation between the multiple sources at the decoder side (together with

channel codes) and in this way the computational complexity characterizing the encoder is shifted at

the decoder. This highlights also one of the first important advantage of DVC, compared to the

traditional video coding: the computational burden in encoders is shifted to the joint decoder, leaving

a very low complexity encoder to perform the compression of the videos.

DVC, as inherited from DSC, is based on encoding separately the correlated frames and

decode them jointly. This architecture suits both Mono-View and Multi-View video systems,

obtaining (in theory) the same performances as in traditional video coding.

38

 In this chapter, the basic concepts and origins of DSC are reviewed along with the

architectures implemented for Distributed Video Coding, in the case of Mono-View videos, but also

the customization made for Multi-View videos.

39

2.1 Distributed Source Coding

 Distributed Source Coding represents an important problem of information technology; it

focuses on coding multiple video sources, correlated, in a distributed manner. Each signal is encoded

by a different encoder and the streams of bits are sent to a single, joint decoder, which will exploit

the correlation between the frames by performing a single decoding.

 As first Shannon Theorem states: given a source X, modeled as a discrete random variable

with entropy H(X), it can be encoded and decoded without any loss of information if encoding rate is

greater than or equal to its entropy.

Let us consider two discrete sources: X and Y. For a lossless coding, when X and Y are

independently coded, the encoding rate must be greater or equal to their entropy, as it can be seen in

the following equation:

𝑅𝑋 ≥ 𝐻(𝑋) (2.1)

𝑅𝑌 ≥ 𝐻(𝑌) (2.2)

These two sources can be encoded and decoded jointly without any loss of information if the

total encoding rate is greater or equal to their joint entropy H(X, Y), as in equation 2.3:

𝑅 ≥ 𝐻(𝑋, 𝑌) (2.3)

 Their joint entropy is defined as:

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑓𝑋𝑌(𝑥, 𝑦) log2(𝑓𝑋𝑌(𝑥, 𝑦))𝑦∈𝛶𝑥∈𝜒 (2.4),

where 𝑓𝑋𝑌(𝑥, 𝑦) represents the joint probability density function of 𝑋 and 𝑌. Also:

𝐻(𝑋) + 𝐻(𝑌) ≥ 𝐻(𝑋, 𝑌) (2.5)

 Figure 2.1 depicts the traditional coding scheme, for jointly encoding and decoding; as already

stated, for no loss of information, the encoding rate must be greater or equal to the joint entropy.

Figure 2.1 Traditional Coding Architecture

40

 Figure 2.2 shows the DSC paradigm; must be highlighted the fact that the two sources are

correlated. In DSC, the encoding is performed independently on both sources and the decoding in

jointly implemented in the decoder.

Figure 2.2 Distributed Source Coding Architecture

 But due to Shannon Theorem, if X and Y are separately encoded, they can also be decoded

without any loss of information if:

𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋) + 𝐻(𝑌) (2.6)

2.1.1 Slepian-Wolf Theorem – Lossless Transmission

 The Slepian-Wolf Theorem states that (1): For the distributed source coding problem of the

pair (𝑋, 𝑌) with joint probability mass function 𝑓𝑋𝑌(𝑥, 𝑦), the achievable rate region (with no errors)

is given by the following equations:

𝑅𝑋 ≥ 𝐻(𝑋|𝑌) (2.7)

𝑅𝑌 ≥ 𝐻(𝑌|𝑋) (2.8)

𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋) + 𝐻(𝑌),

where 𝐻(𝑋|𝑌) is the entropy of 𝑋 when 𝑌 is known.

In figure 2.3 can be seen the representation of the admissible rate region in the case of joint

encoding and decoding, in terms of encoding rates of the two sources. Figure 2.4 shows the

admissible rate region for DSC; it can be concluded that this region is larger than the rate region for

separately encoding and decoding of the two variables (grey area), but still smaller than the region

obtained for joint coding (as shown in figure 2.3).

41

Figure 2.3 Admissible Rate Region - Joint Coding

Figure 2.4 Admissible Rate Region - Distributed Coding

Either way, Slepian and Wolf stated that from rate performance point of view, encoding

correlated sources jointly or independently, while the decoding is performed with a known correlation

model, the process is still with no loss of information.

42

2.1.2 Wyner-Ziv Theorem – Lossy Transmission

 The Slepian-Wolf Theorem concerns only the case of lossless coding; Wyner and Ziv took

further this paradigm and extended it for the lossy case, when some information loss can be allowed.

Wyner and Ziv introduced the Rate-Distortion. Figure 2.5 illustrates the basic Wyner-Ziv codec

architecture. As it can be seen, the source X overcomes a set of steps: transformation, quantization

and encoding (using a Slepian-Wolf encoder). At the decoding side, the stream of bits is decoded

(using a Slepian-Wolf decoder), the reconstruction is performed and then the inverse transform. As it

can be easily observed, in order to obtain the reconstructed image �̂�, the Side Information (SI) is

estimated.

Figure 2.5 Wyner-Ziv Codec Architecture

In the case of two correlated sources, the statistical dependence between X and Y is modelled

as a virtual correlation channel, and Y is considered as a noisy version of X (10). The encoder

computes the parity bits for X and sends them to the decoder. The decoder estimates X given the

received parity bits and the side information Y regarded as a noisy version of the code-word

systematic bits.

Let us consider 𝐷 = 𝐸[𝑑(𝑋, �̂�)] - the maximum distortion accepted at the decoder and

𝑅𝑋|𝑌
∗ (𝐷) - the admissible rate with distributed coding while 𝑅𝑋|𝑌(𝐷) - the admissible rate for classical

joint coding (when the side information Y is available at the encoder) and 𝑅𝑋 (𝐷) - the admissible

rate for encoding X without SI, at distortion D (1). So:

𝑅𝑋|𝑌(𝐷) ≤ 𝑅𝑋|𝑌
∗ (𝐷) ≤ 𝑅𝑋 (𝐷) (2.9)

The Wyner-Ziv Theorem states that if D is the MSE error and X and Y are joint Gaussian

variables, then

𝑅𝑋|𝑌(𝐷) = 𝑅𝑋|𝑌
∗ (𝐷) (2.10),

where the distortion is equal to 𝐷 = 𝐸[|𝑋 − �̂�|2] (2.11).

43

 In conclusion, Wyner and Ziv proved that the same rate cam be achieved for the systems that

exploit the correlation (statistical dependency) between the sources at the decoding side, as well as

for the ones exploiting at the encoding side (for jointly Gaussian sources and for a mean square error

distortion).

44

2.2 Distributed Video Coding – Architecture

 DVC can be summarized as a new paradigm characterized by the movement of the

computational complexity from the encoding side to the decoding side, as the work of both teams

(Slepian-Wolf and Wyner-Ziv) proved: under some certain conditions, the correlation between the

sources (and implicitly between the successive frames of the video) can be exploited at the joint

decoder without any loss in performance, with an important gain in the encoder complexity.

 Based on the theories of Slepian-Wolf and Wyner-Ziv, to different approaches have been

proposed: PRISM architecture and Stanford-DISCOVER architecture.

2.2.1 PRISM Architecture

 The PRISM architecture, or Power-efficient, Robust, hIgh compression, Syndrom-based

Multimedia coding (11) represents one of the first architectural implementation of the Wyner-Ziv

coding. Several evolved versions have been implemented since then and figure 2.6 displays the

version presented in 2007.

Figure 2.6 PRISM Architecture (Encoder and Decoder)

45

 ENCODER: PRISM has block-based architecture, each frame of the video is divided

into 8x8 blocks. Each block is further processed as in figure 2.6.

 Transform – the block is transformed using DCT; the resulting coefficients are

arranged in one-dimension vectors (64 coefficients) by performing a zig-zag

scan on the two-dimension block (8x8);

 Quantization – the resulted coefficients are quantized with a given

quantization step, dictated by the quality wanted at the reconstructions;

 Classification – the most important step of this architecture. During it, the

correlation between the source and the SI is exploited, in order to classify the

blocks and moreover the bit planes, into three distinct categories: Skipped bit

plane, WZ encoding and Entropy encoding. The reference block is actually

the SI and it can be computed differently (it depends on the computational

capability of the encoder): for low power encoders – SI is the previous block

and there no motion search; for powerful encoders – SI is the most similar

block to the current one, found in the previous frame by running complex

motion search algorithms. After finding SI, the correlation between the source

coefficients (64) and the SI coefficients (64) helps finding which bit planes are

worth inherited from the SI, in this way they will not be send to the decoder

because can be easily recovered from the SI. The rest of bit planes (that cannot

be recovered at the decoder) are split into two categories: the most significant

are WZ encoded and the least significant are entropy encoded;

 Syndrome Encoding – the output of the classification block is either a WZ

encoded bit planes or an entropy encoded bit planes. For the first type, the

arity check matrix of a linear correction code is used;

 Hash Generator – in order to easily predict at the decoder, a CRC of 16 bits

is generated at the encoder, being used as a signature of the quantized code-

word sequence.

 DECODER: after being encoded, the 8x8 blocks are decoded using the modules

depicted in the scheme from figure 2.6:

 SI Generation – first of all, the decoder tries to find the best prediction of the

current block, by performing a motion search and generating a set of possible

matches. The received syndrome is being decoded with each possible match

and the selected SI is the one match that satisfies the hash check module;

 Syndrome Decoding – is divided into two steps: firstly, the encoded bit planes

(both WZ and entropy) are decoded; secondly, the closest code-word to the SI

is found (within a specified coset);

 Hash Check – the checksum of the previously decoded block is computed and

compared to the one transmitted from the encoder; if the two variables match,

the decoding is successful; if not, the decoding restarts with another possible

match;

46

 Estimation and Reconstruction – at this point, the recovered quantized code-

word sequence and the predictor are used to reconstruct the source, based on

the mean square error;

 Inverse Transform – an inverse zig-zag operation is performed on the

reconstructed coefficients to obtain the 2-D block, which will be passed

through an inverse transform and the pixels are obtained.

2.2.2 DISCOVER Architecture

 In the same time PRISM was presented (2002), a group of scientists from Stanford proposed

another architecture implementation for the Wyner-Ziv coding; the differences between the two

proposed models was the approach: while PRISM was a block-based architecture, the new solution

was characterized by a frame approach. The video sequences consist of two types of frames: Wyner-

Ziv frames (WZF) and Key frames (KF); moreover, the frames are encoded separately and also

differently based on the type. The KFs are Intra coded and the WZFs are DCT transformed, quantized

and fed into a systematic channel encoder.

 The most known architecture and the reference method for DVC was developed during the

European project DISCOVER (DIStributed Coding for Video sERvices) (12). For DISCOVER, a

GOP of size n consists of 1 KF and n-1 WZFs. Figure 2.7 depicts the DISCOVER codec, based on

Stanford architecture for a GOP equal to 4.

Figure 2.7 DISCOVER codec, based on Stanford architecture (GOP=4)

47

 ENCODER: As it can be observed in the scheme, the DISCOVER encoder divided

into two parts, after the splitting of the frames. Firstly, the KFs are encoded using and

intra frame coder – H.264/AVC Intra Encoder. The upper part of the architecture

concerns WZFs.

 Image Classification – the frames of the sequence to be encoded are divided into

two types: WZFs and KFs. The size of the GOP is fixed and it an important player

for the WZF estimation quality; a smaller GOP will dictate a better quality, while

a greater GOP implies a complexity decrease (because KFs are more complex than

the WZFs);

 Transform and Quantization – the WZF is transformed using a 4x4 DCT and the

16 resulting coefficients are organized in 16 bands 𝑏𝑘, k ∈ [1, 16]. The low

frequency coefficients (DC coefficients) are positioned in the first band and the

others are grouped in the AC bands k ∈ [2, 16]. The next step represents the

quantization: each band of DCT coefficients is quantized with 2𝑚𝑘 levels. The

number of reserved bits 𝑚𝑘 depends on the band k. In DISCOVER, the number

of levels is given by 8 already determined Quantization Indexes (QI); QI=1

corresponds to a low bit rate, while QI=8 corresponds to a high bit rate. Also, QI

is linked to the QP used for encoding the KFs.

 Channel Encoder – the quantized symbols resulted after the previous steps (for

each DCT band) are divided into bit planes, obtaining two types of data: the

systematic data and the parity data. At the beginning, the role of the channel

encoder of producing parity bits was aimed to correct (if any) the errors found on

the systematic bits, at the decoder. But in DVC, the role of the channel encoder is

different: the systematic information is no longer transmitted to the decoder, but

replaced by the SI; only a part of the parity bits is transmitted to the decoder and

this time in order to correct the SI errors. The process is the following: each bit

plane is fed into the channel encoder and the set of the parity bits is computed (and

the systematic bit are discarded). Afterwards, the parity information is stored into

a buffer and send to the decoder, when requested by it through the feedback

channel (bit error rate at the decoder exceeds a certain threshold). There are two

possible design solutions for the codes: LPDC coder or turbo codes. In a turbo

code architecture, the bit stream and an interleaved version of it are fed separately

into two convolutional channel encoder. The systematic parts are discarded and

the two sets of parity bits are sent to the decoder. Also in this case, only a

punctured version of the parity bits is initially sent to the decoder according to the

minimum rate estimation. Then, if necessary, more bits will be sent (1).

 DECODER: The KFs are directly decoded with the H.264/AVC Intra Decoder and

then are being used to generate the SI needed for WZF decoding process.

 Side Information Generation – the quality of the SI is directly related to the

performances of the DVC. Firstly, the decoder must find a prediction for the

WZ frame; secondly, this estimation will be corrected by the parity bits sent

by the encoder. There are two types of methods for building the SI:

48

interpolation and extrapolation. The SI interpolation is performed by

considering past and future frames, while extrapolation considers only past

frames. One of the most common algorithms is DISCOVER motion temporal

interpolation algorithm (MCTI); it consists of the following steps:

o Low-Pass Filtering of the reference frames in order to improve the

motion vectors reliability;

o Forward Motion Estimation between the previous and the next frames;

o Bidirectional Motion Estimation in order to refine the motion vectors;

o Spatial Smoothing of Motion Vectors aimed to obtain a higher value

for the field spatial coherence and reduce the number of false motion

vectors;

o Bidirectional Motion Compensation in order to avoid spatial

incoherence.

 Channel Decoder – Let us denote the side information by Y; it is considered a

noisy version of the original WZF, X. The noise is additive, so Y = X + N,

where N is the noise. In order to obtain the DCT coefficients (seen as the noisy

version of the WZF DCT coefficients), the generated SI is transformed, using

a 4x4 DCT block. When the SI DCT coefficients are known, the decoder

(Slepian-Wolf) starts correcting the bit errors by using the parity bits from the

encoder (requesting them through the feedback channel). After decoding each

packet of bits, the error is computed by the decoder; it is greater than the

threshold (10−3 for DISCOVER), more parity bits are required.

