

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF ELECTRONICS, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY

Speech Recording Web Service and Application

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the Degree of

Engineer in the domain Technology and Telecommunication Systems

Study program: Telecommunications and Information Technologies

Thesis advisor(s): Student:

Prof. Corneliu BURILEANU, Ph. D Cristian MANOLACHE

Associate Prof. Horia CUCU, Ph.D

Bucharest
2017

`

APPENDIX1

TABLE OF CONTENTS

Table of Contents .. 7

List of Figures 9

List of Tables 11

Chapter 1 Introduction ... 15

1.1 Thesis Motivation ... 15

1.2 Main Objective ... 16

1.3 Specific Objectives ... 17

Chapter 2 Software Technologies for web apps, web services and databases..................... 19

2.1 Java ... 19

2.1.1 Introduction ... 19

2.1.2 Java EE.. 20

2.2 PostgreSQL .. 20

2.2.1 Stored Procedures ... 20

2.2.2 JDBC – Java API for database interaction .. 21

2.3 Development Tools .. 21

2.3.1 Netbeans IDE .. 21

2.3.2 Web Server.. 21

2.3.3 Subversioning systems .. 22

Chapter 3 Web services ... 25

3.1 RESTful web services .. 25

3.1.1 Jersey – Java API for REST services .. 25

3.2 Web app authentication in web services .. 26

3.2.1 Oauth ... 26

3.2.2 JWT ... 27

3.3 Web services interaction with web apps .. 28

3.3.1 Introduction ... 28

3.3.2 JSON ... 29

3.4 CORS filter .. 29

Chapter 4 Application Description .. 33

4.1 General Description ... 33

4.2 Database Organization ... 36

4.3 Database stored procedures .. 39

4.4 Application Back-end: Endpoints .. 40

4.5 Application Back-end: Class architecture .. 42

4.6 Dataflow example .. 44

4.7 Implementation on a VM ... 46

4.8 Development methodology .. 46

Chapter 5 Conclusions ... 47

5.1 General Conclusions .. 47

5.2 Personal Contributions ... 47

5.3 Future Work ... 48

References 49

LIST OF FIGURES

Figure 2.1 Web Server .. 22

Figure 2.2 Git working tree ... 23

Figure 3.1 Browser-Server interaction using JWT ... 27

Figure 3.2 Interaction between service provider and service consumer 28

Figure 3.3 CORS filter .. 30

Figure 3.4 Cross-site scripting attack.. 31

Figure 4.1 Application flowchart .. 34

Figure 4.2 Creating a new speaker .. 35

Figure 4.3 Recording a phrase .. 35

Figure 4.4 Creating a new user ... 36

Figure 4.5 Application architecture .. 36

Figure 4.6 Relations between tables in the database ... 38

Figure 4.7 Dataflow example .. 45

LIST OF TABLES

Table 3.1 JAX-RS annotations ... 26

List of acronyms:

ACID - Atomicity, Consistency, Isolation, Durability
API - Application Programming Interface

ASR – Automatic Speech Recognition

CORS - Cross-origin resource sharing

DBMS – Database Management Systems

DOM – Document Object Model

DVCS - Distributed Version Control System

EE – Enterprise Edition

EJB - Enterprise Java Beans

GUI - Graphical User Interface

HMAC - Hash-based message authentication code

HTTP - Hypertext Transfer Protocol

IDE – Integrated Development Environment

JAR – Java archive

JDBC – Java Database Connectivity

JNDI - Java Naming and Directory Interface

JPA - Java Persistence API

JS – JavaScript

JSON - JavaScript Object Notation

JSP - JavaServer Pages

JSR - Java Specification Request

JTA - Java Transaction API

JVM – Java virtual machine

JWT - JSON Web Token

NPAPI - Netscape Plugin Application Programming Interface

ODBC - Open Database Connectivity

OS – Operating System

REST - RESTful Web Services

RMI - Remote Method Invocation

SE – Standard Edition

SNR – Signal-to-Noise Ratio

SQL - Structured Query Language

TCP - Transmission Control Protocol

URI - Uniform Resource Identifiers

URL - Uniform Resource Locator

VCS - Version Control System

VM – Virtual Machine

WAR - Web application Archive

WORA – Write Once, Run Anywhere

XML - eXtensible Markup Language

Speech Recording Web Service and Application

15

CHAPTER 1

INTRODUCTION

1.1 THESIS MOTIVATION

In the last decade, there has been a growing demand of speech recognition technology. This

technology implies a machine or a program to recognize words in a spoken language and transform

them in a machine-readable format. During the past years, more and more speech recognition

applications have been developed. These applications have utility in various domains such as in

car systems, where a simple voice command may be used to initiate a phone call, change radio

stations or in-home automation (smart home), where lighting, air conditioning, security can be

controlled through the human voice. Other examples include domains like medical

documentation, aerospace, automatic translation, mobile telephony, robotics, speech-to-test

transcriber, etc. Some of the most notable speech recognition systems would be Microsoft’s

Cortana and Apple’s Siri.

Speech recognition, also known as ASR (Automatic Speech Recognition) is more and more

popular because it is a very fast and natural way of communication. The recognition is made based

on the extraction of some voice parameters from the voice signal and uses an acoustic model, a

phonetic model, and a language model. The acoustic model represents the relationship between

an audio signal and phonemes. Phonemes are the fundamental sound units in a spoken language.

The phonetic model makes the bond between the acoustic model and the language model. A

language model’s purpose is to estimate the probability of a sequence of words to be a valid

sentence of the respective language.

Speech Recording Web Service and Application

16

As I mentioned before, a very important part of an ASR consists in the acoustic model,

which usually is built upon a set of recorded audio clips and the respective annotated text. The

acoustic model also requires the existence of a phonetic dictionary which specifies the manner in

which the words from transcribed text are pronounced.

At the current moment there are no other free Romanian annotated speech databases. Our

goal is to extend the database in Romanian language, to acquire data from as many users as

possible, in order to preform complex machine learning techniques and improve the current results

regarding speech based applications.

