

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF ELECTRONICS, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY

AUTONOMOUS SYSTEM FOR PERFORMING DEXTEROUS,
HUMAN-LEVEL MANIPULATION TASKS AS RESPONSE TO

EXTERNAL STIMULI IN REAL TIME

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the Degree of

Engineer in the domain Technology and Telecommunication Systems

Study program: Telecommunications and Information Technologies

Thesis advisor(s): Student:

Prof. Corneliu BURILEANU, Ph. D. Ana-Antonia NEACȘU

Associate Prof. Horia CUCU, Ph. D.

Bucharest
2017

Copyright © 2017, Ana-Antonia NEACȘU

All rights reserved.

The author hereby grants to SpeeD Laboratory and UPB permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part.

TABLE OF CONTENTS

Table of Contents .. 9

List of Figures 11

List of Tables 13

List of Abbreviations .. 15

CHAPTER 1 Introduction ... 17

1.1 Thesis Motivation ... 17

1.2 Main objective .. 18

1.3 Specific objectives.. 18

CHAPTER 2 Software technologies ... 21

2.1 Kinova – Jaco 2 robotic arm ... 21

2.1.1 The arm ... 22

2.1.2 The gripper .. 24

2.1.3 The controller .. 25

2.1.4 The Joystick .. 27

2.2 Kinect module .. 27

2.2.1 The color camera... 29

2.2.2 IR emitter and IR depth sensor ... 29

2.2.3 Tilt Motor .. 30

2.2.4 Microphone array .. 30

2.2.5 LED ... 31

2.3 Hardware .. 31

2.3.1 Arduino Uno ... 31

2.3.2 Servo motor DS04-NFC ... 33

2.3.3 Hall Sensor A44 E .. 34

CHAPTER 3 Image Processing... 35

3.1 Image caption ... 36

3.2 Shape recognition And Color Detection – method I .. 36

3.2.1 OpenCV .. 36

3.2.2 HSV conversion .. 37

3.2.3 Edge detection ... 38

3.2.4 Triangle detection ... 38

3.2.5 Color detection .. 39

3.3 Shape recognition And Color Detection – method II .. 39

3.3.1 Data Acquisition ... 40

3.3.2 Parameters ... 40

3.3.3 K-means .. 41

CHAPTER 4 Solving Algorithm... 43

4.1 Solving methods ... 43

4.2 Pyraminx moves ... 44

4.3 Solving algorithm - centers and corners .. 46

4.4 Solving algorithm – Top face ... 47

4.4.1 Get Piece on the second Layer .. 47

4.4.2 Solving the top face .. 50

4.5 Solving algorithm – Placing the lower edges ... 53

CHAPTER 5 Performing the Moves ... 57

5.1 General description .. 57

5.2 Movement implementation .. 58

5.2.1 Home position ... 58

5.2.2 Move_BigCorner1 .. 59

5.2.3 Move_BigCorner2 .. 60

5.2.4 Move_BigCorner3 .. 61

5.2.5 Rotate_Layer ... 63

5.2.6 Move_SmallCorner ... 63

CHAPTER 6 Conclusions and future steps ... 65

6.1 General Conclusions .. 65

6.2 Personal Contributions ... 66

6.3 Future Work ... 66

References 67

LIST OF FIGURES

Figure 1.1 Implementation steps ... 18

Figure 2.1 Jaco Features [1] .. 21

Figure 2.2 Jaco – Arm specifications [2] .. 22

Figure 2.3 Jaco – Controller Specifications [2] .. 25

Figure 2.4 Angular Mode [1] .. 25

Figure 2.5 Cartesian Mode [2] .. 26

Figure 2.6 Jaco – Joystick Specifications [2].. 27

Figure 2.7 Jaco – Control Mode [2] .. 27

Figure 2.8 Kinect Architecture [12] .. 28

Figure 2.9 Kinect Architecture – reality ... 28

Figure 2.10 Sensitivity range of the Kinect camera [11] .. 29

Figure 2.11 IR Emitter and Depth sensor [12] .. 29

Figure 2.12 Depth image... 30

Figure 2.13 Titled motor [12] ... 30

Figure 2.14 Microphone array [12] ... 31

Figure 2.15 Arduino Uno architecture .. 32

Figure 3.1 Data acquisition ... 35

Figure 3.2 Servo-motor ... 36

Figure 3.3 Shape recognition .. 36

Figure 3.4 HSV Representation .. 37

Figure 3.5 Canny Edge detection .. 38

Figure 3.6 Triangle detection .. 39

Figure 3.7 Train images- Green and Blue ... 40

Figure 3.8 K-means Output... 41

Figure 4.1 Pyramid Faces and moves ... 45

Figure 4.2 Position of the pieces ... 46

Figure 4.3 Centers and Corners .. 47

Figure 4.4 Sides .. 47

Figure 4.5 Get Piece on Layer 2 – side [1][1]... 49

Figure 4.6 Get Piece on Layer 2 – side [1][2] .. 49

Figure 4.7 Get Piece on Layer 2 – side [1][3] .. 50

Figure 4.8 Fundamental sets 1 and 2 .. 50

Figure 4.9 Fundamental sets 3 and 4 .. 51

Figure 4.10 Get side [1][1] in place .. 52

Figure 4.11 Get side [1][2] in place .. 52

Figure 4.12 Get side [1][3] in place .. 53

Figure 4.13 Case A ... 53

Figure 4.14 Case B ... 54

Figure 4.15 Case D ... 55

Figure 5.1 Home position ... 59

Figure 5.2 Move_BigCorner1 ... 60

Figure 5.3 Move_BigCorner2 ... 61

Figure 5.4 Move_BigCorner3 ... 62

Figure 5.5 Rotate_Layer ... 63

Figure 5.6 Move_SmallCorner ... 64

LIST OF TABLES

Table 2.1 Jaco2 - Arm Specifications [2] .. 23