 Reconstruction and Inverse Transform – The reconstruction is performed

using SI DCT coefficients and the decoded DCT coefficients. In the end, the

inverse 4x4 DCT transform is performed and the frame is restored in pixel

domain.

DVC is particularized by a certain element in its architecture, namely the feedback (or

backward) channel. Unfortunately, is represents also an important drawback of the solution; because

the encoder needs to wait in order to send all the parity bits to the decoder, DVC Stanford architecture

is actually a real-time decoding paradigm. During the years, several solutions without this looped

have been presented. While the advantages are obviously, the disadvantages are the following: losses

in performance (around 1dB) and also a not very complex comparison between the KFs (previous

and next), in order to have a measure of the correlation.

49

2.3 Multi-View Distributed Video Coding

 Multi-View Distributed Video Coding (MVDVC) or Stereo DVC represents a paradigm

similar to Mono-View DVC, is the sense of the encoding and decoding processes involved. Moreover,

there are some differences between the two paradigms: SI generation and frame distribution (based

on time) in the time-view space.

One of the major disadvantage of the traditional multi-view coding is the necessity of inter-

camera communications in order to be able to exploit the inter-view redundancies. For this, the

complexity of the encoder is increased, because it has to be able to perform inter-view redundancies

exploitation and complex motion estimation based for intra-view. But MVDVC can minimize both

of these encoder complexities.

In MVDVC, for a frame reference there are two indexes needed, one for the time and one for

the view. Let us denote 𝐼𝑡,𝑘, the image taken at the instant t by the k -th camera. The corresponding

SI is 𝐼𝑡,�̂�.

 Multi-View Schemes – in Mono-View DVC the main issue is deciding the number

of WZ frames in a GOP. But in MVDVC, the problem is more complex because of

the number of the frame distribution.

Although it may appear there are many possible configurations, their number can be reduced.

But firstly, in MVDVC systems, there are three types of cameras used:

o Key cameras: all the generated frames are KFs, that can be encoded by either an Intra or an

Inter coder. Consequently, these cameras are more powerful;

o Wyner-Ziv cameras: all the generated frames are WZFs; the SI is build using KFs from

another camera. Hence, their complexity is not that high;

o Hybrid cameras: the generated frames can be KFs or WZFs. The SI can be computed based

on KFs from another cameras or their own KFs. The advantage of this type is the symmetry

of the configuration, the disadvantage is the powerful cameras needed.

These cameras can be arranged in a variety of configurations. However, there are three main

schemes:

 Asymmetric scheme – is characterized by an alternation between the Key and Wyner-Ziv

cameras, as it can be observed in figure 2.16. This type is the least expensive in terms of the

needed equipment, because there are dedicated cameras for the two types of views.

 Hybrid scheme – the cameras used are hybrid cameras. At the same time t, all of the cameras

will transmit either a Key frame or a Wyner-Ziv frame. It requires complex cameras, able to

sustain the computational necessity. The schematic architecture can be depicted in figure 2.17,

where can be found five cameras during six moments of time.

50

Figure 2.8 MVDVC - Asymmetric Scheme

Figure 2.9 MVDVC - Hybrid Scheme

 Symmetric scheme – similar to the Hybrid scheme, this scheme is composed of hybrid

cameras. There is one KF for one WZF, meaning the report is ½, and the frames (KFs and

WZFs) are placed in a time-view grid. The SI for each WZF can be generated in the view or

time direction, as figure 2.18 shows.

51

Figure 2.10 MVDVC - Symmetric Scheme

 SI Generation – in Mono-View DVC, the SI generation is not a very complex

strategy. But in MVDVC, because of the time-view axes, the complexity increase.

According to the arrangement of Key, Wyner-Ziv and Hybrid cameras, the SI for the WZ

frames can be estimated in different ways:

 the temporal estimation: the interpolation is based on temporal adjacent frames of the same

view;

 the inter-view estimation: the interpolation is based on the frames of the adjacent views at the

same time instant;

 a fusion between temporal and inter-view estimations: the temporal and the inter-view

estimations are fused according to different criteria (1).

A fusion represents the combination used to create a single Side Information, when both

temporal and inter-view interpolations are available (as in Symmetric type of scheme).

52

53

3. CHAPTER 3

Free Navigation with DVC Application

 Nowadays, a huge number of the world population uses image and video coding technologies

on a regular basis (and this percentage is still growing). These technologies are behind the success

and quick deployment of services and products such as digital pictures, digital television, DVDs, and

Internet video communications (13). Most of the video coding paradigms are characterized by

powerful encoders, able to exploit the temporal and spatial correlations between the frames. As a

consequence, all standard video encoders have a much higher computational complexity than the

decoder (typically five to ten times more complex). But Distributed Video Coding represents a

paradigm that moved the computational complexity from the encoder to the decoder, being suited for

sensor networks. DVC refers to the compression of correlated signals captured by different sensors

that do not communicate between themselves. All the signals captured are compressed independently

and transmitted to a central decoder, which has the capability to decode them jointly.

In recent years, the improvements in video compression and transmission technologies

increased; in this way, immersive communication appeared. This paradigm refers to the users feeling

54

as being present at a real event. Immersive communication includes free-view point video,

holography, 3D video and immersive teleconference. The goal of these applications is to offer to users

a realistic experience than the traditional video (where viewers have only a passive way to observe

the scene).

Therefore, the concept of Free Navigation inside a multi-view video sequence started

attracting more researchers willing to find the suitable video encoding paradigm able to offer a

satisfactory user experience at a decent computational power of the architecture.

The first plan on which the author of the thesis worked for the practical implementation of the

paper was designing and implementing an application able to simulate the concept of Free Navigation

and to obtain the RD performance points for both coding strategies: DVC and H.264/AVC all Intra.

55

3.1 Architectural Solution – Schema

The main objective of this thesis is to decide if Free Navigation with MVDVC can be a

suitable solution for the immersive communication. In order to deliver a more realistic feeling to the

user, he/she should benefit from a broad perspective of the scene. Therefore, Multi-View videos are

used. MVV consists of a series of N cameras filming the same scene from different angles; the

cameras used to film the scene are arranged in different spatial positions, obtaining a set of N 2D

videos, namely multi-view videos.

So, the purpose of this paper is developing a software solution which can simulate the situation

in which a user can decide what perspective he/she wants to visualize in the watched video at each

moment of time, and measure its performances.

The first phase in finding the architectural solution is to establish the components of the

scheme. In order to decide whether MVDVC is a suitable video coding paradigm for free navigation,

in terms of performances, one must decide the reference used for the comparison. As already stated,

the performance comparison will be performed in Chapter 4, in order to analyze Distributed Video

Coding (DVC) performances compared to H.264 Advanced Video Coding (MPEG-4 AVC) all Intra

performances, in the case of free navigation inside multi-view sequence videos.

The next phase in finding the architectural solution is to establish the input and the output of

the scheme. Starting backwards, from the output; in order to perform a performance comparison in

terms of performances between MVDVC and H.264/AVC all Intra one needs the values of the Rate-

Distortion points (bit rate and the PSNR, as an objective metric for distortion between the original

image and the decoded one). These metrics will be further processed to obtain the conclusions.

In terms of input parameters, in order to test a scenario similar to free navigation and

immersive communication, the author of this thesis decided the input of the schematic to be the path

of the navigation, under the form of sequence of view indexes. Because in the case of MVVs there

are two indexes characterizing a view, the length of this vector is equal to the number of time instances

and the value of path(n) is the requested view at time n.

The flow of the diagram is the following one: the path of the navigation is decided by the

user (more details will be presented in the following sub-chapter where all the parameters are

discussed), the two raw videos are created according to the path (one video will be creating with all

the views and one will contain only the odd ones) – temp_1920x1088.y and full_temp_1920x1088.y.

The two videos will undergo, one at a time, an encoding and decoding H.264 all Intra process.

The output of this step consists in two parts: the first one are the RD performance results (the bit rate

and the PSNR, that are collected and will be further used during the comparison, more details in

Chapter 4) and the decoded videos (named temp_QP00xx.yuv).

In the final stage, the H.264 all INTRA decoded videos will represent the input for the DVC

Codec, along with frames from the raw video full_temp_1920x1088.y. As before, the output of this

56

final block are the RD performance results (the bit rate and the PSNR, that are collected and will be

further used during the comparison, more details in Chapter 4).

Figure 3.1 Architectural Solution

The contribution of the author is concentrated on two plans:

 Free Navigation with DVC Application: Propose and implement the software solution, obtain

the RD points for both types of coding;

 RD Performance comparison between H.264 all Intra - DVC: Process the results (global, per

path or per view) in order to draw the conclusions, along to comparison between the four

decoding strategies implemented in DVC.

The RD performance comparison between H.264 all Intra - DVC (allIntra-

DVC_Comparison.m) will be discussed in Chapter 4. During this chapter, the discussion

concentrates on the first script, namely FN_DVC.m, implementing the free navigation concept and

providing the RD points for the both types of video coding.

57

3.2 Architectural Solution – Parameters

In the previous sub-chapter, the schematic of the solution was presented, but in order to

implement it, a series of parameters must be decided. All the simulations were conducted on a specific

series of video sequences – dancer. This video in characterized by the following:

- synthesized video;

- composed of three different video sequences, each having 250 frames (from frame 0

to frame 249);

- resolution: 1920 width and 1088 height;

- each video sequence (numbered 1, 5, 9) captures the same action but from different

angles;

- the format of each video sequence is yuv (4:2:0); the color space encoding is Y:Cb:Cr,

and the sampling 4:2:0 (the chroma component has one fourth the number of samples

of the luma component);

- the angles of the cameras can be found in Table 3.1; worth mentioning is the fact that

the first frame of each sequence is frame 0.

VIDEO SEQUENCE NUMBER POSITION

1 -80.0

5 0.0

9 80.0

Table 3.1 Cameras Positions

Since MVDVC is the main object of the present study, deciding its parameters represents a

very important step. While working with Multi-View videos, characterized by a series of N cameras

filming the same scene from different angles, and with DVC, whose performances depend of the GOP

size and of the side information methods of generation, a set of decisions must be taken before starting

the implementation.

In MVDVC, for a frame reference there are two indexes needed, one for the time and one for

the view. Let us denote 𝐼𝑡,𝑘, the image taken at the instant t by the k-th camera. The corresponding SI

is 𝐼𝑡,�̂�.

58

A. Multi-View Scheme

As presented in sub-chapter 2.3, there are three possible schemes for the arrangement of the

cameras: Asymmetric, Hybrid and Symmetric. For the experiments conducted in this thesis, a

customized Hybrid Scheme was used, characterized by a Key camera for each Wyner-Ziv camera.

The scheme can be depicted in figure 3.2; it can be observed there are only three Hybrid cameras

available (namely the three video sequences for the dancer video) and each camera can provide a KF

at time instance t and a WZF at time instance t+1.

Figure 3.2 Hybrid Scheme used in Free Navigation with DVC

Therefore, the author of this thesis decided the GOP length to be equal to 2 and the period of

KFs equal to ½. The proposed scheme involves complex cameras, but it also offers an easy way to

switch between the views at the decoding side.

The presented scheme introduces four ways of decoding. Based on the RD performance points

obtained, in the next chapter a study will be performed in order to choose the best decoding strategy

(interpolation configuration) for the chosen scenario.

Let us simplify the conditions and consider that at time instance t, the user has 3 possibilities

to navigate in the video:

- to remain on the same view from time instance t-1;

- to move to the view in the right;

- to move to the view in the left.

Due to the symmetry of the scenario, the changing of the view implies the name strategies,

whether it is performed to the left or to the right. As figure 3.2 displays, there was considered only

the movement to the right.

59

Based on the scheme, for a generic WZF 𝐼𝑡,𝑘, from camera 5, at least two KFs are available,

𝐼𝑡−1,𝑘and 𝐼𝑡+1,𝑘, i.e. two images taken by the same camera at time instances before and after.

Moreover, four other images are available, namely 𝐼𝑡−1,𝑘+1 and 𝐼𝑡−1,𝑘−1, two images taken at the

previous temporal instant t by the two neighboring cameras (1 and 9); and 𝐼𝑡+11,𝑘+1 and 𝐼𝑡+11,𝑘−1,

two images taken at the following temporal instant t by the two neighboring cameras (1 and 9). All

these images should be used in order to generate a side information as reliable as possible.

The four decoding strategies are the following (singular cases presented for 𝐼𝑡,1 WZF and 𝐼𝑡,5

WZF; obviously, are the same for 𝐼𝑡,9 WZF):

 The 𝐼𝑡,1 WZF can be obtained using the interpolation between the KFs: 𝐼𝑡−1,1 and

𝐼𝑡+1,1;

 The 𝐼𝑡,5 WZF can be obtained as:

- Interpolation between 𝐼𝑡−1,1 and 𝐼𝑡+1,1 KFs;

- Interpolation between 𝐼𝑡−1,1 and 𝐼𝑡+1,5 KFs;

- Interpolation between 𝐼𝑡−1,1 and 𝐼𝑡+1,9 KFs.

B. Side Information Generation Method

There are three possible estimation methods and there are cases when all (or some of them)

are computed and then a fusion must be made between them:

 Interpolation: a technique suitable for limited GOP size (2 or 4); it needs a frame

reference before (as time instance) and a frame reference after the estimated WZ

frame;

 Extrapolation: a technique that uses only past decoded frames, giving a less precise

estimation but is suitable for larger GOP size;

 Disparity: represents the difference between frames in view direction. Disparity

estimation works better once the object and the background are determined, by

determining their displacement (depending on the depth) and their deformation (due

to camera disposition). It is also based on neighboring reference frames.

The estimation method chosen for the presented experiments is the interpolation, due to a set

of reasons:

o it is an accurate technique for small GOP length; since the GOP for the

experiments is 2, it suited well;

o it can exploit both types of correlation between frames: temporal and inter-

view;

o the motion estimation can be obtained using simple or very complex

techniques and the designer has the possibility to choose.

The method used for SI generation is DISCOVER method, as briefly presented in sub-chapter

2.2.2. The MCTI algorithms consists in four steps, as figure 3.3 depicts, preceded by a low-pass

60

filtering of reference frames. The input of the algorithm are the two reference frames (namely 𝐼𝑘1
and

𝐼𝑘2
) and the output are the two motion vector fields, denoted 𝒖𝑘1

and 𝒖𝑘2
.