The SpeeD laboratory is one of the leading speech research groups in Romania and is

currently concerned with scientific research in all areas of Spoken Language Technology,

including:

• Automatic Speech Recognition and Text-to-Speech synthesis

• Speaker Recognition

• Spoken Term Detection, Spoken Document Indexing/Retrieval

In order to conduct research in domains like ASR or Speaker Recognition, a large annotated

speech database in the Romanian language is required.

1.2 MAIN OBJECTIVE

In this context, the main objective of this thesis is to develop a new Speech Recorder

application used for creating and extending a database of voice recordings necessary for training

acoustic models in Romanian language. Due to security issues, the old application randered

obsolete, thus, we wish to implement a new one, more reliable and mentainable, adjusted to new

techonologies.

The application above mentioned consists in three parts:

- Front-end

- Back-end

- Database

The front-end part represents represents the client interface from which he can send various

HTTP(Hypertext Transfer Protocol) requests (such as GET or POST) to the web service. This

part is made in JS(Javascript) which is a programming language of the web. JS runs on the

client side and is used to design web pages as well as program their behaviour. All modern

web browsers support it without plug-ins. The old application used Java applets which are no

longer supported by web browsers due to security issues. The Java plug-in for web browsers

relies on the cross platform plugin architecture NPAPI(Netscape Plugin Application

Programming Interface), which has been supported by all major web browsers for over a

decade.

The back-end part represents the web service in which requests are handled and proccessed

by interacting with the database. The backend is made in Java which will be presented in the

following chapter.

The database was created by importing the information from the old database and making

various changes to it, including table modifications and creating new stored procedures or

modifying existing ones in order to interact with the back-end and provide new functionalities.

Speech Recording Web Service and Application

17

1.3 SPECIFIC OBJECTIVES

This project was developed in collaboration with my colegues from SpeeD laboratory and

it was a team effort. My part in this project was to develop the back-end and set-up the

database.

- The back-end of the new web application will be designed using REST architecture.

- Implementation of endpoints.

- Creation of SQL scripts in order to update the existing database.

- Development of stored procedures, which will be called by the web service in order to

interact with the database (about 15-20 procedures of 10-15 SQL lines).

- Implementation of an authentication system than relies on JWT(JSON Web Token).

- A CORS(Cross-origin resource sharing) filter will be used as a security measure to allow

the server to define a set of origins which are allowed to read information using a web

browser.

- Implementation on a VM(Virtual Machine) and testing.

Speech Recording Web Service and Application

19

CHAPTER 2

SOFTWARE TECHNOLOGIES FOR WEB APPS,

WEB SERVICES AND DATABASES

2.1 JAVA

2.1.1 Introduction

Java is a computer programing language and at the moment one of the most powerful and

important ones. It was created by Sun Microsystems (which was later acquired by Oracle), the

project was initiated in 1991 and the first implementation, Java 1.0, was released in 1995. Java

has the following important characteristics:

- High-level

- Object-oriented

- Portable

- Open-source

A high-level programming language is more or less independent from a certain type of

computer and is closer to the human language. On the opposite side we have low-level

programming languages such as assembly languages which are closer to machine language.

 Through object-oriented, we can say that the information obtained after running a program

is not obtained just by applying a set of algorithms on the input data but through interactions

Speech Recording Web Service and Application

20

between entities called objects. As comparison, the procedural programming languages such as C

and Pascal represent a set of instructions which form an algorithm.

Java is platform independent which means that any program written in this language can

be executed regardless of the operating system (Windows, Linux). This is possible because the

programs written in Java are not executed by the operating system but by a virtual machine called

Java Virtual Machine, which is available for any operating system. JVM takes the Java files (

.class files) and makes the operating system understand them. Because JVM is available for any

operating system we have the "write once, run anywhere" (WORA) concept and thus the

portability characteristic. Unfortunately, this characteristic comes with a downside, in the sense

of increased execution time due to the necessity of the JVM to make the interpretation. Thus Java

will not be used in applications such as video games where real-time precision is required but

oriented more to business applications.

By open-source, we understand that anyone can make contributions or improvements to

improve the programming language so it may be used by others.

Java is one of the most popular programming languages and it’s very used in client-server

web applications.

2.1.2 Java EE

Java EE is a computing platform used for development and deployment of enterprise

software (such as web services). The Java EE platform is built on top of the Java SE platform and

it provides an API and runtime environment for developing and running large-scale, multi-tiered,

and secure network applications. Thus, we may say that Java EE is a collection of API, services

and protocols that are meant for developing enterprise applications. In the following list, we will

name a few of these technologies : JDBC, JAX-RS (API for RESTful Web Services), JPA, RMI,

EJB, JTA, JSP, JNDI. In most situations, when developing a web service, only a few of these

technologies are used.

2.2 POSTGRESQL

“PostgreSQL is a powerful, open source object-relational database system. It is fully ACID

compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in

multiple languages).” ACID stands for Atomicity, Consistency, Isolation, Durability and

represents a set of properties of database transactions. The main function of PostgreSQL as a

database server is to securely store data and return data in response to requests from software

applications. PostgreSQL is available on most operating systems such as Linux and Windows, it

is also free and open source.

2.2.1 Stored Procedures

A stored procedure is a set of statements that can create, retrieve, modify or delete data in

a database, somewhat similar to a function. They are called stored because they are stored in a

relational database management system allowing them to be used by other programs.

 Advantages:

A stored procedure can help us in the matter of security. For example, some data may be

accessed only by admin users; the stored procedure will check if the user that is trying to access

the resource has admin rights and returns the proper response depending on the case. The network

traffic between clients and servers can be reduced by using stored procedures due to the fact that

the code lines are not transmitted, but only the call of execution is sent over the network.

Disadvantages:

Speech Recording Web Service and Application

21

Most storage procedure languages are vendor specific, meaning that if for example we

change database vendors, we will most likely have to change the rewrite the code for the stored

procedures.

2.2.2 JDBC – Java API for database interaction

Java Database Connectivity (JDBC) is an API for the Java programming language , which

allows a client to perform various operations on a database. JDBC is a part of Java SE. The main

features of the JDBC API are the following:

- Establish a connection with a database

- Send SQL statements

- Process the results

We can divide JDBC into four components:

- The API : used to execute SQL statements;

- The Driver Manager: the class which is considered the backbone of the JDBC due to

the fact that it defines objects which connect Java applications to a JDBC driver;

- The Test Suite: this component will help in determining whether the JDBC drivers

will run the program or not. This is done by testing the features of the API.

