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Abstract–The Best Signal Selection (BSS) in air traffic 
management and control systems has to decide among several 
signal instances of the same source which one offers the highest 
speech intelligibility. In these systems, the source signal is not 
available, thus, objective speech quality tests could not be used. 
However, information with regards to the speech quality could 
be obtained from the score of voice activity detection (VAD) 
algorithms. In this paper the correlation between speech quality 
and the score of VAD algorithms is analyzed. The results 
showed that the VAD score-based methods do not saturate for 
higher SNR, as the Perceptual Evaluation of Speech Quality 
(PESQ) does. A new VAD algorithm as a solution for the best 
signal selection problem is also proposed.  
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I. INTRODUCTION 
N the last decades, the air traffic spread more and more in 
the world, connecting more and more places. At the same 

time, the need to manage all the flights correctly and securely 
increased. Air traffic authorities imposed and updated several 
standards for the air traffic management (ATM) system, 
keeping in pace with the growing traffic flow. To achieve this, 
special voice communication systems (VCS) were developed. 
They ensure the communication between the pilots and the 
operators from the ground control centers. When a 
communication is initiated between the aircraft’s pilot and the 
ground air traffic control operator, various systems are used. 
The pilot speaks through the aircraft’s radio station and the 
signal is received by several ground radio stations. Then, the 
signal from each ground radio station arrives on different 
paths to the control center. Here one of the received signals is 
played to the operator. Ideally, this should be the one which is 
the clearest and offers the highest intelligibility. This is the 
equivalent of the BSS for the received signals, which could be 
achieved through special signal processing algorithms.  

The solution for BSS has to take into account various 
problematic aspects such as: a) the speech sequence lasts in 
average, for less than a few seconds; b) in general, two 
consecutive communication are initiated by different aircrafts; 
c) the selection has to be done relatively quick, in less than 
300 ms, imposed by specific standard [1]; d) in the first part of 
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300ms of the received signal, the noise level undergoes 
significant variations due to the automatic gain control 
activation; e) for each reception the signals could be received 
with different delays in VoIP environments; f) on the same 
channel, two consecutively received signals may be 
significantly different in terms of speech intelligibility. 

In order to activate properly the communication between 
the pilot and the operator, these systems must have a previous 
voice activity detection (VAD) block. Despite the fact that the 
main goal of VAD algorithms is to spot the speech segments, 
some of them could offer some information regarding the 
voice quality.  Based on this observation and assuming that 
the signals are perfectly aligned by a previous processing 
block, it could be useful finding an adequate VAD algorithm 
for speech detection and quality estimation, for BSS issue. 
Thus, recent VAD algorithms were reviewed and selected for 
a possible BSS solution. Usually, they look after speech 
features of the signal and then assign a VAD score. Based on 
specifics of the algorithm and VAD score, a speech/non-
speech decision is taken. Over the time, one or more different 
features of voice signals and techniques were included in 
VAD algorithms, such as energy or/and subband energy [2]-
[4], entropy [5], correlation coefficients [6], wavelet transform 
[7][8], Walsh basis function representation [9], long-term 
speech information [10]-[12], periodic to aperiodic component 
ratio [13][14]. Also, in [15] it is shown that the image 
processing technique called “local binary pattern” could be 
used for VAD algorithms. Besides these, some statistical 
methods train voice and noise mixtures in labeling them in 
supervised or semi-supervised mode like in [16]-[19]. 

However, not all the above mentioned VAD algorithms 
could offer information with respect to the voice quality. 
Thus, only some of them could be used for BSS. Among these 
options, a new VAD algorithm is proposed in this paper. In 
Section II, the correlation between the score of voice activity 
detection algorithms is analyzed. The new VAD algorithm 
proper to solve the BSS is proposed in Section III. Further, in 
Section IV experimental values and discussion regarding the 
BSS solution are presented. Finally, conclusion and further 
work stand for Section V. 

II. CORRELATION BETWEEN SPEECH INTELLIGIBILITY 
AND VAD SCORES 

The use of a VAD algorithm for speech detection does not 
imply a solution for BSS, because VAD is not focusing on 
speech quality and intelligibility. However, the score of some 
VAD algorithms could offer information for BSS. A quick 
verification of the correlation between the speech quality and 
VAD score for any algorithm could be made by analyzing the 
VAD score characteristics at different SNR. In Fig. 1 we 
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present 5 noisy instances. These were created by corrupting 
the clean signal with Gaussian white noise at different SNR 
levels, from 5 to 25 dB. Because some of the above presented 
VAD algorithms could not offer a usable VAD score for our 
needs and make their decision based on several test 
conditions, we found that a good correlation between the SNR 
and VAD score was provided by two VAD algorithms. These 
are based on the wavelet transform [7] and on the long-term 
spectral flatness measure (LSFM) [12]. Their characteristics 
are shown in Fig. 2 and 3, with the following SNR 
relationship: green – 25 dB, magenta – 20 dB, cyan – 15 dB, 
red – 10 dB, blue – 5dB. 