As figure 3.3 shows, the algorithm starts with a motion estimation between the two reference

frames. For each block of 𝐼𝑘2
, a vector which points onto the most similar block in 𝐼𝑘1

is found; let us

consider two blocks of the two frames 𝒃𝑘1
and 𝒃𝑘2

 and the vector relating them u. The next step is

establishing for each block of the WZF a bidirectional vector computed from the vectors obtained in

the first step; the vectors of the forward motion estimation are divided by two and the closest half

vector pointing to the center of the WZF block is chosen and extended by symmetry. Followed by a

bidirectional motion estimation, the motion field vectors are finally smoothed, in order to be close to

their reliable neighbors.

Figure 3.3 DISCOVER Interpolation Method

The reference frames will be motion compensated with respect to the two motion vector fields

obtained after the DISCOVER interpolation. The resulting images are then averaged to obtain the

new side information.

C. Quantization Indexes and Quantization Parameters

As already presented, during the encoding process in both types of encoding (H.264/AVC and

DVC) the DCT coefficients are passed through a quantization block; the resulted coefficients are

quantized with a given quantization step, dictated by the quality wanted at the reconstruction.

In H.264/AVC, the quantization is controlled by the Quantization Parameter – QP; there are

52 values for QP, ranging from 0 to 51. Actually, QP is an index used to derive a scaling matrix. In

term of the quality of the frames, QP regulates how much spatial detail is saved. For a very small QP,

almost all of the spatial detail is retained; while QP increases, some of that detail is aggregated so that

the bit rate drops – but at the price of some increase in distortion and some loss of quality (14).

In DVC, the quantization is controlled by the Quantization Index – QI; the DCT coefficients

are quantized with the number of levels given by 8 already determined Quantization Indexes (QI);

QI=1 corresponds to a low bit rate, while QI=8 corresponds to a high bit rate. In fact, to each QI

corresponds a matrix used for the quantization of the 4x4 DCT matrix. The values of the matrixes (as

a set of 16 coefficients, one per each band) can be found in table 3.2; must be noted that 0 means no

WZ parity bits are sent for the corresponding band).

61

BAND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

QP=1 16 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

QP=2 32 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

QP=3 32 8 8 4 4 4 0 0 0 0 0 0 0 0 0 0

QP=4 32 16 16 8 8 8 4 4 4 4 0 0 0 0 0 0

QP=5 32 16 16 8 8 8 4 4 4 4 4 4 4 0 0 0

QP=6 64 16 16 8 8 8 8 8 8 8 4 4 4 4 4 0

QP=7 64 32 32 16 16 16 8 8 8 8 4 4 4 4 4 0

QP=8 128 64 64 32 32 32 16 16 16 16 8 8 8 4 4 0

Table 3.2 Quantization table for WZF

Usually, the experiments using H.264/AVC and DVC are conducted with QP between 20 and

40; the range is the best compromise between the RD performance points (at 40 the quality of the

decoded image is still satisfying, while the bandwidth used for 20 is still reasonable). Therefore, the

author of this thesis chosen four distinct values for the quantization parameter:

𝑸𝑷 = [𝟐𝟐 𝟐𝟕 𝟑𝟐 𝟑𝟕] (3.1)

A correspondence between QP and QI must be defined for DVC; it can be easily intuited that

an inverse proportionality must characterize this correspondence, in order to maintain a reasonable

compromise between the RD points. Therefore, the list of QI(QP) is the next one:

𝑸𝑰 = [𝟖 𝟕 𝟔 𝟓] (3.2)

62

3.3 fn_dvc – Deployment and Implementation

The first plan on which the author of the thesis worked for the practical implementation of the

paper was designing a solution for the free navigation inside a multi-view video sequence, having the

required specifications. The script was developed using MATLAB software, by linking a set

algorithms implemented by TSI Department and customizing them for the desired architecture.

MATLAB (standing for matrix laboratory) represents a multi-paradigm numerical computing

environment and fourth-generation programming language. Developed by MathWorks, MATLAB

allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in other languages, including C, C++, Java,

Fortran and Python (15).

3.3.1 Development

The application developed using MATLAB (R2014b) program is called FN_DVC.m [the

code can be found in Appendix 1] and it was implemented in three steps, in order to have the flow

shown in figure 3.1:

 The first step was the initialization and the creating of the raw videos (according to the

path);

 The second step was linked to H.264/AVC all Intra Coder; it consisted in encoding the

temporary raw videos with H.264/AVC, all Intra and collecting the RD points;

 The third step implemented the DVC part of the architectural solution; based on

encoding the given path with DVC, based on the parameters decided a priori and

collecting the RD points;

The general script, FN-DVC.m was deployed taking into account and linking several

algorithms and programs developed over the years by Signal and Image Processing Department

(Département Traitement du Signal et des Images – TSI) from Télécom ParisTech. Besides this, the

contribution of the author of this thesis can be found in the customization performed on some of the

programs.

1. PHASE 1

As already stated, all the experiments were conducted on dancer video, a series of synthesized

video sequences having the resolution 1920x1088 pixels, meaning 1088 rows and 1920 columns. The

two vectors containing the values for quantization parameter and quantization index were declared

63

and initialized with the corresponding values: 𝑸𝑷 = [𝟐𝟐 𝟐𝟕 𝟑𝟐 𝟑𝟕] and 𝑸𝑰 = [𝟖 𝟕 𝟔 𝟓]. Also, QI

has been declared as a function of QP:

𝑄𝐼 = 𝑓(𝑄𝑃) (3.3)

videoName = 'dancer';
rows = 1088;
cols = 1920;

QPVector = [22 27 32 37];
QIVector = [8 7 6 5];

Also, the experiments were conducted on four distinct values of QP, from the used range

[20,40]. But the user can modify the QP vector at any time, therefore the number of vector

components is dynamically computed, using the numel function, MATLAB proprietary, which

returns the number of elements, N, in array A:

NQP = numel(QPVector);

The next step is defining the path; since the user is the one responsible navigating through the

views, he/she is responsible of deciding the path wanted to be watched. Therefore, as figure 3.1

depicts, the path of the view is declared by the user. The path represents in fact a sequence of view

indexes, where the length of this vector is equal to the number of time instants. The value of path(n)

is the requested view at time n. The experiments were conducted on 10 different paths decided by the

author of this thesis, but more information will be presented in Chapter 4.

viewPath = [1 5 9 9 9 9 5 9 1 1 1];

Further, the two raw videos are created according to the path. The purpose of this application

is to obtain the RD points for two separate ways of encoding: DVC and H.264/AVC all Intra. DVC

uses two types of frames: Key frames and Wyner-Ziv frames; the GOP length chosen is 2 and the

Multi-View scheme is the one displayed in figure 3.2. Therefore, from the initial path, the odd frames

are the KFs and the even frames are WZFs.

This leads to the necessity of two raw videos:

 A video with all the frames used for collecting the RD points for the path encoded

H.264/AVC – named full_temp_1920x1088.y;

 A video with the odd frames (1, 3, 5, 7, 9, 11) used as KFs for the DVC codec – named

temp_1920x1088.y.

A. full_temp_1920x1088.y

Firstly, the variable NFrames is initialized dynamically with the number of frames needed

for the full video (11 in the presented case) by calling the numel function. Since the process of

creating the video is time consuming, it will be created unless it was already created. Therefore, an If

instruction is used to verify if the video exists or not. If it has not been created yet, the file is opened

in writing mode.

64

NFrames = numel(viewPath);

targetFileName = 'full_temp_1920x1088.y';
if ~exist(targetFileName);
 fid = fopen(targetFileName, 'w');

dancer video represents a video composed of three independent video sequences each having

250 frames, filmed from slightly different angle (according to table 3.1). Since the video is composed

by frames, the frames must be identified inside the video sequence. The path indicates the number of

the view the frame is part of (1, 5, or 9).

The variable currentView indicates the view and the current frame is extracted from the

indicated view using the function readMVDData, developed by Département Traitement du Signal

et des Images – TSI. The input parameters of the function are:

- Name: conventional name of the Multi-View video i.e. dancer;

- Time: temporal instance (the frame inside the video sequence) i.e. the index of the path

video element;

- View: camera number (the view number) i.e. 1, 5 or 9,

while the output parameters can be the texture and the depth. Since the depth is not used,

currentFrame stores only the texture.

 for iFrames = 0:NFrames-1,
 currentView = viewPath(iFrames+1);

 [currentFrame ~] = readMVDData(videoName, iFrames, currentView);

Since a frame information is mainly stored in its luma, the author of this thesis decided to

create videos in yuv format (4:2:0) having the color space encoding Y:Cb:Cr; rgb2ycbcr MATLAB

function is used to convert RGB color values to YCbCr color space.

 YUV = rgb2ycbcr(currentFrame);

 tmp = YUV(:,:,1);
 fwrite(fid, tmp', 'uchar');

 end

 fclose(fid);
end

As a final step in creating the video, the obtained frame is written in the file and the file is

closed.

B. temp_1920x1088.y

In a similar manner, the video with the odd frames is created by using a For instruction with

the step set to 2.

targetFileNameFull = 'temp_1920x1088.y';
if ~exist(targetFileNameFull);
 fid = fopen(targetFileNameFull, 'w');

65

 for iFrames = 0:2:NFrames-1,
 currentView = viewPath(iFrames+1);

 [currentFrame ~] = readMVDData(videoName, iFrames, currentView);

 YUV = rgb2ycbcr(currentFrame);

 tmp = YUV(:,:,1);
 fwrite(fid, tmp', 'uchar');

 end

 fclose(fid);
end

2. PHASE 2

The second phase of the implementation is obtaining the RD points for coding the entire path

H.264/AVC all Intra. The function h264codec, developed and implemented by professor Marco

Cagnazzo was used; this function encodes and decodes a video sequence with H.264/AVC,

employing external executables to encode and decode an YUV video sequence and to assess

compression RD performances.

The contribution of the author is reflected in creating a structure with the encoding input

parameters of H.264, for both videos. The structure is formed of:

- Rows: number of rows of each frame i.e. 1088;

- Cols: number of rows of each frame i.e. 1920;

- NumberOfFrames: number of frames of the video i.e. 11 or 6;

- ColorSpace: y – greyscale;

- GopSize: since all the frames are coded Intra, the GOP size for H.264/AVC is 1;

- Rate_control: as the rate control is decided by the QP, it will be set to 0;

- QP_I: the values for QP: 22 27 32 37;

- KeepDecoded: set to 1 enables the saving of the decoded sequence (since will be

further used in DVC codec).

paramsFull = struct('rows', rows, 'cols', cols, 'numberOfFrames', NFrames, ...
 'colorSpace', 'y', 'gopSize', 1, 'rate_control', 0, 'QP_I', QPVector, ...
 'keepDecoded', 1);

params = struct('rows', rows, 'cols', cols, 'numberOfFrames',

floor(NFrames/2)+1, ...
 'colorSpace', 'y', 'gopSize', 1, 'rate_control', 0, 'QP_I', QPVector, ...
 'keepDecoded', 1);

 h264codec returns the Rate and the PSNR for the entire input video. Since for the comparison

performed in Chapter 4, the RD performance points per each frame are needed, for

full_temp_1920x1088.y, the values are extracted from the corresponding results files.

% All-frames video
[RATEVectorIntraFull, PSNRVectorIntraFull] = h264codec(targetFileNameFull,

paramsFull);

66

% Odd-frames only video
[RATEVectorIntra, PSNRVectorIntra] = h264codec(targetFileName, params);

We are interested in the RD points per each frame and for each used QP value. The codec

results are gathered for each QP in .txt files, such as the one depicted in figure 3.4.

Figure 3.4 H.264/AVC Codec Results

An extraction of the bit rate (in bits/picture) and of the PSNR (in dB) is performed for the full

video and the results are saved into a matrix.

files = dir('encoder*.txt');
tmpNumberFile = zeros(1,length(files));
for tmpIndex = 1:length(files),
 tmpFileName = files(tmpIndex).name;
 tmpNumberFile(tmpIndex) = str2double(tmpFileName(8:11));
end
fileNumber = max(tmpNumberFile)-3:max(tmpNumberFile);

67

for iQP=1:numel(fileNumber),
 txt=fileread(sprintf('encoder%.4d.txt',fileNumber(iQP)));
 matchRate=regexp(txt,'\(IDR\)\s*\d*', 'match');
 matchPSNR=regexp(txt,'\(IDR\)\s*\d*\s*\d*\s*\d{2}\.\d{3}', 'match');

 for iFrame=1:numel(matchRate),
 I_Rate_Matrix(iFrame,iQP) = str2double(matchRate{iFrame}(6:end));
 dotPosition = strfind(matchPSNR{iFrame},'.');
 I_PSNR_Matrix(iFrame,iQP) = str2double(matchPSNR{iFrame}((dotPosition-

2):end));
 end
end

3. PHASE 3

Recalling from sub-chapter 2.2.2, figure 2.7, the DVC codec can be divided into two parts:

H.264/AVC all Intra for the KFs and Wyner-Ziv Codec for the WZFs. The splitting of the frames has

been performed by the user when using GOP = 2 and the hybrid Multi-View Scheme.

The KFs are firstly encoded Intra and then decoded; the decoded frames are the one used for

construction of the side information. Since this operation was already performed in phase 2, this phase

will concentrate mainly on the DVC Codec. We will refer at WZF as current frame and KFs as

previous and next frame. The current frame must be transformed, quantized and then encoded,

followed by a reconstruction at the decoding side, based on the SI and the parity bits (decoded).

For this, decodWZF function is used; the function employs external executables to encode the

parity bits and to decode them and reconstruct the WZFs and to assess compression RD performances.

The function represents the work of TSI team, along with (3) and (1). Its input parameters are:

- ImS: is the side information i.e. computed as described below;

- QI: is the quantization index values according to the vector and conform with the of

QI=f(QP);

- I0: the original frame i.e, the current frame;

- Fixedrate: set to 0 (we do not need to see the allocation matrix for each bit plane and

DCT band);

- Foxedratefile: set to null when fixedrate is 0.

The DVC Decoder can be observed in figure 3.5. Considering the 2 KFs and the WZF, the SI

is generated and the WZF is reconstructed; based on the original frame, the compression RD points

are computed.

Figure 3.5 DVC Decoder in FN_DVC.m

68

.