- ODBC Bridge: it provides JDBC access via ODBC drivers. ODBC is an API for

accessing DBMS;

2.3 DEVELOPMENT TOOLS

2.3.1 Netbeans IDE

Netbeans IDE is an application development environment which is free and open-source and

available for most operating systems, such as Windows, Mac and Linux. An IDE represents more

than a text editor, making it more friendly to programmers. Netbeans IDE includes the following

features: autoindent, automatic placement of brackets, formatting, highlighting. It also gives tips

and warnings regarding the code and can generate code like inserting getters and setter for

example. The projects are displayed in an orderly fashion, thus keeping a clear overview. This is

very helpful in the case of large application with many files. Netbeans IDE also comes with a

debugger; putting a breakpoint in the code or stepping one line code at a time are just some of the

features it offers.

2.3.2 Web Server

When we refer to web servers we may say that a web server is a computer specifically

dedicated to serve web pages to clients or that a web server is a program which through the use of

HTTP serves files which form web pages at the request of users. In order to host a web site, one

must have a web server.

2.3.2.1 Apache Tomcat

Apache Tomcat is a free and open source web server. „This software is an implementation of

the Java Servlet, JavaServer Pages, Java Expression Language and Java WebSocket

technologies”. When developing a web application, in order to make it accessible to the rest of the

world, it needs to be deployed on a web server.

Speech Recording Web Service and Application

22

Figure 2.1 Web Server

The user sends from his browser a HTTP request over a TCP connection which is parsed into

an object. The response object is send back by Tomcat as a HTTP response via the same TCP

connection.

2.3.3 Subversioning systems

When we talk about subversioning, we think about VCS (Version Control System) which „is

a software that helps software developers to work together and maintain a complete history of

their work”. There are 3 major goals that this kind of system has to achieve:

1. To allow developers to work simultaneously;

2. Making sure that the changes made by one developer do not overwrite another’s;

3. Keeping every version of the program and anything else that has been updated such as

documentation.

2.3.3.1 Git

Git is a VCS . Git has a distributed architecture, making it a DVCS (Distributed Version

Control System), meaning that „every developer's working copy of the code is also a repository

that can contain the full history of all changes”, compared to the old VCS where the repository

could be found in only one single place. The files of a project can be found in three different

stages:

- Modified (or unstaged): the files have been modified on your local repository, but

have not yet been committed.

- Staged: these files have been marked that they are ready to go into the next commit

- Committed: the files have been safely stored in the git repository.

Speech Recording Web Service and Application

23

Figure 2.2 Git working tree

Another feature of Git is called branching. Branching is a way to diverge from the main line

of development and to continue to work without interfering with that line. The default branch in

Git is master. If for example we decide to create another branch called testing, we could make

commit to that branch and the master branch will remain unchanged, thus allowing us to

experiment on that branch while having the master branch as backup if something goes wrong.

Speech Recording Web Service and Application

25

CHAPTER 3

WEB SERVICES

3.1 RESTFUL WEB SERVICES

REST is an architectural style in which everything (data and functionality) is a resource which

can be accessed through web links (URIs). RESTful web services are used very much in

developing APIs for web-based applications.

RESTful applications have the following features:

- Resources are identified by URIs;

- Resources may be accessed through HTTP methods: GET (retrieves the resource;

Note: a resource may not be changed via a GET request), POST (creates a new

resource), PUT (updates a resource), DELETE (removes a resource);

- Resources can be accessed in many formats such as HTML, XML, JOSN etc.

- Resource interaction is stateless.

3.1.1 Jersey – Java API for REST services

The REST support for Java is made via JSR (Java Specification Request) 311. „This

specification is called JAX-RS (The Java API for RESTful Web Services). JAX-RS uses

annotations to define the REST relevance of Java classes”.

 „Jersey is the reference implementation for the JSR 311 specification. The Jersey

implementation provides a library to implement Restful webservices in a Java servlet container

and a client library to communicate with a RESTful webservice”.

Speech Recording Web Service and Application

26

The following table presents a list with some of the most important JAX-RS annotations:

Table 3.1 JAX-RS annotations

Annotation Description

@PATH(your_path) Sets the path to the resource to base_URL/your_path

@POST The method will respond to a POST request.

@GET The method will respond to a GET request.

@PUT The method will respond to a PUT request.

@DELETE The method will respond to a DELETE request.

@Produces(MediaType.

[types])

This method defines which MIME type is returned as

response to the accessed method.

@Consumes(MediaType.

[types])

This method defines which MIME type is expected to

be received by the method.

@PathParam
This method is used to take parameters from the URL

and insert them into the respective method.

3.2 WEB APP AUTHENTICATION IN WEB SERVICES

One of the most important things that we must take into consideration when creating a web

application is security. Through authentication we understand the verification process of the user.

There are various ways to determine if a user is who he/she claims to be, the most common being

by providing a username and password. Authentication is not to be confused with authorization

or access control which represents whether a user has the rights to access specific resource.

3.2.1 Oauth

The OAuth 2.0 specification defines a delegation protocol that is useful for conveying

authorization decisions across a network of web-enabled applications and APIs. Oauth is mostly

used in providing mechanisms for user authentication but has other application as well. In some

cases, Oauth is mistakenly considered an authentication protocol. This confusion comes from the

fact that OAuth is used inside of authentication protocols.

JWT (RFC 7519) is an extension for Oauth.

Speech Recording Web Service and Application

27

3.2.2 JWT

„JWT is an open standard (RFC 7519) that defines a compact and self-contained way for

securely transmitting information between parties as a JSON object”. We can verify this

information due to the fact that it is digitally signed using a secret with the HMAC algorithm.

Because of its compact size, JWT can be sent through a URL, HTTP header or POST parameter.