 
Figure 1 – Noisy signal waveforms at different SNR  

 
Figure 2 – Wavelet based VAD characteristics: green – 25 dB, magenta – 20     
dB, cyan – 15 dB, red – 10 dB, blue – 5dB  

In Fig. 2 we notice that signals corrupted with higher SNR 
have higher VAD scores. Thus, for wavelet-based VAD, the 

higher the VAD score, the higher speech intelligibility is 
assumed.  

We can notice in Fig. 3, that, after the initialization process 
is finished, the LSFM features of each corrupted signal have 
similar values during the non-speech segments. On the other 
hand, on the speech periods, the LSFM values are smaller for 
the signals which were less corrupted by the additive noise. 
Thus, the fifth corrupted signal, with the highest SNR (25 dB), 
leads to the smallest LSFM values during the speech periods, 
while the first signal, which is the heaviest noise corrupted 
signal (5 dB), does not lead to a obvious decrease of the 
LSFM values. Therefore the LSFM feature could be 
associated with SNR.  

 
Figure 3 – LSFM based VAD characteristics - green – 25 dB, magenta – 20     
dB, cyan – 15 dB, red – 10 dB, blue – 5dB  

III. PROPOSED VAD AND BSS ALGORITHM 
In order to find a proper solution for the BSS problem, in 

this paper we proposed a new VAD algorithm, called 
smoothed sub-band spectral flatness measure (3SFM). It 
combines the lower complexity from maximum values sub-
band SNR (MVSS) method [4] and the effectiveness of the 
spectral flatness measure (SFM) [3][11][12]. The idea is to 
benefit from the strong points of the SFM, but with less 
memory and time processing than LSFM [12] because it does 
not need to store the previous power spectrum values.  

The input signal is processed frame-by-frame with an 
overlap factor of 75%. Then, for each k frame the power 
spectrum (࢑)ࡿ	is computed with the Discrete Fourier 
Transform. At this point, the power spectrum is then divided 
in nine sub-bands, similar to the ETSI-AMR1 [20]. Next, for 
each sub-band j the SFM is computed with the following 
formula: 

(݇)௝ܯܨܵ  = logଵ଴
(݇,݆)ܯܩ
 (1) (݇,݆)ܯܣ

where (࢑,࢐)ࡹࡳ and (࢑,࢐)ࡹ࡭ represent the geometric and 
arithmetic means. The above means are computed as: 
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where (࢑)࢐ࡿ and ࢐ࡸ stand for the power spectrum and for the 
number of frequency bins of  the jth sub-band, respectively.  

Going further, a robust feature is achieved by computing 
the distance gain for the current frame with the formula from 
[4], as below: 
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where ࡹࡲࡿଙ(࢑)തതതതതതതതതതതത represents the average of all sub-bands 
spectral flatness measure: 

ప(݇)തതതതതതതതതതതܯܨܵ  =
1
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Finally, the smoothed sub-band spectral flatness measure is 
computed as: 
(݇)ܯܨ3ܵ  = ߙ ∙ (݇)ܯܨܵܦ + (1− (ߙ ∙ ݇)ܯܨ3ܵ − 1)     (6) 
where ࢻ is the exponential smoothing factor.  

To obtain a BSS solution, a fixed threshold is set to detect 
the beginning of the first utterance. Then, for each frame of 
each channel the 3SFM is computed. If the 3SFM of k 
consecutive frames of a channel is higher than the fixed 
threshold, then we assume that the first utterance appeared on 
the respective channel. Depending on the length of the frame 
size, the overlap factor and the maximum response time 
imposed for the BSS, the k parameter may vary. Further, if 
voice activity was spotted on channel j, then the accumulated 
3SFM of channel j is computed as: 

௝ܯܨ3ܵܣ  = ෍ −݉)௝ܯܨ3ܵ ݅)
௜ୀ௞ିଵ

௜ୀ଴

 (7) 

where 3(࢓)࢐ࡹࡲࡿ is the speech activity envelope of the mth 
speech frame. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS  
For a brief check of the correlation between the speech 

intelligibility and the values of the proposed 3SFM speech 
feature we can perform a test in the same way as in Section 2 
for the signals in Fig 1. Thus, for this implementation we used 
32 ms frames with 24 ms overlap and the smoothing 
parameter was set as ࢻ = ૙.ૢ. The 3SFM characteristics for 
different SNR, using this configuration are shown in Fig. 4. 

We notice that the 3SFM feature is able to indicate the 
channels with the highest and lowest SNR, hence the feature 
can be used to decide the BSS. Moreover, we can easily 
differentiate between speech and non-speech segments using a 
threshold with a value around –2.2. As the 3SFM levels have 
similar values during non-speech periods, the feature is robust 
to noise and can be used in VAD algorithms. 