The process described is repeated for each WZF and for each value of QP, starting from the

second frame of the path (first WZF) to the 10th frame (last WZF). Each WZ frame is loaded as

presented previously (using readMVDData function); for each WZF, the two corresponding KFs are

loaded according to the path: Im_prev and Im_next, using readFrame function, developed by

Département Traitement du Signal et des Images – TSI, a function that reads a frame from a raw

video file. The input parameters of the function are:

- Nomefile: the name of the video file i.e temp_QP%.4d.yuv, located inside the

decoded folder on the path of the general script. The video is the resulted decoded

video from H.264/AVC all Intra Codec (Phase 2), per each value of QP;

- Format: a structure that indicates the number of rows and columns (1088, 1920) and

the format – yuv (400);

- NumberoftheFrame: number indicating the frame inside the video.

 for QP = 1:NQP,

 for iFrames = 1:2:NFrames-1,

 KeyFrameFile = sprintf('decoded\\temp_QP%.4d.yuv',QPVector(QP));

 format = struct('row',rows,'col',cols,'color','400');
 Im_prev = readFrame (KeyFrameFile, format, floor(iFrames/2));
 Im_next = readFrame (KeyFrameFile, format, floor(iFrames/2)+1);

 currentView = viewPath(iFrames);
 [currentImageDVC ~] = readMVDData(videoName, iFrames, currentView);

The contribution of the author can be highlighted in two planes:

 The first one refers to the SI generation method. The decided schematic can be found

in figure 3.6: discoverME function developed by Département Traitement du Signal

et des Images – TSI is called to obtain the motion vector fields for the two KFS:

Im_prev and Im_next. This function follows the scheme of the DISCOVER

interpolation method presented in figure 3.3. After that, the KFs are motion

compensated according to the motion vector fields, using mc function, developed and

implemented by professor Marco Cagnazzo. In the end, the SI is computed the average

between the two frames.

Figure 3.6 SI Generation Method

69

 [mvf1 mvf2] = discoverME(Im_prev,Im_next);

 comp1 = mc(Im_prev, mvf1);
 comp2 = mc(Im_next, mvf2);

 InterpImage = (comp1 + comp2)*0.5;

 YUV = rgb2ycbcr(currentImageDVC);
 currentImageDVC_Y = YUV(:,:,1);

 [Y psnrDec rate] = decodWZF(InterpImage, currentImageDVC_Y,

QIVector(QP), 0, 'null');

 DVC_PSNR_Matrix(iFrames,QP) = psnrDec;
 DVC_Rate_Matrix(iFrames,QP) = rate;
 end
end

 The second plane involves the customization of the decodWZF function. The function

was implemented having only QI as a parameter; the QP was set 40 regardless of

quantization index value. Because the experiments were conducted on four different

values of the quantization parameter, the script was modified to ensure the link

between the two parameters. After deciding the function between the two quantization

parameters, the script of the function was modified as the next paragraph shows:

QPi=QI-4;
QP=[37 32 27 22];

Niter = 400;
p_alpha = 1 ;
p_beta = 1;

param.videoname = 'cam';
param.height = row;
param.width = col;
param.nbframe = 1;
param.nbview = 1;
param.numview = 1;
param.scheme = 7;
param.skipturbodecoding = 0;
param.oracle = 1;
param.NCmodel = 1;
param.optimcoeff = 1;
param.fixedrate=fixedrate;
param.fixedratefile=fixedratefile;
param.outputpsnrfile=param.outputdir;
param.intraqstep=QP(QPi);

In the end, the RD points are saved accordingly into two dedicated matrices.

70

3.3.2 User Experience

The application is not accompanied by a Graphics User Interface because its main purpose is

to provide the performance RD points for the scenario in use. Still, a series of messages were printed

on the screen during the running of the application (on MATLAB Command Window) such that the

user to be able to see the current status of each phase. Since the script calls a large set of already

implemented scripts, all the functions and folders must be added to the path.

The first phase is creating the two raw videos temp_1920x1088.y and

full_temp_1920x1088.y; in the Command Window a message is displayed, as figure 3.8 displays:

Figure 3.7 Raw Videos Creation

The second phase of the script represents the H.264/AVC all Intra encoding and decoding.

Both video sequences undergo this four step process (for each QP). Messages containing the average

Coding Rate and PSNR for the video are displayed, such as in figure 3.9:

Figure 3.8 H.264/AVC all Intra Encoding & Decoding

71

 The last step is the DVC encoding and decoding; several messages are displayed in the

Command Window, as shown in the following pictures. The parameters of the configuration can be

seen in figure 3.9.

Figure 3.9 DVC – Encoding Parameters

Figure 3.11 shows the messages displayed during the encoding part of the process, together

with the time needed for the process. As it was expected, the encoding process of the current frame

(WZ frame) is not time consuming.

On the other hand, the decoding for DVC is time consuming; the average time for one frame

is between [30;50] minutes, depending on the quality decided for the decoding (mainly on the QP and

QI values).

72

Figure 3.10 DVC Codec - Encoding

Figures 3.12 and 3.13 display a part of the messages sent to the user during the decoding

process. Worth mentioning are the number of parity bits needed for the reconstruction of each of the

16 bands. In the end, the RD points are presented for the WZ frame.

Figure 3.11 DVC Codec – Decoding [1]

73

Figure 3.12 DVC Codec – Decoding [2]

The contribution of the author of this thesis with respect to this part of the application can be

summed up as follows:

 Create an achievable architectural solution for the main objective;

 Decide the set of parameters for the proposed scenario (values of the quantization

parameters and indexes – [22 27 32 37] and [8 7 6 5], parameters of encoding and

decoding for H.264/AVC all Intra and DVC);

 Choose the SI generation method and the multi-view scheme (Hybrid), along to the

decoding strategies and narrowing their number to four;

 Customize the function decodWZF to fit the solution; this implied changing the set of

the codec parameters in order to implement the function linking QI and QP;

 Obtain the RD performance points for both coding strategies; the rate and the PSNR

per each frame (Intra and KF/WZF) as a function of QP.

74

75

4. CHAPTER 4

Free Navigation with DVC – Results and Observations

 The second plan on which the author of the thesis worked for the practical implementation of

the paper was performing the performance comparison between the two video coding standards:

H.264/AVC all Intra and DVC. Moreover, a comparison between the four decoding strategies used

for WZ frames will be made in order to determine the suitable solution from RD point of view.

For this, the author of this thesis designed and implemented a MATLAB application able to

perform the comparison between the two video coding strategies, based on the RD performance points

obtained previously from FN_DVC.m script, as presented in Chapter 3, using a set of predefined

metrics.

 An important aspect must be highlighted; H.264/AVC serves as basis for the performance

comparison in this thesis. For a better understanding of the differences between the RD performance

points of the compared elements, the MATLAB script will use a previously developed application,

by TSI Department, namely bjm_e.m., which computes the Bjontegaard metric.

76

The Bjontegaard metric enables the comparison of RD curves in terms of the average PSNR

improvement or/and the average per cent bit rate saving (16). The method was proposed in the

document by Gisle Bjontegaard in “Calculation of average PSNR differences between RD-curves

(VCEG-M33)” (17).

77

4.1 Comparison Applications, Parameters and Metrics

A specific purpose of this study is to discover if DVC represents a suitable solution for Free

Navigation. The RD performance results obtained using H.264/AVC serves as basis for comparison;

it represents the reference for Distributed Video Coding. In order to have a reasonable pool of results,

the script described in Chapter 3, FN_DVC.m was run for ten different paths, all of them chosen by

the author in such way to include the four decoding strategies available for WZ reconstruction.

Table 4.1 presents the ten different paths; each row is composed of 11 numbers. Each number

is the view index (1, 5 or 9) or otherwise said the camera used to film that specific frame. As presented

before, each dancer video sequence includes 250 frames; the frame at time instance i is the frame i in

sequence from the view indicated in path (path(i)). Also, the table synthesizes the GOP

characteristics and the way KFs and WZFs are allocated to the path.

PATH

NUMBER

/

VIEW

NUMBER

KF

1

WZF

2

KF

3

WZF

4

KF

5

WZF

6

KF

7

WZF

8

KF

9

WZF

10

KF

11

1 1 1 1 5 5 5 1 5 1 5 9

2 9 5 9 5 5 1 1 5 9 9 9

3 5 1 1 1 1 5 9 5 1 5 1

4 1 5 9 9 9 5 5 1 5 1 1

5 9 5 5 5 5 1 1 5 9 5 9

6 5 1 1 5 9 9 9 5 9 9 9

7 1 5 9 9 9 9 5 9 1 1 1

8 5 5 5 1 1 5 9 5 9 5 1

9 1 5 1 5 1 5 9 1 5 5 1

10 5 5 1 5 5 9 9 9 5 9 9

Table 4.1 Experimental Paths

78

The process of video encoding and decoding introduces artefacts in the video frames. As

already stated, video coding is performed with a cost in the quality of the video. Figure 4.1 displays

the original frame of path 1, second frame of the video (from view 1).

Figure 4.1 Path 1, Frame 2 – Original

Figure 4.2 Path 1, Frame 2, KF – H.264/AVC all Intra QP=22

79

Figures 4.2 and 4.3 display the same image, encoded and decoded by H.264/AVC all Intra

codec at two distinct values of QP: 22 and 37. As it can be observed, the frame encoded using the

small quantization parameter has almost the same quality as the original frame. For a small QP, almost

all of the spatial detail is retained; there are small areas with slightly different texture than the original

frames.

However, when QP increases, some of that detail is aggregated so that the bit rate drops – but

at the price of some increase in distortion and some loss of quality. It is easily observed the poor

quality of the frame at QP=37; the synthesis artefacts are present in high areas of the image. The

entire aspect of the frame is blurry, lots of details are lost, the spatial detail is aggregated.

Figure 4.3 Path 1, Frame 2, KF – H.264/AVC all Intra QP=37

Therefore, the same behavior will be found in the WZFs after the DVC encoding and

decoding. But the quality of the images will increase, due to the parity bits used for the reconstruction

of the WZ frame.

In order to decide the performances of free Navigation with DVC a comparison is performed

having RD performance points of H.264/AVC all Intra as a reference. In order to implement this, the

author of this thesis designed allIntra-DVC_Comparison.m, a MATLAB script to compute the RD

performance points of each path at a time, based on the multi-view scheme chosen, from the results

obtained from FN_DVC.m script.

allIntra-DVC_Comparison.m can be found in Appendix 3 (for path 1); the input is

represented by four matrices:

 I_Rate_Matrix: a 11x4 matrix containing the bit rate of each frame from the path, for

H.264/AVC all Intra, expressed in bits/picture, for each value of QP;

 I_PSNR_Matrix: a 11x4 matrix containing the PSNR of each frame from the path,

for H.264/AVC all Intra, expressed in dB, for each value of QP;

80

 DVC_Rate_Matrix: a 5x4 matrix containing the bit rate of each WZ frame from the

path, for DVC, expressed in Kbits/second, for each value of QP;

 DVC_PSNR_Matrix: a 5x4 matrix containing the PSNR of each WZ frame from the

path, for DVC, expressed in dB, for each value of QP;

The first step in the implementation is transform the Intra rate from bits/picture in

Kbits/second; for that, a multiplication by 30 (fps) is performed and then a division by 1000.

I_Rate_Matrix = I_Rate_Matrix./1000;
I_Rate_Matrix = I_Rate_Matrix*30;

 H.264/AVC all Intra

The global value of Rate and PSNR for the entire path, for each QP, is the mean of all the

singular values of each frame, as equations 4.1 and 4.2 show (N represents the number of frames in

the path). For this, the mean function (MATLAB proprietary) is used; it is a function that returns a

row vector containing the mean value of each column.

𝐺𝑙𝑜𝑏𝑎𝑙 𝐼 𝑅𝑎𝑡𝑒 (𝑄𝑃) =
∑ 𝐼𝑅𝑎𝑡𝑒(𝑖,𝑄𝑃)𝑁

𝑖=1

𝑁
 (4.1)

𝐺𝑙𝑜𝑏𝑎𝑙 𝐼 𝑃𝑆𝑁𝑅 (𝑄𝑃) =
∑ 𝐼𝑃𝑆𝑁𝑅(𝑖,𝑄𝑃)𝑁

𝑖=1

𝑁
 (4.2)

Global_I_Rate = mean(I_Rate_Matrix);
Global_I_PSNR = mean(I_PSNR_Matrix);

 DVC

For DVC, the computation is slightly complex, as seen in equations 4.3 and 4.4. We need to

compute for both types of frames (KFs and WZFs) the sum according to the multi-view scheme and

in the end compute the global average.

𝐺𝑙𝑜𝑏𝑎𝑙 𝐷𝑉𝐶 𝑅𝑎𝑡𝑒 (𝑄𝑃) =
∑ 𝐼𝑅𝑎𝑡𝑒(𝑖,𝑄𝑃) + ∑ 𝐷𝑉𝐶𝑅𝑎𝑡𝑒(2∗𝑗+1,𝑄𝑃)𝑁/2

𝑗=0
𝑁/2
𝑖=1

𝑁
 (4.3)

𝐺𝑙𝑜𝑏𝑎𝑙 𝐷𝑉𝐶 𝑃𝑆𝑁𝑅 (𝑄𝑃) =
∑ 𝐼𝑃𝑆𝑁𝑅(𝑖,𝑄𝑃) + ∑ 𝐷𝑉𝐶𝑃𝑆𝑁𝑅(2∗𝑗+1,𝑄𝑃)𝑁/2

𝑗=0
𝑁/2
𝑖=1

𝑁
 (4.4)

DVC_Rate_temp = sum(DVC_Rate_Matrix);
DVC_PSNR_temp = sum(DVC_PSNR_Matrix);

for QP=1:4,
 for i=1:2:11,
 I_Rate_temp(QP) = I_Rate_temp(QP) + I_Rate_Matrix(i,QP);
 I_PSNR_temp(QP) = I_PSNR_temp(QP) + I_PSNR_Matrix(i,QP);
 end

 Global_DVC_Rate (QP) = (I_Rate_temp(QP)+ DVC_Rate_temp(QP))/11;
 Global_DVC_PSNR (QP) = (I_PSNR_temp(QP)+ DVC_PSNR_temp(QP))/11;
end

After plotting the RD curves for the particular path, function bjm_e is used to compute the

Bjontegaard metric. The function has been previously developed by TSI Department and can be found

81

in Appendix 2. This function applies the method proposed by Gisle Bjontegaard. It needs two inputs:

two 4x2 matrices named data1 and data2 representing four pairs of RD points (Rate-PSNR). data1

is being used as the reference set. The output is the difference of PSNR between data1 and data2

(delta PSNR) and the per-cent rate variation between data1 and data2.

In (17), Gisle Bjontegaard introduced this metric; let us suppose the outcome of two

simulations are RD-plots where PSNR and bitrate differences between two simulation conditions may

be read. The metric represents the average difference between two such curves. The basic elements

are:

 Fit a curve through 4 data points (PSNR/rate are assumed to be obtained for four values

of QP);

 Based on this, find an expression for the integral of the curve;

 The average difference is the difference between the integrals divided by the

integration interval (17).