The payload of the JWT has all the necessary information about the user, thus we can say it’s self-

contained. The most common use of JWT is in Authentication. The user logs in with his or her

user and password, if the credentials provided are correct, the user will receive a token which will

be sent together with each subsequent request, thus allowing the user access to services and

resources. The figure bellow shows this process:

Figure 3.1 Browser-Server interaction using JWT

 Regarding the structure of the JWT, it consists of three parts:

- Header

- Payload

- Signature

The header in turn is made from two parts: the hashing algorithm used and the type of the

token. The header could look like this:

{

 "alg": "HS256",

 "typ": "JWT"

}

 The payload is the second part of the token and contains the claims. Claims represent

statements about a certain entity, usually a user, and additional metadata. Payload example:

Speech Recording Web Service and Application

28

{

 "id": "14",

 "name": "Mike Hammond",

 "admin": true

}

 Both the header and the payload are Base64Url encoded.

 The signature is the third and final part of the JWT. In order to make the signature, we

require the following parts: the encoded header, the encoded payload and a secret. Then we use

the algorithm in the header. For example:

HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

 secret)

 The signature is used to verify that whoever sends a request together with the JWT is

who it claims to be.

 The end product will be formed form three base64 strings separated by dots. This format

is compact and thus easily passed in HTML and HTTP environments.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjE0IiwibmFtZSI6Ik1pa2UgSGFtbW9uZ

CIsImFkbWluIjp0cnVlfQ.PxbLS3HYCwCE1YYBrxheri3vBvUttt41Gn4ZzUg9dVk

3.3 WEB SERVICES INTERACTION WITH WEB APPS

3.3.1 Introduction

A web service is a software component which can be found on the internet via a simple

find mechanism. In order to make itself available, it uses a standardized XML messaging system.

Another key feature of a web service is that it shouldn’t be tied to any programming language or

operating system, thus being able to exchange data between applications, respectively systems.

Figure 3.2 Interaction between service provider and service consumer

XML is a text-based markup language. A markup language is a set of tags placed in a text

so that we can demarcate certain components of the document.

Here, we have an example:

<message>

<text>Hello world!<text>

</message>

Speech Recording Web Service and Application

29

Thus, we can say that XML is merely information wrapped in tags. Due to the fact that it

does not perform any algorithms or computational operations, XML cannot be considered a

programming language. XML was designed to store and transport data.

3.3.2 JSON

JSON is a minimal, readable data format, used as an alternative to XML to store data and

transmit data between web server and web application. JSON is text and we can convert any JSON

into a JavaScript object and vice-versa. JSON is made from two parts: keys and values. JSON is

a collection of key-value pairs. The key is always a string while the value can be a string, a number,

a boolean or even an array. Example:

{"name":"Mike", "age":22, "city":"London"}

If we are to compare JSON with XML, we can say that regarding similarities, both JSON

and XML are human readable, hierarchical (meaning that we have values within values), they can

be parsed by most programming languages and they can be fetched using a HTTP request. We

can also note some differences such as that JSON dose not use end tags, is shorter, quicker to read

and write and can use arrays. The biggest difference between XML and JSON is the way they are

beeing parsed. XML is parsed using an XML parser, while JSON is parsed with a JavaScript

function. The advantages JSON has over XML is that JSON is more easily parsed than XML and

that JSON is parsed into a ready to use JavaScript object.

3.4 CORS FILTER

CORS is a way for web browsers to access resources on other domains than the origin. Web

browsers implement a security concept called same-origin policy that prevents Javascript code

from making requests from a different domain. CORS allows the Javascript code to consume a

REST API from a different domain, thus relaxing the same origin policy. In order to better

understand CORS, we will use an example:

A HTML page served from domain-a will request an image from domain-b (different from

the origin which is domain-a).

Speech Recording Web Service and Application

30

Figure 3.3 CORS filter

The same-origin policy defines what messages one site may sent to another. For example, this

policy allows GET requests, but denies POST, PUT and DELETE methods. The purpose of the

same-origin policy is to allow users to access some untrusted sites through trusted ones without

risking any interference from the former.

A type of vulnerability used to bypass the same-origin policy is Cross-site scripting. The

Cross-site scripting represents an injection attack on the client-side. A user viewing a vulnerable

site will have a script injected into his web page. These scripts usually have malicious purpose.

„In order for an XSS attack to take place the vulnerable website needs to directly include user

input in its pages. An attacker can then insert a string that will be used within the web page and

treated as code by the victim’s browser”.

The figure bellow shows a simple Cross-site scripting attack:

Speech Recording Web Service and Application

31

Figure 3.4 Cross-site scripting attack

1. The attacker will inject a script by submitting a vulnerable form in the database of the

website.

2. The client requests a web page from the website.

3. The client’s browser will receive the page with the attacker’s payload as part of the HTML

body.

4. The malicious script in the HTML body will be executed by the client’s browser.

These malicious scripts can do a lot of harm. Some examples would be to read and make

random modifications to the browser’s DOM or send requests with random content to random

destinations. Because the script has access to the same resources as the web page, it will have

access to the cookies which often store tokens. Thus, the attacker could impersonate the user.

Speech Recording Web Service and Application

33

CHAPTER 4

APPLICATION DESCRIPTION

4.1 GENERAL DESCRIPTION

The main purpose of this application is to enable the end user to record and store his/her

speech utterances. These speech utterances are mainly used to create large, annotated speech

corpora which can be used to develop acoustic models for various spoken language technology

applications such as: speech recognition, speaker recognition and speech synthesis.

In this application we encounter two types of users: normal users and admin users.

Depending on the type, the users have different functionalities: besides the main feauture of

recording which is available to both types of users, normal users can manage their speakers list,

by creating or update existing speakers while admin users can access a list of all speakers in the

database as well as a list of all users. Admin users can also delete a speaker/user besides

creating/updating one.

An user represents the account that one or more persons use to access the web site. A speaker

represents the actual person that makes the recording. One user may have one or more speakers.

For example, for intership students there will be only one user but for each student there will be

assigned a speaker.