Table 2.2 Jaco – Actuators and Fingers Specifications [2] ... 24

Table 2.3 Jaco K 3 - Gripper Specifications [2] ... 24

Table 2.4 Jaco Controller Specifications [2] ... 26

Table 2.5 Arduino Uno- Technical Specifications [3] .. 32

Table 2.6 DS04 – NFC Servo 360 - Technical Specifications [11] .. 33

Table 2.7 Hall Module Sensor A44E - Technical Specifications [10] ... 34

Table 3.1 RGB Representation versus HSV Representation .. 38

Table 5.1 Home position parameters .. 58

Table 5.2 Move_BigCorner1 .. 59

Table 5.3 Move_BigCorner2 .. 61

Table 5.4 Move_BigCorner3 .. 62

Table 5.5 Rotate_Layer ... 63

Table 5.6 Move_SmallCorner ... 64

LIST OF ABBREVIATIONS

AC – Alternative Current

API – Application Programming Interface

CAD – Computer-aided design

DC – Direct Current

FPS – Frames per second

FTDI – Future Technology Devices International

GND – Ground

HSV – Hue Saturation Value

ICSP – In Circuit Serial Programming

IR - Infrared

L4E – Last Four Edges

LED – Light-emitting Diode

LL – Last layer

MISO – Master In Slave Out

MOSI – Master Out Slave In

NUI – Natural User Interface

OKA – Oriented Keyhole Algorithm

PWM – Pulse Width Modulation

RGB – Red Green Blue

SCK – Serial Clock

SD – Standard Deviation

SDK – Software Development Kit

SPI – Serial Peripheral Interface Bus

SS – Slave Select

USB – Universal Serial Bus

ZIF – Zero Insertion Force

Thesis Tile

17

CHAPTER 1
INTRODUCTION

1.1 THESIS MOTIVATION

Nowadays, society tries to accept and integrate persons with various disabilities. They comprise

an estimated population of one billion people globally, of whom eighty percent live in developing

countries and are overrepresented among those living in absolute poverty. A first step in the

integration process is to find a way to improve the quality of their life.

 The core of this project is the robotic arm created by Kinova robotics to aid people who are

battling disabilities. For someone with severe motion disability some trivial tasks, such as picking

up a glass of water or opening a door may represent a great challenge. In this context, it is imposed

to find an efficient solution to give these people some degree of independence. Hence, the need to

develop a system capable of performing human level motions with as less outside intervention as

possible.

This system has the purpose of helping people with different types of conditions: traumatic

injuries, such as spinal cord injuries, lost or damaged limbs, diseases and Congenital Conditions,

like Cerebral Palsy, Muscular Dystrophy, Multiple Sclerosis, Spina Bifida, ALS (Lou Gehrig’s

Disease), Arthritis, Parkinson’s disease, Essential Tremor etc.

Thesis Tile

18

1.2 MAIN OBJECTIVE

In this context, this thesis aims to create an autonomous system, capable to perform a given task

without any kind of human intervention, with human-like dexterity, as response to external

stimuli, in real time.

To prove this point, this project implies a system that solves automatically, a complex puzzle,

namely a Pyraminx puzzle (Rubik’s pyramid) using the robotic arm developed by Kinova

Robotics. The system is composed of three important parts: the first’s one main purpose is to

capture real time images from the Kinect sensor and to process them into input data for the second

module. The second part, the core of the system, performs all necessary computations in order to

make a movement decision based on the available data. The third part represents an interface with

the robotic arm, transposing the decision from the second block into pure movement data, passed

to Kinova’s controller.

The steps required to complete these objectives are listed below:

Figure 1.1 Implementation steps

1.3 SPECIFIC OBJECTIVES

• Developing an algorithm that solves the Pyraminx using the robotic arm – All the existing

methods for solving such puzzles involve the use of both hands. Since I only have access

to one robotic hand, I create my own custom method that can be performed by the robot.

My purpose is to completely solve this puzzle using a robot, not necessary in the optimal

way possible or in the shortest period.

• Programming the Robot to automatically solve the Pyraminx – Using data received from

the algorithm, the arm performs the necessary actions to solve the puzzle

• Creating a stand for the pyramid – the puzzle must stay in a position so that the robot can

reach and rotate its pieces.