In this way, two results can be found:

 Average PSNR difference in dB over the whole range of bit rates;

 Average bit rate difference in % over the whole range of PSNR.

In the implemented script, the final steps are obtaining the columns vector for Rate and PSNR

for both the reference (all Intra) and the compared value (DVC); then, bjm_e function is called.

data1(:,1) = Global_I_Rate(:);
data1(:,2) = Global_I_PSNR(:);

data2(:,1) = Global_DVC_Rate(:);
data2(:,2) = Global_DVC_PSNR(:);

[deltaPSNR percRATE] = bjm_e(data1, data2);

82

4.2 DVC – H.264/AVC all Intra RD Performance Comparison

 The solution described in Chapter 3 was designed and implemented to obtain the Rate-

Distortion performance points for each frame at a time, for both video encoding standards studied in

this paper. With the aim of evaluating the performance of Free Navigation with DVC (with

H.264/AVC all Intra as a reference), extensive simulations were performed, for 10 different paths of

11 frames, each path containing all four decoding strategies proposed for Wyner-Ziv frames.

The end-to-end Rate-Distortion performance of the two codecs are evaluated using the

Bjontegaard metrics, namely the PSNR difference ΔPSNR (expressed in dB) and the percent bit rate

difference ΔRate (expressed in %). A positive value for ΔPSNR indicates a gain in decibels, and a

negative value for ΔRate represents an improvement in the bit rate savings.

In order to highlight the RD performances of DVC with respect to H.264/AVC all Intra, the

comparison was carried on two different planes:

 DVC – H.264/AVC all Intra for each Path (individually)

The RD performances of Free Navigation with DVC for each considered path are shown in

table 4.2, for dancer video sequence (having GOP = 2), in comparison to H.264/AVC all Intra, using

Bjontegaard metric.

It can be easily observed that the global RD performance for each path for DVC is always

improved with respect to H.264/AVC all Intra. The similarity between the results (independent of the

chosen configuration) shows the proposed solution has better performances.

DVC gives a PSNR improvement, a gain of approximately 1.1 dB and also allows a significant

bit rate reduction, representing a bandwidth saving of up to 26.1787%, making clearer that the

performances of DVC are better than H.264/AVC all Intra for dancer sequence at a GOP size equal

to 2.

Path number 6 exhibits the best RD performance encoded DVC with respect to H.264/AVC

all Intra. The DVC introduces a 1.2248 fain in dB and a bandwidth saving of 26.1787% with respect

to H.264/AVC all Intra.

The smallest bit rate reduction is obtained in case of Path number 7; a bandwidth saving of

24.0737% corresponding to a PSNR gain of 1.111 dB, while the minimum gain is linked to Path

number 10; 1.049 dB corresponding to a bit rate reduction of 25.1341%.

83

PATH

NUMBER

DANCER VIDEO SEQUENCE

Δ RATE (%) Δ PSNR (DB)

1 -24.5873 1.1375

2 -24.0893 1.1133

3 -25.3689 1.1835

4 -23.9707 1.1105

5 -24.5448 1.1363

6 -26.1787 1.2248

7 -24.0737 1.1110

8 -24.9700 1.1620

9 -25.1341 1.1663

10 -25.1341 1.0490

Table 4.2 Rate-Distortion (RD) Performance Gain of DVC (H.264/AVC all Intra as Reference) for

all the 10 Paths (GOP = 2), obtained with Bjontegaard metric

The improvements of DVC can be observed in figure 4.4; it represents the Rate-Distortion

curves for dancer sequence, for all the path configurations. The results confirm (visually) that

Distributed Video Coding (red curves) outperforms H.264/AVC all Intra (blue curves).

The PSNR-Rate curves are represented in four points, namely the QP values: 22, 27, 32, 37.

The first observation is linked to the PSNR; its value decreases with the increase of the QP; this is

valid for both coding standards because when the picture quality is diminished, the signal value

compared to the noise value decreases.

Also, it can be observed that for high values for QP, the performances are quite similar for

DVC and H.264/AVC all Intra. Moreover, the decrease of QP involves a quality enhancement of the

frames and therefore a higher value of PSNR. The Rate increases as well; the differences between the

performances as high values of QP are easily spotted: DVC performance is significantly better

compared to all Intra performances.

Figure 4.4 displays 10 graphs, one for each path; PSNR is ranged between [32,42] dB and

Rate is ranged between [5403, 66272] Kbps (mainly due to the size of the video frames).

84

(a)

(b)

(c)

85

(d)

(e)

(f)

86

(g)

(h)

(i)

87

(j)

Figure 4.4 Rate-Distortion Performance of DVC, for GOP = 2, with respect to H.264/AVC all Intra,

for Path 1 (a), Path 2 (b), Path 3 (c), Path 4 (d), Path 5 (e), Path 6 (f), Path 7 (g), Path 8 (h), Path 9

(i), Path 10 (j)

 DVC – H.264/AVC all Intra for Global Average of the Paths

Another approach to highlight the Rate-Distortion performances of DVC with respect to

H.264/AVC all Intra is to compute the Global Average Rate and PSNR (for the four values of QP)

for both video methods and then compare it. The global experimental results have been computed

(average of RD points for all 10 paths) and table 4.3 displays the Bjontegaard metric.

Intuitively, since all the considered paths had the same behavior in terms of performance, it

can be easily observed that also, in this case, the global RD performance (average of all paths) for

DVC is improved with respect to H.264/AVC all Intra. This result is an additional assurance that the

proposed solution has better performances.

Figure 4.5 plots the RD curves for this scenario; DVC brings a Global Average PSNR

improvement, a gain of 1.1394 dB and also allows a significant Global Average Rate reduction,

representing a bandwidth saving of 24.5595%, making clearer that the performances of DVC are

better than H.264/AVC all Intra for dancer sequence at a GOP size equal to 2.

DANCER VIDEO SEQUENCE

Δ RATE (%) Δ PSNR (DB)

Global Average

of 10 Paths
-24.5595 1.1394

Table 4.3 Rate-Distortion (RD) Performances Gain of DVC (H.264/AVC all Intra as Reference) for

the Global Average of the 10 Paths (GOP = 2), obtained with Bjontegaard metric

88

Figure 4.5 Rate-Distortion Performance of DVC, for GOP = 2, with respect to H.264/AVC all Intra

for Global Average of the 10 Paths

As a conclusion, the experimental results show that the solution of Free Navigation with DVC

has better RD performances with respect to the solution Free Navigation with H.264/AVC all Intra.

DVC can achieve a gain in RD performance of at least 1 dB and can reduce the Bit Rate with more

than 20%, outperforming H.264/AVC all Intra.

The code of the MATLAB script used for DVC – H.264/AAVC all Intra for Global Average

of the Paths, and for the comparison from the following sub-chapter can be found in Appendix 4

(Global_and_All_Comparison.m).

89

4.3 RD Performance Points of DVC Decoding Strategies for WZ

Frames

 The four decoding strategies considered for the experimental scenarios were presented in

Chapter 3. Figure 3.2 displays the Hybrid scheme used in this thesis; as it can be seen, there are four

possible interpolation schemes, due to symmetry. All 10 paths chosen by the author of this thesis have

integrated the mentioned interpolation schemes.

In the previous sub-chapter it was concluded that DVC RD performances are better than

H.264/AVC all Intra, for dancer video sequence paths of 11 frames and a GOP size of 2. Having this

aspect confirmed, the next phase is drawing some conclusions regarding the path’s configuration.

 DVC – all 10 Paths

Figure 4.4 shows that all 10 paths have very similar behavior in terms of RD curves; therefore,

a comparison between the 10 curves will highlight the difference that exist due to the chosen

configuration and also due to way the decoding strategies are succeeding.

In figure 4.5 are displayed the Rate-Distortion performance of DVC, for all 10 paths, as RD

curves (Rate-PSNR). The PSNR and the Bit Rate decrease with the increase of the QP; the smallest

values are for QP = 37. The decrease of QP involves a quality enhancement of the frames and

therefore a higher value of PSNR.

In order to spot the fine differences between the curves, the graph was zoomed in for each

inflexion point, representing the RD performance values for each QP. Figures 4.6 display the zoomed

areas for QP = 37 (a), QP = 32 (b), QP = 27 (c), QP = 22 (d).

 Figure 4.6 (a) – the maximum PSNR difference between the 10 curves is around 0.2

dB, while the Bit Rate varies with less 100 Kbits per second;

 Figure 4.6 (b) – with the QP decrease, the PSNR difference shrinks a little (0.185 dB);

same time the Bit Rate is up to 150 Kbps;

 Figure 4.6 (c) – the Bit Rate difference increases (approximately 200 Kbps) and the

PSNR difference is almost 0.15 dB;

 Figure 4.6 (d) – for the last QP value (22), the PSNR difference is the smallest (0.1

dB) and the Rate difference is the greatest, almost 250 Kbits per second.

The behavior is naturally; QP regulates how much spatial detail is saved. For a very small QP,

almost all of the spatial detail is retained, therefore the report between the signal and the noise is high

and has no major variations. While QP increases, some of that detail is aggregated so that the bit rate

drops – but at the price of some increase in distortion and some loss of quality.

90

Figure 4.6 Rate-Distortion Performance of DVC, for all 10 Paths

Two important cases must be highlighted and the RD performance gain of them can be found

in table 4.4:

o The furthest two curves, corresponding to Paths 6 and 10; the Bjontegaard metric of

RD performance for Path 6 with respect to Path 10 shows that it introduces a PSNR

improvement, a gain of 0.205 dB and a bandwidth reduce of almost 5%;

o The closest two curves, corresponding to Paths 2 and 7; the Bjontegaard metric of RD

performance for Path 2 with respect to Path 7 implies an insignificant PSNR

improvement of 0.0027dB and a Bit Rate reduction of 0.14%.

These results reinforce that whatever the choice of the decoding strategies succeeding, the

scenarios have the same performances.

DANCER VIDEO SEQUENCE

Δ RATE (%) Δ PSNR (dB)

Path 6 – Path 10 -4.8447 0.2050

Path 2 – Path 7 -0.1414 0.0027

Table 4.4 Rate-Distortion (RD) Performances Gain of DVC Paths (6-10 and 2-7), obtained with

Bjontegaard metric

91

(a)

(b)

92

(c)

(d)

Figure 4.7 Rate-Distortion Performance of DVC, for all 10 Paths; Zoom In for QP = 37 (a), QP =

32 (b), QP = 27 (c), QP = 22 (d)

93

 DVC – Decoding Strategies for WZFs (Interpolation Configurations)

In order to obtain the comparison results, let us recall the Hybrid Scheme used in Free

Navigation with DVC displayed in figure 3.2. Due to symmetry, the decoding strategies have been

narrowed to four interpolation configuration. Let us denote them:

 Configuration 1: triplets as 111, 555, 999 – highlighted in orange;

 Configuration 2: triplets as 155, 551, 955, 511, 995, 599, 115, 559 – highlighted in

blue;

 Configuration 3: triplets as 159, 951, 591, 915 – highlighted in green;

 Configuration 4: triplets as 151, 959, 515, 595 – highlighted in red;

KF

WZF

1

KF

WZF

2

KF

WZF

3

KF

WZF

4

KF

WZF

5

KF

Path1 1 1 1 5 5 5 1 5 1 5 9

Path 2 9 5 9 5 5 1 1 5 9 9 9

Path 3 5 1 1 1 1 5 9 5 1 5 1

Path 4 1 5 9 9 9 5 5 1 5 1 1

Path 5 9 5 5 5 5 1 1 5 9 5 9

Path 6 5 1 1 5 9 9 9 5 9 9 9

Path 7 1 5 9 9 9 9 5 9 1 1 1

Path 8 5 5 5 1 1 5 9 5 9 5 1

Path 9 1 5 1 5 1 5 9 1 5 5 1

Path 10 5 5 1 5 5 9 9 9 5 9 9

Table 4.5 Decoding Strategies for WZFs (Interpolation Configurations) – Configuration 1: Orange,

Configuration 2: Blue, Configuration 3: Green, Configuration 4: Red

During the experiments, 50 Wyner-Ziv frames (5 per each path) have been reconstructed

during the DVC decoding; each PSNR and Rate attached to them were saved. In table 4.5 are

synthesized and highlighted the decoding strategy used for each WZ frame, using a color-based

ranking, as established before.

94

For the four decoding strategies (interpolation configurations), the average PSNR and Rate

(per frame) have been computed for the four values of the Quantization Parameter. The results can

be found in table 4.6.

QP = 22 QP = 27 QP = 32 QP = 37

Average

PSNR

dB

Average

Rate

Kbps

Average

PSNR

dB

Average

Rate

Kbps

Average

PSNR

dB

Average

Rate

Kbps

Average

PSNR

dB

Average

Rate

Kbps

Configuration

1
37.908 3052.928 34. 841 1641.248 33. 370 1147.296 32.454 807.84

Configuration

2
37.668 3746.044 34.392 2215.2888 32.799 1622.404 31.675 1219.164

Configuration

3
37.644 3892.110 34.340 2335.433 32.760 1748.750 31.559 1334.055

Configuration

4
37.905 3074.204 34. 779 1657.991 33. 315 1149.048 32.412 814.186

Table 4.6 Average RD Performance Points (computed per Frame) for WZFs Interpolation

Configurations with respect to QP Values

It can be easily observed that Configurations 1 and 4 have the best Rate-Distortion values for

the QP range, while Configurations 2 and 3 introduce a diminish in the quality of the frame (since

PSNRs values are quite smaller and the Bit Rates increased). Figure 4.8 represents the RD curves or

the four possible configurations; the similarity of Configurations 1 and 4 is present, on some portions

the two curves overlap. Also, Configuration 3 is the one having the lowest performances.

In table 4.7 can be found Rate-Distortion performance gain of the 4 configurations (decoding

strategies) for WZFs, obtained with Bjontegaard metric. The letter R indicates which configurations

has been used as the reference.

Configuration 1 was compared to the other 3 configurations and the results are the following

ones: it gives a PSNR improvement and a bandwidth saving with respect to all of them (0.0139 dB

and 0.123% - Configuration 4, 1.846 dB and 32.0258% - Configuration 2, 2.2159 dB and 36.1047%

- Configuration 3). The improvement in terms of both PNSR and Bit Rate with respect to

Configuration 3 is huge, compared to the one with respect to Configuration 4.

95

Figure 4.8 Rate-Distortion Performance of DVC, for the Decoding Strategies (Interpolation

Configurations)

Since the improvement of Configuration 1 when the reference is Configuration 4 is almost

inexistent, when comparing Configuration 4 to Configurations 2 and 3, a gain is similar to the one

obtained for the first type: bandwidth saving of 31.844% and 35.9202% and a PSNR gain of 1.8434

dB and 2.2078 dB. This makes clearer that the performances of Configuration 4 are better than

performances of Configurations 2 and 3.