Speech Recording Web Service and Application

34

Figure 4.1 Application flowchart

Use cases:

• Record speech (login, microphone calibration, create speaker (if necessary),

recording);

• Create/Update speaker (login, view speakers, create/update speaker);

• Create/Update user (login, view users, create/update user);

• Delete speaker (login, view speakers, delete speaker);

• Delete user (login, view users, delete user);

Following up, the steps will be presented:

1. Login: firstly, to use the application, a user must enter his or her credentials in the log

in menu. In the upper right corner, the user can find 3-4 tabs depending on the type of

user: Users (only for admin users), Speakers, Record and Logout.

2. View speakers in the database: by selecting the Speakers tab, a list with speakers can be

found. For normal users, only the speakers belonging to that user may be seen, while

admin users have access a list with all the speakers in the database, also knowing to

which user they belong to.

3. Create a new speaker: in the Speakers tab, one may add a new speaker by introducing

the following: first name, last name, email, mother language, gender, age, other speech

characteristics.

Speech Recording Web Service and Application

35

Figure 4.2 Creating a new speaker

4. Update a speaker: a speaker’s information can be edited by selecting the edit option next

to the respective speaker in the speaker tab.

5. Record a phrase group: If the log in is successful, the user must perform two recordings,

one without speech in order to record the background noise and one with speech. This

is necessary to determine if the environmental conditions are suitable for recording, in

contrast, we may encounter cases such as: low SNR, unplugged microphone,

uncalibrated microphone and so on. After selecting the Recording tab , a user must firstly

select his speaker from the speaker list and the phrase group for which he wishes to

perform the recordings. Once the phrase group has been selected, a sentence or a row of

numbers will appear on the screen, this being the first phrase of the phrase group. The

user is free to browse through the list of phrases by using the arrow buttons or by simply

introducing the desired phrase number from the respective group. The phrases will also

show a recorded status, stating whether the phrase was recorded or not by the current

speaker. Phrases with recorded status will have a playback option. Problems may also

occur during the recording, for example a recording started too soon or ended too late,

in which case the applicatin informs the user through an error message of the problem

and the user will have to make the recording again.

Figure 4.3 Recording a phrase

The following use cases are exclusive to admin users:

6. View users in the database: in the Users tab, we can find a list of all existing users, with

some details: first name, last name, email, username, admin user status, ability to login

status.

Speech Recording Web Service and Application

36

7. Create a new user: also in the Users tab, we can create a new user. The window for

creating a new user is different from the one for creating a new speaker as can be seen

in the image bellow:

Figure 4.4 Creating a new user

 As it can be seen, we have the basic fields: first name, last name, username, email and

password as well as 4 abilities:

- Login: which can enable (if checked) the user to login into his account;

- Listen: allows all the speakers belonging to that user to use the playback option;

- Modify: this field gives the ability to modify an existing recording;

- Admin: states whether the user has admin rights or not.

8. Update an user: in the list of users, an admin has an actions column with two actions for

each user. One of the actions consists in modifying an existing user.

9. Delete an user: the second action in the actions column in the users tab is the deletion

action which removes the user from the database.

10. Delete a speaker: in the Speakers tab, an admin user can delete any speaker whether the

speaker belongs to the user or not.

Figure 4.5 Application architecture

4.2 DATABASE ORGANIZATION

The database is created in pgAdmin and deployed on a VM. The access to the database is

made using the JDBC API. The database consists of 6 tables:

1. audio_clips: stores data about the audio clips, including the audio clips themselves;

2. miscellaneous: stores the speaker agreement;

3. phrase_groups: stores data regarding phrase groups;

4. phrases: stores the phrases and information about them;

5. speakers: stores information about the speakers;

Speech Recording Web Service and Application

37

6. users: stores information about the users.

The fields for each table and their types are presented bellow:

• audio_clips :

o speaker_id (integer): contains the id of the speaker who made the recording;

o phrase_group_id (integer): contains the id of the phrase group from which

the recording belongs;

o phrase_id (integer): contains the id of the phrase which was uttered to make

he recording;

o created_date (date): contains the date at which the recording was made;

o wav_byte_array (bytea): contains the recording wav file as a sequence of

bytes.

• miscellaneous:

o speaker_agreement (text): contains the list of terms every speaker has to

agree to in order to make recordings.

• phrase_grops:

o phrase_group_id (integer): contains the unique identifier for each phrase

group;

o group_name (character varying): contains the name of the respective phrase

group;

o group_size (smallint): contains the number of phrases found in the phrase

group;

o description (character varying): contains a short description of the phrase

group, showing to which domain they are related to such as phrases from

newspapers and magazines.

• phrases:

o phrase_group_id (integer): contains the id of the phrase group from which

the phrase belongs to;

o phrase _id (integer): contains the unique identifier of each phrase;

o phrase_text (character varying): contains the text of the phrase.

• speakers:

o speaker_id (integer): contains the unique identifier for each speaker;

o user_id (integer): contains the id of the user from which the speaker belongs

to;

o first_name (character varying): contains the first name of the speaker;

o last_name (character varying): contains the last name of the speaker;

o mother_language (character varying): contains the native language of the

speaker;

o email (character varying): contains the speakers’s email address;

o gender (character varying): contains the speaker’s gender;

o age (smallint): contains the age of the speaker;

Speech Recording Web Service and Application

38

o comments (text): contains comments regarding the speaker’s voice;

o created_date (date): contains the date at which the speaker was created.

• users:

o user_id (integer): contains the unique identifier of the user;

o first_name (character varying): contains the first name of the user;

o last_name (character varying): contains the last name of the user;

o user_name (character varying): contains the user name;

o email (character varying): contains the user’s email;

o password (character varying): contains the password to the user’s account;

o can_login (boolean): contains the status regarding the ability to login;

o can_listen (boolean): contains the status regarding the ability to listen to

recordings;

o can_modify (boolean): contains the status regarding the ability to modify

(replace) an existing recording;

o is_admin (boolean): contains the status regarding whether or not the user has

admin rights.

The relation between these tables is presented in the following figure:

Figure 4.6 Relations between tables in the database

Speech Recording Web Service and Application

39

4.3 DATABASE STORED PROCEDURES

The stored procedures are implemented by executing a SQL script. The 18 stored procedures

can then be found in the pgAdmin database in the Functions list.