Using the proposed accumulating score scheme for wavelet 
and LSFM based VAD we obtained two other BSS solutions. 
In the following experiment we analyzed how well these 
methods discriminate the best speech quality signal among 
several noisy signals. For this, all three methods were 
configured to suit the ATM-VCS demands, analyzing around 
200 ms from the first detected utterance. The wavelet-based 

approach used 128 ms frames with an overlap factor of 75%, a 
fixed threshold ࢎ࢚ = ૚.૚ and		࢑ = ૝. The LSFM-based 
approach used 32 ms frames, overlapped 50%, a fixed 
threshold	ࢎ࢚ = −૚.૜ and	࢑ = ૚૛. In order to ensure a real-
time processing for ATM-VCS, the default values of LFSM in 
[12] were modified as ࡹ = ૞ and	ࡾ = ૚૞. For the proposed 
3SFM-based BSS solution, we used 32 ms frames, which 
overlap 75%, ࢻ = ૙.ૢ and	ࢎ࢚ = −૛.૛. Besides these three 
accumulated VAD scores based methods, the speech quality 
of the noisy signals was also evaluated with the PESQ 
standard, Mean Opinion Score – Listening Quality Objective 
[21]. The results are presented in Table I.   

 
Figure 4 – 3SFM based VAD characteristics 

We notice that for wavelet-based solution the accumulated 
score has positive values and for the LSFM- and 3SFM -based 
solutions the accumulated score has negative values. This is 
explained by the way in which these algorithms compute their 
score; the wavelet-based solution accumulates positive speech 
features, while others accumulate negative speech features. 
However, the sign difference does not affect the 
discriminative capacity of these methods.  

TABLE I 
 EVALUATION OF THE BSS SOLUTIONS 

SNR level 
(dB) 

Wavelet 
[7] 

LSFM 
[12] 

3SFM 
proposal 

PESQ 
MOS-LQO 

5 5.56 0 -60.87 1.95 
10 6.90 -17.79 -71.34 2.07 
15 7.70 -23.27 -80.12 2.16 
20 8.39 -33.57 -89.80 2.17 
25 9.05 -50.43 -100.02 2.17 

While the original LSFM feature leads to negative values, 
for 5 dB SNR level, the LSFM-based solution yields the 
accumulated score equal to 0. This is explained by the fact 
that for this SNR level the feature was not able to detect the 
first utterance. Therefore, no LSFM scores were added to 
characterize the speech intelligibility for this noisy signal.  

From Table I we notice that any approach based on 
accumulated VAD score could indicate the signal with the 
best speech quality. On the other hand, the PESQ standard 
saturates above 15dB SNR. Therefore, for several signals with 



higher SNR, the PESQ could hardly choose the most 
intelligible one. Moreover, this standard needs the source 
signal to compute the MOS-LQO, which in ATM-VCS is not 
available. We can conclude that, in these conditions, the 
standard score is not useful and the accumulated VAD score 
methods represent an effective BSS solution. 

 
Figure 5 – Typical signals in ATM systems 

In order to obtain more information regarding the proposed 
3SFM feature, real signals from the ATM system were also 
used. A typical pair signal from ATM systems is represented 
in Fig. 5. As we can see, the second channel is the noisiest 
one. Further, the result of the 3SFM feature for these signals is 
shown in Fig. 6, where a very high smoother value, ࢻ = ૙.ૢૢ 
was used.  

 
Figure 6 – 3SFM feature for typical signals from ATM systems    

In Fig 6 we notice that the 3SFM feature of the second 
channel has in generally the lowest values. This means that 
the 3SFM feature will indicate channel 2 as having the worst 
speech quality. This could also be detected even for the first 
utterance. The first channel is indicated as offering the best 

speech quality after computing the accumulated 3SFM score 
for this utterance for all channels. Because the third channel 
yields similar 3SFM values, this indicates comparable speech 
quality for the first and the third channel. This can be verified 
by looking again over Fig 5, where we can notice similar 
waveforms. This confirms again the correlation between 
speech quality and the 3SFM feature. In Fig. 6, at the end part 
of the signals we can notice that the first channel has the lower 
score. This is explained by the packet-loss, visible in Fig 5, 
which leads to a poor VAD score, suggesting no speech 
activity.  

The heavy smoothing operation (ߙ = 0.99) is used for 
signals from ATM systems, to reduce the high variations of 
the 3SFM feature, which could affect the first utterance 
detection. Because of the heavy smoothing, for non-speech 
periods, the 3SFM features in Fig. 6 do not have similar 
values. This is explained by the fact that the features need 
more time to rich the non-speech level. However, this does 
not affect the first utterance detection, maintaining enough 
discriminative power for an effective BSS solution. 

V. CONCLUSION AND FUTURE WORK 
In this paper we presented possible solutions for the BSS 

problem in the air traffic management systems. They are 
based on the correlation between speech intelligibility and 
scores of VAD algorithms. We also showed that the VAD 
score-based methods do not saturate for higher SNR, as the 
PESQ does. 

Besides the proposed solutions, which are based on 
previous VAD algorithms, we proposed here a new VAD 
algorithm for the BSS problem, the smoothed sub-band 
spectral flatness measure (3SFM). Moreover, it is shown that 
this speech feature is robust to noise and could be used in 
speech detection applications. 

Because the 3SFM was proposed as a solution for BSS, 
future work has to evaluate and compare this feature in the 
VAD context.  
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