Even though comparing Configurations 2 and 3 does not highlight a significant gain in terms

of PSNR (0.3588 dB for Configuration 2), the Bit Rate reduction is almost 6.5%.

In conclusion, the Rate-Distortion performances for Configuration 1 are better than for the

other 3 (although Configuration 4 can be an exception). In terms of the decoding strategy, it seems

that reconstructing the Wyner-Ziv frame with side information obtained from 2 Key frames belonging

to the same view as the original frame is the most accurate.

Another interesting result is the one obtained for Configuration 4; it seems that reconstructing

the Wyner-Ziv frame with side information obtained from 2 Key frames that belong to the same view

(which is different to the view of the original frame) has the same accuracy as the above mentioned

case.

The worst case is the case when the 𝐼𝑡,𝑛 WZF SI is obtained as the interpolation between

𝐼𝑡−1,𝑛−1 and 𝐼𝑡+1,𝑛+1 KFs, where n is the view number. The side information is not accurate, therefore

96

a high number of parity bits are required, the Bit Rate is increased and the ration between the signal

and the noise is low.

DANCER VIDEO SEQUENCE

Δ RATE (%) Δ PSNR (dB)

Configuration 1

Configuration 4 (R)
-0.1235 0.0139

Configuration 1

Configuration 2 (R)
-32.0258 1.8460

Configuration 1

Configuration 3 (R)
-36.1047 2.2159

Configuration 4

Configuration 2 (R)
-31.8440 1.8434

Configuration 4

Configuration 3 (R)
-35.9202 2.2078

Configuration 2

Configuration 3 (R)
-6.4560 0.3588

Table 4.7 Rate-Distortion (RD) Performances Gain of the 4 Interpolation Configuration (Decoding

Strategies) for WZFs, obtained with Bjontegaard metric

The contribution of the author of this thesis with respect to this part of the application can be

summed up as follows:

 Decide the entities of the RD performance comparison; DVC – H.264/AVC all Intra

(each path individually, global average of 10 paths) and DVC (all 10 paths,

interpolation configurations);

 Choose the Bjontegaard metric and the RD curves as a basis for the comparison;

 Design and implement MATLAB scripts in order to obtain the comparison results by

processing the previously obtained RD performance points for both coding strategies;

the rate and the PSNR per each frame (Intra and KF/WZF) as a function of QP;

 Draw the conclusions and observations; decide if Free Navigation with DVC is a

suitable solution (if its RD points outperforms H.264/AVC all Intra) and which

decoding strategy for WZ frames is better (from the four interpolation configurations).

97

CONCLUSIONS

The main objective of this thesis was to design and implement the architectural solution, as

well as the necessary MATLAB applications to simulate Free Navigation concept, in order to analyze

Distributed Video Coding (DVC) performances with respect to H.264 Advanced Video Coding

(MPEG-4 AVC) performances, in free navigation inside multi-view sequence scenario. The deployed

MATLAB solutions are able:

 to simulate the Free Navigation concept, based on Distributed Video Coding;

 to obtain the Rate-Distortion performance points for DVC and H.264/AVC all Intra;

 to process the Rate-Distortion results of the two video coding standards in order to

draw the conclusions and observations regarding the most suitable solution for Free

Navigation concept and the proper decoding strategy (interpolation configurations) of

WZ frames, in terms of RD performances.

To achieve this goal, three main targets had to be considered: understand the existing

MATLAB scripts, implemented for the two video compression techniques (DVC and H.264/AVC all

Intra) and link and customize them for the proposed solution, develop the application for Free

Navigation with DVC, in order to obtain the Rate-Distortion performances of DVC with respect to

H.264/AVC all Intra, model the previously obtained results in order to decide the best suitable

solution for Free Navigation concept in terms of RD performances., as well as the decoding strategy

(interpolation configuration) for WZ frames with the optimum performance.

98

The solution proposed by the author of this paper was displayed in figure 3.1 (Chapter 3) and

implied the development of one application: FN_DVC.m, simulating the Free Navigation concept

for a given path and obtaining the Rate-Distortion performance points for each frame of the path, for

both video coding standards (DVC and H.264/AVC all Intra). Further, the RD performance points

were processed using two scripts: allIntra-DVC_Comparison.m and

Global_and_All_Comparison.m, to establish the suitable solution for Free Navigation (DVC or

H.264/AVC all Intra) and the optimum decoding strategy (interpolation configuration) for WZ

frames.

This thesis presents the steps that were employed by the author of this paper in order to achieve

the main goal. Chapter 1 presents a brief description of the basic concepts of video coding, as a

theoretical support. Since H.264/AVC all Intra represents the reference for the implemented scenario,

the main characteristics and working modes of the video standard were highlighted, together with the

constitutive blocks of the encoder and the decoder. Moreover, the Multi-View video concept was

introduced, as it represents the base of the simulated scenario – Free Navigation.

Chapter 2 is concentrated on the paradigm whose performances must be determined in this

chapter – Distributed Video Coding. The attributes of Distributed Source Coding were revealed,

followed by the presentation of DVC’s architecture. The author of the thesis concentrated on the most

known architectures: PRISM and DISCOVER. In the end, the aspects concerning Multi-View DVC

(Multi-View schemes and SI generation methods) were discussed.

The contribution of the author is highlighted in Chapters 3 and 4, where the development of

the proposed solution for Free Navigation with DVC simulation and its implementation are presented

(as figure 3.1 exhibits) along with RD performance points processing and interpretation of the final

results. Chapter 3 focuses on the resembling Free Navigation concept with both DVC and H.264/AVC

all Intra, and also on obtaining the Rate and the Distortion raw values per each frame of the considered

path. The proposed solution uses H.264/AVC all Intra as the reference for the performance

comparison of the implemented scenario – free navigation inside multi-view sequence videos.

 The author of this thesis decided that the output of FN_DVC.m script to be the RD

performance points (PSNR and Bit Rate) of both coding strategies. As for the input parameters, in

order to test a scenario similar to free navigation and immersive communication, the author of this

thesis decided the input of the schematic to be the path of the navigation, under the form of sequence

of view indexes.

The flow of the application is the following one: the path of the navigation is decided by the

user, two raw videos are created according to the path (one video will be creating with all the views

– for H.264/AVC all Intra and one will contain only the odd ones – for DVC; because for DVC the

GOP size was established to the value of 2, implying one KF (odd frames) and one WZF (even

frames)). The two videos will undergo, one at a time, an encoding and decoding H.264 all Intra

process, having as output RD performance results for H.264/AVC all Intra (the Bit Rate and the

PSNR, that are collected and will be further used during the comparison) and the decoded videos

(named temp_QP00xx.yuv). In the final stage, the H.264 all Intra decoded videos will represent the

input for the DVC codec, along with the raw video containing only the odd frames; the output of this

final block are the RD performance results for DVC (the bit rate and the PSNR).

99

Chapter 4 is dedicated to the results processing; observations and conclusions based on the

final results. The author contributions consist in implementing a couple of MATLAB scripts

(allIntra-DVC_Comparison.m and Global_and_All_Comparison.m), in order to process the raw

results obtained per each frame as shown in Chapter 3. One goal of the thesis is to perform the

performance comparison between the two video coding strategies: H.264/AVC all Intra and DVC.

Moreover, a comparison between the four decoding strategies (interpolation configurations) used for

WZ frames was made in order to determine the suitable solution from RD point of view.

In order to easily highlight the suitable solutions, Rate-Distortion curves were plotted and

Bjontegaard metrics were computed. For the experimental raw results, the author of this thesis

decided 10 paths with 11 frames each, corresponding to views 1, 5 or 9 available for dancer video

sequence; these were established in such way to include (mostly) all four interpolation configurations

available for WZ frames reconstruction.

To emphasize the RD performances of DVC with respect to H.264/AVC all Intra, the author

of this thesis carried a comparison on two different planes:

 DVC – H.264/AVC all Intra for each Path (individually)

 DVC – H.264/AVC all Intra for Global Average of the Paths

Both comparisons stated that DVC outperforms H.264/AVC all Intra; the solution of Free

Navigation with DVC has better RD performances with respect to the solution Free Navigation with

H.264/AVC all Intra. DVC can achieve a gain in RD performance of at least 1 dB and can reduce the

Bit Rate with more than 20%.

As for the paths configuration, the experiments showed that maximum PSNR difference

between the 10 curves is found for the biggest value of QP (37), while the greatest Rate difference

occurs at the lowest value of QP (22). The behavior is naturally; QP regulates how much spatial detail

is saved. For a very small QP, almost all of the spatial detail is retained, therefore the report between

the signal and the noise is high and has no major variations. While QP increases, some of that detail

is aggregated so that the bit rate drops – but at the price of some increase in distortion and some loss

of quality.

Regarding the four decoding strategies (interpolation configurations) used for WZ frames

(presented in figure 3.2), comparing the average PSNR and Rate per frame, the assessed conclusion

was that Configuration 1 outperforms Configurations 2 and 3 (2 dB gain and almost 35% bandwidth

saving) and Configuration 4 (0.0139 dB gain and 0.123% for the Bit Rate). The conclusion is

reconstructing the Wyner-Ziv frame with side information obtained from 2 Key frames belonging to

the same view as the original frame is the most accurate (Configuration 1). Also, reconstructing the

Wyner-Ziv frame with side information obtained from 2 Key frames that belong to the same view

(which is different to the view of the original frame) has the almost the same accuracy (Configuration

4). The worst case is the case when the WZ frame SI is obtained as the interpolation between frames

corresponding to two different views (different between them and different from the original frame

view) (Configuration 3). The side information is not accurate, therefore a high number of parity bits

are required, the Bit Rate is increased and the ration between the signal and the noise is low.

100

The personal contribution of the author can be summarized as follows:

 Creating an achievable architectural solution for the main objective;

 Designing and implementing the MATLAB application (FN_DVC.m), application

simulating the Free Navigation concept for a given path and obtaining the Rate-

Distortion performance points for each frame of the path, for both video coding

standards (DVC and H.264/AVC all Intra);

 Deciding the set of parameters for the proposed scenario (values of the quantization

parameters and indexes – [22 27 32 37] and [8 7 6 5], parameters of encoding and

decoding for H.264/AVC all Intra and DVC);

 Establishing the path configuration for the 10 paths used for the experiments;

 Choosing the SI generation method and the multi-view scheme (Hybrid), along to the

decoding strategies and narrowing their number to four;

 Customizing the function decodWZF to fit the solution; this implied changing the set

of the codec parameters in order to implement the function linking QI and QP;

 Obtaining the RD performance points for both coding strategies; the rate and the PSNR

per each frame (Intra and KF/WZF) as a function of QP;

 Deciding the entities of the RD performance comparison; DVC – H.264/AVC all Intra

(each path individually, global average of 10 paths) and DVC (all 10 paths,

interpolation configurations);

 Choosing the Bjontegaard metric and the RD curves as a basis for the comparison;

 Designing and implementing MATLAB scripts (allIntra-DVC_Comparison.m and

Global_and_All_Comparison.m), in order to obtain the comparison results by

processing the RD performance points obtained from FN_DVC.m for both coding

strategies; the rate and the PSNR per each frame (Intra and KF/WZF) as a function of

QP;

 Drawing the conclusions and observations; deciding if Free Navigation with DVC is

a suitable solution (if its RD points outperforms H.264/AVC all Intra) and which

decoding strategy for WZ frames is better (from the four interpolation configurations).

The solution proposed by the author of this paper is a practical and reliable solution, but it was

designed as a proof of concept, further development being required. The testing phase was designed

for a predefined path of views; therefore, it does not represent a solution for real-time applications.

DVC is a trending paradigm; still, there has not been implemented the architecture that has

the same performance as those obtained in theory. Due to this, DVC is not a standardized video coding

strategy yet.

Further improvements can be developed on different directions:

 The GOP size should be increased and multi-view schemes containing less KFs should

be implemented, in order to decrease the total Bit Rate per path;

 The side information generation methods should be varied: interpolation,

extrapolation, disparity, based on some previously determined requirements;

101

 For interactive 3D-TV, Multi-View Video plus Depth can be implemented based on

DVC;

 The generation of the WZF estimation in can be performed in correspondence of the

view switching, with the aid of the depth maps, for Interactive Multi-View Video

Streaming; this paradigm imposes that only the frames requested by the user are sent

to the decoder.

102

103

REFERENCES

1. Petrazzuoli, Giovanni. Temporal and inter-view interpolation for the improvement of the side

information in distributed video coding. Paris : Telecom ParisTech, 2012.

2. Video Compression - From Concepts to the H.264/AVC Standard. Sullivan, Gary J; Wiegand,

Thomas. 2005, Proceeding of the IEEE, Vol. 93, No. 1, pp. 18-31.

3. Maugey, Thomas. Distributed video coding of multiview sequences. Paris : Telecom ParisTech,

2010.

4. Bovik, Alan. Handbook of Image and Video Processing. Massachusetts : Elsevier Academic Press,

2000.

5. Abou-Elailah, Abdalbassir. Technique for improving the performance of distributed video coding.

Paris : Telecom ParisTech, 2012.

6. ITU Telecommunication Standardization Sector. [Online] 2016. [Cited: 05 25, 2016.]

http://www.itu.int/en/ITU-T/Pages/default.aspx.

7. The Intra Prediction in H.264. Ahmad, Khalil Khan and Habibullah, Jamal. 2008, Novel

Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics, pp. 11-

15.

8. Richardson, Iain. VCodex. [Online] 05 26, 2016. [Cited: 05 26, 2016.]

https://www.vcodex.com/h264avc-intra-precition/.

9. Multi-View Video plus Depth Representation and Coding. Merkle, Philipp, et al. San Antonio :

s.n., 2007. Proceedings of IEEE Internantional Conference on Image Processing. p. Section 2.5.

10. Kubasov, Denis, Nayak, Jayanth and Guillemot, Christine. Optimal Reconstruction in Wyner-Ziv

Video Coding with Multiple Side Information. Rennes : IRISA / INRIA Rennes.

11. Puri, Rohit and Ramchandran, Kannan. PRISM: A Video Coding Architecture Based on

Distributed Compression Principles. Californis : University of California, Berkeley, 2002.

12. DISCOVER - Distributed Coding for Video Services. DISCOVER - Distributed Coding for Video

Services. [Online] 2005. [Cited: 06 11, 2016.] http://www.discoverdvc.org/.

13. Guillemot, Christine, et al. Distributed Monoview and Multiview Video Coding. IEEE SIGNAL

PROCESSING MAGAZINE. September, 2007.