It can be seen that some stored procedures require one or more inputs. The types of these

inputs are the ones in brackets. The stored procedures will have various return types depending

on their functionality. All the stored procedures are called from the server using the

Connection.prepareCall function. Afterwards, using CallableStatement we may set the input and

output parameters.

The following list presents each function:

• check_recording_status:

o Input: speaker id, phrase group id;

o Verifies which phrases from a certain phrase group have been recorded for

a speaker and returns a list of the ids of the phrases which have been

recorded;

• delete_speaker_for_userid:

o Input: user id, speaker id;

o Deletes a speaker from the speakers table if the user requesting this action

has admin rights;

• delete_user:

o Input: the id of the user who requests this action, the id of the user to be

deleted;

o Deletes a user from the users table if the user requesting this action has

admin rights;

• get_all_phrase_groups:

o Input: none;

o Returns a list of all the phrase groups including information about them;

• get_all_speakers:

o Input: none;

o Returns a list of all the speakers including information about them;

• get_all_users:

o Input: user id;

o Returns a list of all the users and information about them if the user

requesting this action has admin rights;

• get_audio_clip_wav_data:

o Input: user id, speaker id, phrase group id, phrase id;

o Checks if the respective user has the right to listen to his/her recordings and

returns the audio clip corresponding to the speaker, phrase group and phrase

as a sequence of bytes;

• get_phrase_groups:

o Input: user id;

o Returns a list of phrase groups and their information ordered by name;

• get_phrases_for_phrase_group:

o Input: phrase group id;

o Returns a list of all phrases which belong to the phrase group whose id is

given as input;

• get_speaker_agreement:

o Input: none;

o Returns the speaker agreement;

• get_speakers_for_user_id:

Speech Recording Web Service and Application

40

o Input: user id;

o Returns a list of speakers including information about them which belong

to a certain user;

• insert_speaker_for_user_id:

o Input: user id, first name, last name, mother language, email, gender, age,

comments;

o Creates a new speaker in the speakers table if there is no other already

existing speaker with the same first name and last name;

• insert_user:

o Input: user id, first name, last name, user name, email, password, can login,

can listen, can modify, is admin;

o Checks if the user requesting this action has admin rights and creates a new

user in the users table if there is no other existing user with the same user

name or email;

• login:

o Input: user name, password;

o If the credentials are correct and if the user has the right to login, it returns

the respective users information;

• modify_speaker_for_user_id:

o Input: user id, speaker id, first name, last name, mother language, email,

gender, age, comments;

o Modifies an existing speaker if the new first name and last name are not the

same with the ones of another speaker;

• modify_user:

o Input: id of the user making the request, id of the user to be modified, first

name, last name, user name, email, password, can login, can listen, can

modify, is admin;

o If the user requesting this action has admin rights, it modifies an existing

user if the new user name and email are not the same with the ones of

another user;

• put_user_agreement:

o Input: user id, agreement;

o If the user has admin rights, it updates the speaker agreement;

• upload_audio_clip:

o Input: user id, speaker id, phrase group id, phrase id, wav bytes;

o Inserts the wav file as a sequence of bytes and the associated speaker id,

phrase group id and phrase id in the audio_clips table. If the recording

already exists, the procedure first verifies if the user has the right to modify

an existing audio clip and only then proceeds to the replacement of the old

recording;

4.4 APPLICATION BACK-END: ENDPOINTS

A web service endpoint is a web address (URL) where the clients can gain a specific service.

Thus, endpoints are a very important part in the process of developing a web service. The

following list presents the application endpoints:

POST login

o Allows or denies a user access to the web site

o Parameters: username and password

o Response: token or error message

Speech Recording Web Service and Application

41

Endpoints for normal users :
• GET speakers

o Returns the list of existing speakers for a particular user

o Parameters: none

o Response: [{id, first_name, last_name, mother_language, email, gender, age,

comments}]

• POST speakers

o Creates a new speaker

o Parameters: [{first_name, last_name, mother_language, email, gender, age,

comments}]

o Response: none

• PUT speakers

o Updates the information for an existing speaker

o Parameters: [{speaker_id, first_name, last_name, mother_language, email,

gender, age, comments}]

o Response: none

• GET phrase-groups

o Returns the list of existing phrase-groups

o Parameters: none

o Response: [{id, name, size, description}]

• GET speakers/{speaker_id}/phrase-groups/{phrase_group_id}/phrases

o Returns the phrases in a specific phrase-group and the recording status for each

phrase for a specific speaker

o Parameters: none

o Response: [{id, text, recording_status}]

• GET speakers/{speaker_id}/phrase-groups/{phrase_group_id}/phrase/{phrase_id}/audio

o Returns an audio recording

o Parameters: none

o Response: {audio_clip_base64}

• PUT speakers/{speaker_id}/phrase-groups/{phrase_group_id}/phrase/{phrase_id}/audio

o Creates a new audio recording or updates the existing one

o Parameters: {audio_clip}

o Response: none

• GET user-agreement

o Returns the user agreement

o Parameters: none

o Response: html user agreement

• POST audio-verification

o Verifies the audio signal from the microphone

o Parameters: {silence_audio_clip, test_audio_clip}

o Response: OK or error message

• GET noise

o Checks if the received token is associated with a noise power

o Parameters: none

o Response: none

Endpoints for admins:

• GET users
o Returns the list of existing users
o Parameters: none

Speech Recording Web Service and Application

42

o Response: [{id, first_name, last_name, user_name, email, password, can_login,
can_listen, can_modify}]

• POST users
o Creates a new user
o Parameters: {first_name, last_name, user_name, email, password, can_login,

can_listen, can_modify}
o Response: none

• PUT users/{user_id}
o Updates information regarding an existing user
o Parameters: {first_name, last_name, user_name, email, password, can_login,

can_listen, can_modify}
o Response: none

• DELETE users/{user_id}
o Deletes an existing user
o Parameters: none
o Response: none

• DELETE users/{user_id}/speakers/{speaker_id}
o Deletes an existing speaker
o Parameters: none
o Response: none

• PUT user-agreement
o Updates the user agreement
o Parameters: {agreement_text}
o Response:none

4.5 APPLICATION BACK-END: CLASS ARCHITECTURE

The architecture of the web service is divided into four packages:

• Model

• Serializers

• Service

• Web

In the „model” package we have the classes which will be used to create the objects

necessary for the interaction with the web application(frontend) as well as with the database. The

following classes can be found in the model package: AudioClips, AudioClipsPK, NoiseData,

PhraseGroups, Phrases, PhrasesPK, Speakers, SpeakersPK, UserAuth, Users. The classes

AudioClips, PhraseGroups, Phrases, Speakers and Users are the ones which correspond with the

fields in the tables from the database. The classes AudioClipsPK, PhrasesPK and SpeakersPK

contain the connections between the previous classes. For example, an AudioClips object will

contain an AudioClipsPK which contains the fields speakerId, phraseGroupId and phraseId thus

giving us the information about which speaker made the recording, from which phrase group and

which phrase. Similarlly, SpeakersPK found in a Speakers object contains the variables speakerId

and userId showing to ehich user the speaker belongs to. PhrasesPK found in Phrases contains

phraseGroupId and phraseId thus tying a phrase to a phrase group. The UserAuth class contains

the variables userName and password and is used in the login process. The NoiseData class is

used during the initial audio verification and during recordings. It contains the variables

messageId, message and SNR, offering full information about the cause of error.

In the „serializers” package we can find the PhrasesSerializer and SpeakerSerializer

classes. These classes are used to rewrite the Phrases, respectively Speakers JSONs sent to the

client. The rewriting consists in sending only certain fields from the JSON and not all of them.

Thus, these classes could be called JSON custom serializers.

Speech Recording Web Service and Application

43

The „service” package contains the following classes: AudioVerification, CORSFilter,

CORSHeaders, DatabaseInterface, FilterReg, Finals and SpeedService. The most important

classes in this package are DatabaseInterface and SpeedService. DatabaseInterface contains the

functions necessary for the interaction with the database such as performing the connection with

the database and making calls on the stored procedures. SpeedService is an intermediary class, it

makes the connection between the DatabaseInterface class and the classes in the „web” package ,

also performing various operations such as adding the JSON custom serializer. SpeedService is

also a Singleton class which means that only one istance of this class will exist at any time. The

SpeedService class loads the properties from the configuration file in which we can find the

following fields: environment, databaseURL, username, password, token_secret, token_exp_time,

minimumSNRAllowed and cutTimeInMiliseconds. Another important function of the

SpeedService class is creating and verifying tokens. Using the secret from the configuration file,

the loging funcion in the SpeedService class will sign the following claims: userID, exp (the time

at which the token expires; this field is the sum of the current time in miliseconds and the token

expiration time in the configuration file) and is Admin. The SpeedService class also contains a

HashMap called „noisePowers” which contains token -background noise power pairs. Each time

a user sends a recording, the background noise associated with his token will be used for the audio

verification. In the case of an expired token, the user will have to log in again to receive a new

token and make another background noise recording which will be associated with it. The main

functions of the AudioVerification class is to compute the noise powers and to process the audio

signal, among other tasks such as to cut the front and back ends of the recordings necessary to

eliminate the clicking sound at the begining and at the end of the recording. The function of

processing the audio signal will return a NoiseData object. Then the SpeedService class will take

that object and extract the messageId in order to determine whether the audio clip has been

properly recorded or if there was some irregularity. Thus the NoiseData object will update with a

message depending on the messageId. Both messageId and message variables are extracted from

the Finals class. Lastly, the CORSFilter, FilterReg and CorsHeaders classes are used to implement

and register the CORS filter.

The „web” package includes the classes: WEBAudioClips, WEBPhraseGroups,

WEBSpeakers and WEBUsers. These are the classes in which we cand find the endpoints. The

functions found in these classes will also have to call the JWTVerify function in SpeedService in

order to check if the token used to access that specific resource is valid, otherwise it returns an

error message. The only function which makes an exception is the login function which checks if

the credentials received are found in the database and returns a token if that is the case. The

following list shows the endpoints found in each class.

• WEBAudioClips

o PUT audio

o GET audio

o PUT audio-verification

o GET noise

• WEBPhraseGroups

o GET phrase-groups

o GET phrases

Speech Recording Web Service and Application

44

• WEBSpeakers

o GET speakers

o POST speakers

o PUT speakers

o DELETE speakers

• WEBUsers

o POST login

o GET users

o POST users

o PUT users

o DELETE users

o GET user_agreement

o PUT user_agreement

4.6 DATAFLOW EXAMPLE

In this subchapter, a simple example of the interaction between the 3 components, namely

front-end, back-end and database will be presented. The case of creating a new speaker will be

shown:

Speech Recording Web Service and Application

45

Figure 4.7 Dataflow example

The upper figure is explained through the following steps:

- After accessing the login page, the user enters his credentials and sends the data

through the login endpoint via a HTTP POST request. The back-end will then send

this information further by calling the login stored procedure of the database.

- After verifying if the username and password match any user in the users table, the

database will return, if successful, the data for the respective user which will be used

by the back-end in creating the JWT. The user id and admin rights will be stored in

the claims of the JWT which will be sent back to the user and any subsequent requests

from this user will be made using this JWT. If there were no matches in the database,

the user will be propted with an error message stating that either the username or

password introduced, or both were wrong.

- The user now beeing able to access the menu of the application will now proced to the

speakers tab, from where the GET speakers endpoint will be accessed and a HTTP

GET request will be sent. The back-end will the call the get_speaker_for_user_id

procedure.

- The database will return the speakers list for the respective user to the back-end which

will send it back to the user as a list of JSON objects.

- Once in the speakers tab, the user can access the create speaker window. After

completing the form, the information about the speaker will be sent via a HTTP POST

request. The back-end will send the data further by calling the

insert_speaker_for_user_id stoared procedure.

Speech Recording Web Service and Application

46

- Upon receiving the data, the database will check if there are other speakers which have

the same first name and last name with the received speaker. If that is not the case, the

speaker will be introduced in the speakers table in the database and a response code

will be sent back to the back-end stating whether the operation was successful, there

is an existing apeaker with the same fisrt name and last name or some other error has

occured. Depending on the case, the user will be sent back to the updated spakers list

in the case of a succesful event or will receive an error message.