14. Rate Control and H.264. Pixel Tools. [Online] [Cited: 06 15, 2016.]

http://www.pixeltools.com/rate_control_paper.html.

15. MATLAB. Math Works. [Online] [Cited: 06 14, 2016.]

http://fr.mathworks.com/products/matlab/.

16. Valenzise, Giuseppe. Bjontegaard metric. MathWorks. [Online] 05 30, 2010. [Cited: 06 19, 2016.]

http://fr.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric.

104

17. Calculation of average PSNR differences between RD-curves (VCEG-M33). Bjontegaard, Gisle.

Austin, Texas, USA : VCEG Meeting (ITU-T SG16 Q.6), 2001.

105

APPENDIX 1

%% Script for testing free navigation with DVC

%% Initialization & Creating the Raw Videos

% Define input video sequence
videoName = 'dancer';
rows = 1088;
cols = 1920;

QPVector = [22 27 32 37];
QIVector = [8 7 6 5];

NQP = numel(QPVector);

%% Define the path

% path = sequence of view indexes;
viewPath = [5 1 1 5 9 9 9 5 9 9 9];

% The length of this vector is equal to the number of time instants
% The value of path(n) is the requested view at time n

%% Create the temporary raw videos following the path (1:end, 1:2:end)

% Read the images using the viewPath variable to define the view
% Use the readFrame function or the readMVData function

NFrames = numel(viewPath);

targetFileName = 'temp_1920x1088.y';
if ~exist(targetFileName);
 fid = fopen(targetFileName, 'w');

 for iFrames = 0:2:NFrames-1,
 currentView = viewPath(iFrames+1);

 [currentFrame ~] = readMVDData(videoName, iFrames, currentView);

106

 %% Write the images according to the path

 YUV = rgb2ycbcr(currentFrame);

 % Write the first component of YUV on the target file

 tmp = YUV(:,:,1);
 fwrite(fid, tmp', 'uchar');

 end

 fclose(fid);
end

targetFileNameFull = 'full_temp_1920x1088.y';
if ~exist(targetFileNameFull);
 fid = fopen(targetFileNameFull, 'w');

 for iFrames = 0:NFrames-1,
 currentView = viewPath(iFrames+1);

 [currentFrame ~] = readMVDData(videoName, iFrames, currentView);

 %% Write the images according to the path

 YUV = rgb2ycbcr(currentFrame);

 % Write the first component of YUV on the target file

 tmp = YUV(:,:,1);
 fwrite(fid, tmp', 'uchar');

 end

 fclose(fid);
end

%% Encode the temporary video with H.264 all Intra

% Create a structure with the encoding parameters of H.264 - for full path
% and for the odd-frames only

paramsFull = struct('rows', rows, 'cols', cols, 'numberOfFrames', NFrames, ...
 'colorSpace', 'y', 'gopSize', 1, 'rate_control', 0, 'QP_I', QPVector, ...
 'keepDecoded', 1);

params = struct('rows', rows, 'cols', cols, 'numberOfFrames',

floor(NFrames/2)+1, ...
 'colorSpace', 'y', 'gopSize', 1, 'rate_control', 0, 'QP_I', QPVector, ...
 'keepDecoded', 1);

% Collect the RD points for H.264

% Full video

[RATEVectorIntraFull, PSNRVectorIntraFull] = h264codec(targetFileNameFull,

paramsFull);

107

% Collect RD points / frame / QP value (into a matrix)

files = dir('encoder*.txt');
tmpNumberFile = zeros(1,length(files));
for tmpIndex = 1:length(files),
 tmpFileName = files(tmpIndex).name;
 tmpNumberFile(tmpIndex) = str2double(tmpFileName(8:11));
end
fileNumber = max(tmpNumberFile)-3:max(tmpNumberFile);

for iQP=1:numel(fileNumber),
 txt=fileread(sprintf('encoder%.4d.txt',fileNumber(iQP)));
 matchRate=regexp(txt,'\(IDR\)\s*\d*', 'match');
 matchPSNR=regexp(txt,'\(IDR\)\s*\d*\s*\d*\s*\d{2}\.\d{3}', 'match');

 for iFrame=1:numel(matchRate),
 I_Rate_Matrix(iFrame,iQP) = str2double(matchRate{iFrame}(6:end));
 dotPosition = strfind(matchPSNR{iFrame},'.');
 I_PSNR_Matrix(iFrame,iQP) = str2double(matchPSNR{iFrame}((dotPosition-

2):end));
 end
end

% Odd-frames only video
[RATEVectorIntra, PSNRVectorIntra] = h264codec(targetFileName, params);

%% Encode the temporary video with DVC

% Generate the SI

for QP = 1:NQP,

 for iFrames = 1:2:NFrames-1,
 % Load Im_prev and Im_next according to the path; load also CurrentImage
 % Use the temporary file and the readFrame function

 KeyFrameFile = sprintf('decoded\\temp_QP%.4d.yuv',QPVector(QP));

 format = struct('row',rows,'col',cols,'color','400');
 Im_prev = readFrame (KeyFrameFile,format, floor(iFrames/2));
 Im_next = readFrame (KeyFrameFile, format, floor(iFrames/2)+1);

 currentView = viewPath(iFrames);
 [currentImageDVC ~] = readMVDData(videoName, iFrames, currentView);

 % compute the SI

 [mvf1 mvf2] = discoverME(Im_prev,Im_next);

 comp1 = mc(Im_prev, mvf1);
 comp2 = mc(Im_next, mvf2);

 InterpImage = (comp1 + comp2)*0.5;

 YUV = rgb2ycbcr(currentImageDVC);

108

 % Write the first component of YUV on the target file

 currentImageDVC_Y = YUV(:,:,1);

 [Y psnrDec rate] = decodWZF(InterpImage, currentImageDVC_Y,

QIVector(QP), 0, 'null');

 % Collect the RD points for DVC - Create DVC_PSNR_Matrix for the

sequence for each QP
 DVC_PSNR_Matrix(iFrames,QP) = psnrDec;
 DVC_Rate_Matrix(iFrames,QP) = rate;
 end
end

109

APPENDIX 2

function [res res2]=bjm_e(data1,data2,outp,minval,maxval)
%BJM_E computes the Bjontegaard metric
%
% RESULT = BJM_E(DATA1,DATA2,TYPE)
% This function applies the method proposed in the document VCEG-M33 by
% Gisle Bjontegaard named "Calculation of average PSNR differences
% between RD-curves.
% It needs 3 inputs : two 4x2 matrices named DATA1 and DATA2 representing
% 4 pairs of bitrate/PSNR (DATA1 being the reference set) and a parameter
% "TYPE" used to select the type of ouput : if TYPE=0, bm returns the
% difference of PSNR between data1 and data2 and if TYPE=1, bm returns
% the per-cent bitrate saving between data1 and data2.
%
% RESULT = BJM_E(DATA1,DATA2,TYPE,MINVAL,MAXVAL)
% The Bjontegaard metric is computed on the interval [MINVAL,MAXVAL]
% (optional, default values are computed according to the values of data1
% and data2.) This interval is expressed either in dB if TYPE=0 or in
% bitrate if TYPE=1.
%
% [DELTAPSNR PERCENTRATE] = BJM_E(DATA1,DATA2)
% [DELTAPSNR PERCENTRATE] = BJM_E(DATA1,DATA2,MINRATE,MAXRATE)
% With two output parameters, it returns both the delta PSNR and the
% per-cent bit-rate variation. If the range is established, it should be
% the bit-rate. In this case the PERCENTRATE is computed on the default
% PSNR range.
%
% Created: 2009/02/11 by Jérôme Gauthier, jerome.gauthier@gmail.com
% Modified: 2010/10/01 by Marco Cagnazzo
% Modified: 2012/02/06 by Abdalbassir ABOU-ELAILAH
%
% Example
% data1 = [% First data set
% 100 30.25
% 200 32.00
% 400 33.50
% 800 34.50
%];
% data2 = [% Second data set
% 100 30.90

110

% 220 32.50
% 450 33.95
% 750 34.80
%];
%
% % Delta PSNR over the default range
% deltapsnr = bjm_e(data1, data2, 0)
% % Delta PSNR over two given ranges (the first one being the default)
% deltapsnr = bjm_e(data1, data2, 0, 100, 750)
% deltapsnr2 = bjm_e(data1, data2, 0, 200, 550)
% % Percent rate variation over the default range
% percrate = bjm_e(data1, data2, 1)
% % Percent rate variation over a given range
% percrate2 = bjm_e(data1, data2, 1, 32.5, 34.5)
%
% % Computing both delta PSNR and percent rate variation
% [deltapsnr percrate] = bjm_e(data1, data2)
%
%

% Average PSNR difference over a range of bitrates

if nargin==4, maxval=minval; minval=outp; outp=0; end
if nargout>1, outp=0; end;

if ~(outp==1 && nargout <2)
 x=log(data1(:,1));
 y=data1(:,2);
 M=[ones(4,1),x,x.^2,x.^3];
 v=y;
 coef1=M\v;

 x2=log(data2(:,1));
 y2=data2(:,2);
 M=[ones(4,1),x2,x2.^2,x2.^3];
 v=y2;
 coef2=M\v;

 if ~exist('maxval','var')
 x0=max(min(x),min(x2));
 x1=min(max(x),max(x2));
 else
 x0=log(minval);
 x1=log(maxval);
 end
 S1=coef1(1)*(x1-x0)+coef1(2)*(x1^2-x0^2)/2+coef1(3)*(x1^3-

x0^3)/3+coef1(4)*(x1^4-x0^4)/4;
 S2=coef2(1)*(x1-x0)+coef2(2)*(x1^2-x0^2)/2+coef2(3)*(x1^3-

x0^3)/3+coef2(4)*(x1^4-x0^4)/4;
 res=(S2-S1)/(x1-x0);
% Average bitrate difference over a range of PSNR
end
if ~(outp==0 && nargout <2)
 x=data1(:,2);
 y=log(data1(:,1));
 M=[ones(4,1),x,x.^2,x.^3];
 v=y;
 coef1=M\v;

111

 x2=data2(:,2);
 y2=log(data2(:,1));
 M=[ones(4,1),x2,x2.^2,x2.^3];
 v=y2;
 coef2=M\v;

 if (~exist('maxval','var') || nargout == 2)
 x0=max(min(x),min(x2));
 x1=min(max(x),max(x2));
 else
 x0=minval;
 x1=maxval;
 end

 S1=coef1(1)*(x1-x0)+coef1(2)*(x1^2-x0^2)/2+coef1(3)*(x1^3-

x0^3)/3+coef1(4)*(x1^4-x0^4)/4;
 S2=coef2(1)*(x1-x0)+coef2(2)*(x1^2-x0^2)/2+coef2(3)*(x1^3-

x0^3)/3+coef2(4)*(x1^4-x0^4)/4;

 if nargout <2,
 res = 100*(exp((S2 - S1)/(x1 - x0)) - 1);
 else
 res2 = 100*(exp((S2 - S1)/(x1 - x0)) - 1);
 end
end

112

113

APPENDIX 3

%% Compare Intra and DVC

I_Rate_Matrix =

[2213184,1244456,621672,302152;2192288,1230392,614224,297528;2194216,1231888,615

752,298208;2200288,1235504,615856,298544;2196896,1237800,615224,297576;2216128,1

246328,623928,302840;2205200,1244920,624984,304024;2217872,1248664,622872,302064

;2199992,1235664,616640,299872;2214912,1248792,623816,300600;2205664,1238840,618

096,298896];
I_PSNR_Matrix =

[41.9180000000000,38.0360000000000,34.9080000000000,32.4550000000000;41.96500000

00000,38.0810000000000,34.9540000000000,32.4930000000000;41.9550000000000,38.077

0000000000,34.9530000000000,32.4810000000000;41.9190000000000,38.0550000000000,3

4.9260000000000,32.4840000000000;41.9290000000000,38.0480000000000,34.9290000000

000,32.4750000000000;41.9160000000000,38.0250000000000,34.9020000000000,32.44000

00000000;41.9620000000000,38.0760000000000,34.9300000000000,32.4460000000000;41.

8560000000000,38.0110000000000,34.8910000000000,32.4320000000000;41.912000000000

0,38.0490000000000,34.9150000000000,32.4660000000000;41.9090000000000,38.0580000

000000,34.9070000000000,32.4310000000000;41.9590000000000,38.0560000000000,34.92

30000000000,32.4680000000000];

DVC_Rate_Matrix =

[3786.24000000000,2246.72000000000,1659.20000000000,1224;0,0,0,0;3149.7600000000

0,1702.72000000000,1175.04000000000,826.880000000000;0,0,0,0;4014.72000000000,24

15.36000000000,1816.96000000000,1392.64000000000;0,0,0,0;3867.84000000000,2328.3

2000000000,1751.68000000000,1338.24000000000;0,0,0,0;3079.04000000000,1648.32000

000000,1147.84000000000,783.360000000000];
DVC_PSNR_Matrix =

[37.9100000000000,34.5700000000000,32.9600000000000,31.8100000000000;0,0,0,0;38.