4.7 IMPLEMENTATION ON A VM

A VM is a software which allows one to emulate a OS and imitate dedicated hardware on a

host OS. This software is just like another program. For example, we can run a Linux OS on a

Windows OS.

In order to implement the web service on a VM, there are a couple of steps that must be

taken. Firstly, we need to install the programs necessary to run the service, meaning Java, Apache

Tomcat, Git and Maven. Apache Maven represents a tool used for building and managing any

Java-based project. The Apache Tomcat server will require some configuration processes such as:

setting execution rights, port configuration, setting user and password for the control panel. Git

will be used to clone the repository on the VM and Maven will build the backend and generate

the WAR file which will be used by the Apache server. A WAR file is actually a JAR file which

distributes resources such as JSP, Java Classes XML files, static web pages in order to build up

the web application. In short it is a single file which has all of the applications files bundled inside.

A JAR file represents a single file in which we have archived many Java classes and associated

metadata and resources. The WAR file will be installed in Apache Tomcat in order to deploy the

backend. The backend can be deployed either through the Manager App of the Apache Tomcat

GUI or through the command line. In the Manager App, one must simply browse for the file and

enter the Context Path (the app will be found at {base URL}+Context Path). The alternative

consists in moving the WAR file in Apache Tomcats webapp folder.

4.8 DEVELOPMENT METHODOLOGY

In the beginning of development, the technologies which were to be used were chosen such

as the programing language and the IDE. Afterwards, the endpoints were drawn out, which during

development had encountered some slight changes. Once most of the work on endpoints was

achieved, the important matter of security and authentication was discussed. Thus, JWT and

CORS were implemented. Once the application was beginning to take shape, several tests on

recordings were made. These included speaking too loud or not at all to see if the application

returned an error message, thus making sure the application behaved as intended.

Just like any real-life application, this web service might encounter some bugs, glitches or

there might be room for some improvements regarding some functionalities. Thus, a production

version was installed on a new VM, different from the one used for development. The

development version will often use different parameters for making various tests. In this regard,

the configuration file has the environment property which can be equal to “dev” or to “prod”,

making the switch between the two environments more easily, instead of modifying each field.

Speech Recording Web Service and Application

47

CHAPTER 5

CONCLUSIONS

5.1 GENERAL CONCLUSIONS

The Speed Recording Web application in currently online on the Speed Laboratory site.

During development, there have been some issues that required solving. One of the most notable

would be: during the elimination of the front and back ends of the audio clips, the header of the

file was also removed thus making the file unusable. This matter was solved by keeping the

original header of the file and reattaching it after performing the cutting operation.

This thesis presents the successive steps which were employed by the author in order to create

the web service and set up the database. After describing the motivation and main objective in

Chapter 1 and the theoretical aspects regarding software technologies, development tools used and

security measures in Chapter 2 and 3, Chapter 4 presents the application description, class and

stored procedures implementation and functionality, implementation and development.

5.2 PERSONAL CONTRIBUTIONS

The personal contributions of the author of this thesis can be found in Chapter 4 and can be

summarized as follows:

a) Creation and implementation of new stored procedures to provide new features;

b) Updating existing procedures to facilitate the interaction between the back-end and the

database;

Speech Recording Web Service and Application

48

c) Creation and execution of scripts that modify the database (update the users table with a

is_admin column, generate a drop list for old procedures, create new procedures);

d) Creation of back-end service based on REST architecture;

e) Implementation of endpoints;

f) Creation of an authentication system based on JWT;

g) Implementation of CORS filter;

h) Deployment of the back-end on a VM.

5.3 FUTURE WORK

Regarding future improvements, the primary concern would be to implement a logging

system to keep track of some minor glitches that seem to have occurred in the service from time

to time to solve the issue that causes them. Another update consists in implementing new

endpoints which allows admin users to create new phrase groups and the phrases which belong to

those phrase groups or update existing ones by editing phrases in a phrase group, adding new ones

or deleting them. Also, a new feature that we would like to include in our application would be a

way to download wav files from the database. For example, download all the recordings of a

certain speaker or all the recordings of a certain phrase or phrase group.

Speech Recording Web Service and Application

49

REFERENCES

Java (https://en.wikipedia.org/wiki/Java_(programming_language))

Java EE (https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition)

Java SE and EE comparison (http://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html)

PostgreSQL (https://www.postgresql.org/about/)

JDBC (http://www.oracle.com/technetwork/java/javase/jdbc/index.html)

JDBC (https://docs.oracle.com/javase/tutorial/jdbc/overview/)

Netbeans (https://netbeans.org/features/index.html)

VCS (https://www.tutorialspoint.com/svn/svn_basic_concepts.htm)

Git (https://git-scm.com/book/en/v2/Getting-Started-Git-Basics)

Git (https://www.atlassian.com/git/tutorials/what-is-git)

Apache Tomcat (http://searchmicroservices.techtarget.com/definition/Apache)

Apache Tomcat (http://tomcat.apache.org/)

REST (https://www.tutorialspoint.com/restful/)

XML (https://www.tutorialspoint.com/xml/xml_overview.htm)

JSON (http://www.json.org/)

JSON (https://developers.squarespace.com/what-is-json/)

CORS (https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS)

CORS (https://spring.io/understanding/CORS)

Cross-site scripting (https://www.acunetix.com/websitesecurity/cross-site-scripting/)

Cross-site scripting (https://en.wikipedia.org/wiki/Cross-site_scripting)

Same origin policy (https://www.w3.org/Security/wiki/Same_Origin_Policy)

JWT (https://jwt.io/introduction/)

Oauth (https://oauth.net/articles/authentication/)

Oauth and JWT (http://www.seedbox.com/en/blog/2015/06/05/oauth-2-vs-json-web-tokens-

comment-securiser-un-api/)

Horia Cucu, AVR Laboratory Guide

Speech Recording Web Service and Application

50

Eric Freeman & Elisabeth Robson, “Head First Design Patterns”, 2004, O'Reilly Media

Kathy Sierra, Bert Bates, “SCJP Sun Certified Programmer for Java 6 Study Guide”, 2008,

McGraw Hill Professional