0600000000000,35.0200000000000,33.5800000000000,32.6200000000000;0,0,0,0;37.8000

000000000,34.4200000000000,32.8300000000000,31.6100000000000;0,0,0,0;37.60000000

00000,34.3700000000000,32.7600000000000,31.5900000000000;0,0,0,0;38.030000000000

0,34.8900000000000,33.3700000000000,32.4800000000000];

%The Matlab function for Intra returns the rate in bits/picture. In order
%to obtains kbits/second, one must devide by 1000 and multiply by 30 (fps)

114

I_Rate_Matrix = I_Rate_Matrix./1000;
I_Rate_Matrix = I_Rate_Matrix*30;

I_Rate_temp = zeros (1,4);
I_PSNR_temp = zeros (1,4);

Global_DVC_Rate = zeros (1,4);
Global_DVC_PSNR = zeros (1,4);

% Compute Global Intra Rate&PSNR

Global_I_Rate = mean(I_Rate_Matrix);
Global_I_PSNR = mean(I_PSNR_Matrix);

% Compute Global DVC Rate&PSNR

DVC_Rate_temp = sum(DVC_Rate_Matrix);
DVC_PSNR_temp = sum(DVC_PSNR_Matrix);

for QP=1:4,
 for i=1:2:11,
 I_Rate_temp(QP) = I_Rate_temp(QP) + I_Rate_Matrix(i,QP);
 I_PSNR_temp(QP) = I_PSNR_temp(QP) + I_PSNR_Matrix(i,QP);
 end

 Global_DVC_Rate (QP) = (I_Rate_temp(QP)+ DVC_Rate_temp(QP))/11;
 Global_DVC_PSNR (QP) = (I_PSNR_temp(QP)+ DVC_PSNR_temp(QP))/11;
end

figure
plot(Global_I_Rate,Global_I_PSNR,'-d',Global_DVC_Rate,Global_DVC_PSNR,'-s')
title ('Dancer Sequence')
ylabel('PSNR[db]')
xlabel('Rate[Kbps]')
legend('Intra','DVC','Location','southeast')

data1(:,1) = Global_I_Rate(:);
data1(:,2) = Global_I_PSNR(:);

data2(:,1) = Global_DVC_Rate(:);
data2(:,2) = Global_DVC_PSNR(:);

[deltaPSNR percRATE] = bjm_e(data1, data2);

115

APPENDIX 4

Global_DVC_Rate1 =

[37602.1527272727,21168.8872727273,10783.5127272727,5403.46181818182];
Global_DVC_PSNR1 =

[40.0240000000000,36.4516363636364,34.0481818181818,32.2289090909091];
Global_I_Rate1 =

[66168.5454545455,37216.5818181818,18590.2690909091,9016.12363636364];
Global_I_PSNR1 =

[41.9290909090909,38.0496363636364,34.9222727272727,32.4609090909091];

Global_DVC_Rate2 =

[37678.2690909091,21263.9563636364,10838.8218181818,5434.85090909091];
Global_DVC_PSNR2 =

[40.0068181818182,36.4269090909091,34.0209090909091,32.1996363636364];
Global_I_Rate2 =

[66217.4181818182,37313.2800000000,18655.0909090909,9064.29818181818];
Global_I_PSNR2 =

[41.9274545454545,38.0490000000000,34.9190909090909,32.4536363636364];

Global_DVC_Rate3 =

[37668.3781818182,21213.4981818182,10811.0690909091,5416.99636363637];
Global_DVC_PSNR3 =

[40.0940909090909,36.5101818181818,34.0961818181818,32.2637272727273];
Global_I_Rate3 =

[66154.4727272727,37208.8581818182,18581.0836363636,9006.28363636364];
Global_I_PSNR3 =

[41.9272727272727,38.0520000000000,34.9216363636364,32.4610000000000];

Global_DVC_Rate4 =

[37712.9890909091,21245.1854545455,10805.1927272727,5427.70181818182];
Global_DVC_PSNR4 =

[39.9957272727273,36.4162727272727,34.0377272727273,32.1923636363636];
Global_I_Rate4 =

[66260.4654545455,37284.3927272727,18632.2036363636,9049.70181818182];
Global_I_PSNR4 =

[41.9319090909091,38.0499090909091,34.9206363636364,32.4512727272727];

Global_DVC_Rate5 =

[37688.3345454546,21266.9527272727,10838.3709090909,5431.44000000000];

116

Global_DVC_PSNR5 =

[40.0157272727273,36.4471818181818,34.0432727272727,32.2197272727273];
Global_I_Rate5 =

[66272.0072727273,37329.0327272727,18646.0800000000,9049.83272727273];
Global_I_PSNR5 =

[41.9191818181818,38.0425454545455,34.9127272727273,32.4510909090909];

Global_DVC_Rate6 =

[37587.2654545455,21200.4436363636,10817.8545454545,5423.49090909091];
Global_DVC_PSNR6 =

[40.0932727272727,36.5333636363636,34.1338181818182,32.3122727272727];
Global_I_Rate6 =

[66128.6618181818,37262.5090909091,18660.8290909091,9080.83636363636];
Global_I_PSNR6 =

[41.9275454545455,38.0510000000000,34.9268181818182,32.4550000000000];

Global_DVC_Rate7 =

[37668.2690909091,21208.1454545455,10800.3490909091,5414.21818181818];
Global_DVC_PSNR7 =

[40.0073636363636,36.4248181818182,34.0069090909091,32.1950909090909];
Global_I_Rate7 =

[66202.6254545455,37267.5927272727,18629.4763636364,9063.68727272727];
Global_I_PSNR7 =

[41.9336363636364,38.0520909090909,34.9223636363636,32.4517272727273];

Global_DVC_Rate8 =

[37711.6363636364,21272.4290909091,10839.5272727273,5438.44363636364];
Global_DVC_PSNR8 =

[40.0617272727273,36.4784545454546,34.0657272727273,32.2360000000000];
Global_I_Rate8 =

[66267.2290909091,37310.3345454546,18628.6472727273,9038.16000000000];
Global_I_PSNR8 =

[41.9174545454546,38.0438181818182,34.9121818181818,32.4523636363636];

Global_DVC_Rate9 =

[37641.2654545455,21196.4872727273,10799.2509090909,5408.14545454546];
Global_DVC_PSNR9 =

[40.0555454545455,36.4854545454545,34.075727272727,32.2594545454545];
Global_I_Rate9 =

[66212.9236363636,37243.5927272727,18600.5454545455,9022.21090909091];
Global_I_PSNR9 =

[41.9344545454545,38.0520000000000,34.9220909090909,32.4586363636364];

Global_DVC_Rate10 =

[37841.8109090909,21365.8545454546,10946.8436363636,5517.65090909091];
Global_DVC_PSNR10 =

[40.0010909090909,36.3883636363636,33.9462727272727,32.0955454545455];
Global_I_Rate10 =

[66218.8363636364,37304.2254545455,18680.5527272727,9092.59636363637];
Global_I_PSNR10 =

[41.9336363636364,38.0452727272727,34.9202727272727,32.4523636363636];

Global_DVC_Rate_Total(1) =

(Global_DVC_Rate1(1)+Global_DVC_Rate2(1)+Global_DVC_Rate3(1)+Global_DVC_Rate4(1)

+Global_DVC_Rate5(1)+Global_DVC_Rate6(1)+Global_DVC_Rate7(1)+Global_DVC_Rate8(1)

+Global_DVC_Rate9(1)+Global_DVC_Rate10(1))/10;
Global_DVC_Rate_Total(2) =

(Global_DVC_Rate1(2)+Global_DVC_Rate2(2)+Global_DVC_Rate3(2)+Global_DVC_Rate4(2)

+Global_DVC_Rate5(2)+Global_DVC_Rate6(2)+Global_DVC_Rate7(2)+Global_DVC_Rate8(2)

+Global_DVC_Rate9(2)+Global_DVC_Rate10(2))/10;
Global_DVC_Rate_Total(3) =

(Global_DVC_Rate1(3)+Global_DVC_Rate2(3)+Global_DVC_Rate3(3)+Global_DVC_Rate4(3)

117

+Global_DVC_Rate5(3)+Global_DVC_Rate6(3)+Global_DVC_Rate7(3)+Global_DVC_Rate8(3)

+Global_DVC_Rate9(3)+Global_DVC_Rate10(3))/10;
Global_DVC_Rate_Total(4) =

(Global_DVC_Rate1(4)+Global_DVC_Rate2(4)+Global_DVC_Rate3(4)+Global_DVC_Rate4(4)

+Global_DVC_Rate5(4)+Global_DVC_Rate6(4)+Global_DVC_Rate7(4)+Global_DVC_Rate8(4)

+Global_DVC_Rate9(4)+Global_DVC_Rate10(4))/10;

Global_DVC_PSNR_Total(1) =

(Global_DVC_PSNR1(1)+Global_DVC_PSNR2(1)+Global_DVC_PSNR3(1)+Global_DVC_PSNR4(1)

+Global_DVC_PSNR5(1)+Global_DVC_PSNR6(1)+Global_DVC_PSNR7(1)+Global_DVC_PSNR8(1)

+Global_DVC_PSNR9(1)+Global_DVC_PSNR10(1))/10;
Global_DVC_PSNR_Total(2) =

(Global_DVC_PSNR1(2)+Global_DVC_PSNR2(2)+Global_DVC_PSNR3(2)+Global_DVC_PSNR4(2)

+Global_DVC_PSNR5(2)+Global_DVC_PSNR6(2)+Global_DVC_PSNR7(2)+Global_DVC_PSNR8(2)

+Global_DVC_PSNR9(2)+Global_DVC_PSNR10(2))/10;
Global_DVC_PSNR_Total(3) =

(Global_DVC_PSNR1(3)+Global_DVC_PSNR2(3)+Global_DVC_PSNR3(3)+Global_DVC_PSNR4(3)

+Global_DVC_PSNR5(3)+Global_DVC_PSNR6(3)+Global_DVC_PSNR7(3)+Global_DVC_PSNR8(3)

+Global_DVC_PSNR9(3)+Global_DVC_PSNR10(3))/10;
Global_DVC_PSNR_Total(4) =

(Global_DVC_PSNR1(4)+Global_DVC_PSNR2(4)+Global_DVC_PSNR3(4)+Global_DVC_PSNR4(4)

+Global_DVC_PSNR5(4)+Global_DVC_PSNR6(4)+Global_DVC_PSNR7(4)+Global_DVC_PSNR8(4)

+Global_DVC_PSNR9(4)+Global_DVC_PSNR10(4))/10;

Global_I_Rate_Total(1) =

(Global_I_Rate1(1)+Global_I_Rate2(1)+Global_I_Rate3(1)+Global_I_Rate4(1)+Global_

I_Rate5(1)+Global_I_Rate6(1)+Global_I_Rate7(1)+Global_I_Rate8(1)+Global_I_Rate9(

1)+Global_I_Rate10(1))/10;
Global_I_Rate_Total(2) =

(Global_I_Rate1(2)+Global_I_Rate2(2)+Global_I_Rate3(2)+Global_I_Rate4(2)+Global_

I_Rate5(2)+Global_I_Rate6(2)+Global_I_Rate7(2)+Global_I_Rate8(2)+Global_I_Rate9(

2)+Global_I_Rate10(2))/10;
Global_I_Rate_Total(3) =

(Global_I_Rate1(3)+Global_I_Rate2(3)+Global_I_Rate3(3)+Global_I_Rate4(3)+Global_

I_Rate5(3)+Global_I_Rate6(3)+Global_I_Rate7(3)+Global_I_Rate8(3)+Global_I_Rate9(

3)+Global_I_Rate10(3))/10;
Global_I_Rate_Total(4) =

(Global_I_Rate1(4)+Global_I_Rate2(4)+Global_I_Rate3(4)+Global_I_Rate4(4)+Global_

I_Rate5(4)+Global_I_Rate6(4)+Global_I_Rate7(4)+Global_I_Rate8(4)+Global_I_Rate9(

4)+Global_I_Rate10(4))/10;

Global_I_PSNR_Total(1) =

(Global_I_PSNR1(1)+Global_I_PSNR2(1)+Global_I_PSNR3(1)+Global_I_PSNR4(1)+Global_

I_PSNR5(1)+Global_I_PSNR6(1)+Global_I_PSNR7(1)+Global_I_PSNR8(1)+Global_I_PSNR9(

1)+Global_I_PSNR10(1))/10;
Global_I_PSNR_Total(2) =

(Global_I_PSNR1(2)+Global_I_PSNR2(2)+Global_I_PSNR3(2)+Global_I_PSNR4(2)+Global_

I_PSNR5(2)+Global_I_PSNR6(2)+Global_I_PSNR7(2)+Global_I_PSNR8(2)+Global_I_PSNR9(

2)+Global_I_PSNR10(2))/10;
Global_I_PSNR_Total(3) =

(Global_I_PSNR1(3)+Global_I_PSNR2(3)+Global_I_PSNR3(3)+Global_I_PSNR4(3)+Global_

I_PSNR5(3)+Global_I_PSNR6(3)+Global_I_PSNR7(3)+Global_I_PSNR8(3)+Global_I_PSNR9(

3)+Global_I_PSNR10(3))/10;
Global_I_PSNR_Total(4) =

(Global_I_PSNR1(4)+Global_I_PSNR2(4)+Global_I_PSNR3(4)+Global_I_PSNR4(4)+Global_

I_PSNR5(4)+Global_I_PSNR6(4)+Global_I_PSNR7(4)+Global_I_PSNR8(4)+Global_I_PSNR9(

4)+Global_I_PSNR10(4))/10;

% Dancer Sequence - Global Average of 10 Paths

figure

118

p = plot(Global_I_Rate_Total,Global_I_PSNR_Total,'b-

d',Global_DVC_Rate_Total,Global_DVC_PSNR_Total,'r-o')
set(p,{'LineWidth'},{1.5;1.5})
title ('Dancer Sequence - Global Average of 10 Paths')
ylabel('PSNR[db]')
xlabel('Rate[Kbps]')
legend('all Intra','DVC','Location','southeast')

data1(:,1) = Global_I_Rate_Total(:);
data1(:,2) = Global_I_PSNR_Total(:);

data2(:,1) = Global_DVC_Rate_Total(:);
data2(:,2) = Global_DVC_PSNR_Total(:);

[deltaPSNR percRATE] = bjm_e(data1, data2);

%Dancer Sequence - DVC 10 Paths

figure
p = plot(Global_DVC_Rate1,Global_DVC_PSNR1,'b-

d',Global_DVC_Rate2,Global_DVC_PSNR2,'r-o',Global_DVC_Rate3,Global_DVC_PSNR3,'y-

o',Global_DVC_Rate4,Global_DVC_PSNR4,'m-*',Global_DVC_Rate5,Global_DVC_PSNR5,'c-

h',Global_DVC_Rate6,Global_DVC_PSNR6,'g-x',Global_DVC_Rate7,Global_DVC_PSNR7,'k-

s',Global_DVC_Rate8,Global_DVC_PSNR8,'r-p',Global_DVC_Rate9,Global_DVC_PSNR9,'c-

^',Global_DVC_Rate10,Global_DVC_PSNR10,'m->')
set(p,{'LineWidth'},{0.75;0.75;0.75;0.75;0.75;0.75;0.75;0.75;0.75;0.75})
title ('Dancer Sequence - DVC 10 Paths')
ylabel('PSNR[db]')
xlabel('Rate[Kbps]')
legend('Path1','Path2','Path3','Path4','Path5','Path6','Path7','Path8','Path9','

Path10','Location','southeast')

%DVC - Path6, Path10 Comparison (Furthest paths)
data1610(:,1) = Global_DVC_Rate10(:);
data1610(:,2) = Global_DVC_PSNR10(:);

data2610(:,1) = Global_DVC_Rate6(:);
data2610(:,2) = Global_DVC_PSNR6(:);

[deltaPSNR610 percRATE610] = bjm_e(data1610, data2610);

%DVC - Path2, Path7 Comparison (Closest paths)

data127(:,1) = Global_DVC_Rate2(:);
data127(:,2) = Global_DVC_PSNR2(:);

data227(:,1) = Global_DVC_Rate7(:);
data227(:,2) = Global_DVC_PSNR7(:);

[deltaPSNR27 percRATE27] = bjm_e(data127, data227);