• Capturing images with a Kinect module – Images represent the real stimuli, and based on

them the algorithm will find the solution of the puzzle.

• Implementing solution to get images of all the faces of the pyramid without manually

moving camera to different angles – My main objective is to create an autonomous system

without any human intervention

• Finding a method to determine the color of every piece of the puzzle – The solution of the

puzzle implies that all the pieces from a certain face match in color, so the way the colors

are arranged represent the input data for the solving algorithm.

Thesis Tile

19

The thesis is organized in six chapters, as follows:

Chapter 1 presents the motivation, the objectives and the outline of this thesis. In Chapter 2 are

detailed the hardware and software technologies used to develop this project. Chapter 3 is the first

chapter that illustrates contributions of the author of the thesis. It describes the data acquisition

process and the image processing methods I have approached. Chapter 4 deals with the

development of an algorithm that solves the Pyraminx puzzle, explaining each required step. In

Chapter 5 focuses on the implementation the actual moves of the robotic arm. Finally, Chapter 6

summarizes the main conclusions of the thesis and underlines the author’s contributions.

Thesis Tile

20

Thesis Tile

21

CHAPTER 2 SOFTWARE

TECHNOLOGIES

2.1 KINOVA – JACO
2
 ROBOTIC ARM

Kinova designs and manufactures robotics platforms and components that are simple, efficient

and safe under two business units: Assistive Robotics which empowers people with disabilities to

push beyond their current boundaries and limitations while Service Robotics empowers people in

industry to interact with their environment more efficiently and safely. [1]

For this project, I use the Jaco2 model. Launched in 2010, Jaco is a six-axis robotic manipulator

arm with a three-fingered hand. This robot significantly improves the lives of persons with reduced

mobility by assisting anyone with an upper body mobility impairment to perform complex actions.

The assistive robot was immediately adopted by many of those with upper body disabilities and

Jaco soon made a name for itself. The features of the robot are listed below:

Figure 2.1 Jaco Features [1]

Thesis Tile

22

• 6 movements in total

• Carbon fiber structure

• Lightweight

• Weather resistant

• Reach the floor with standard installation on wheelchair

• Option of use 2 or 3 fingers

• High friction rubber pads make grasping objects easier

• Optimized for activities of daily living

• Flexible fingers

• Adaptability to shape and size

• Current sensors and limitation

The arm can be controlled with the help of a joystick, but it can be also programmed, using an

SDK provided by the manufacturer, for C++ programming language.

2.1.1 The arm

Figure 2.2 Jaco – Arm specifications [2]

Thesis Tile

23

 Table 2.1 Jaco2 - Arm Specifications [2]

Specifications

Total weight 4,4 Kg

Materials Carbon fiber (links), Aluminum

(actuators)

Payload 2.6 Kg (mid-range continuous

payload capabilities)

2.2 Kg (full-reach peak/temporary

payload capabilities)

Reach 90 cm

Joint Range After Start-Up (Software

Limitation)

±27.7 turns

Maximum Linear Arm Speed 20 cm/s

Power Supply Voltage 18 to 29 VDC

 Average Power 25 W (5W in STANDBY)

Peak Power 100 W

Communication Protocol RS485

Communication Cables 20 pins flat flex cable

2 Expansion Pins on Communication

Bus

yes

Water Resistance IPX2

Operating Temperature -10 °C to 40 °C expected

Jaco² enables users to interact with their environment with complete safety, freedom, and

effectiveness. The arm moves smoothly and silently with unlimited rotation on each axis.

The axes are aluminum compact actuator discs (CADs) of a unique design. Each Jaco² robot arm

consists of 2 distinct sets of 3 identical, interchangeable, and easy-to-replace CADs linked

together by a ZIF (zero insertion force) cable.

Its main structure, entirely made of carbon fiber, delivers optimal robustness and durability as well

as a cutting-edge look-and-feel. The arm is mounted on a standard aluminum extruded support

structure that can be affixed to almost any surface.

Each actuator has a wide range of degrees that they can move freely, the motors having continuous

rotation. The only limitations come from the architecture of the hand (some actuators cannot rotate

completely). The values are listed in the table below:

Thesis Tile

24

Table 2.2 Jaco – Actuators and Fingers Specifications [2]

Actuators and Fingers Specifications

 Minimum Position Maximum Position

Actuator 1 -1000° -1000°

Actuator 2 -1000° -1000°

Actuator 3 -1000° -1000°

Actuator 4 -1000° -1000°

Actuator 5 -1000° -1000°

Actuator 6 -1000° -1000°

Finger 1 posSwitch posSwitch + 60,010

Finger 2 posSwitch posSwitch + 60,0

Finger 3 posSwitch posSwitch + 60,0

2.1.2 The gripper

Table 2.3 Jaco K 3 - Gripper Specifications [2]

Gripper Specifications

Fingers Quantity 3

Actuation System Under Actuated

Actuators One Per Finger

Actuators Sensors Current

Temperature

Rotational Encoder

OPENING (Fingertip) 175 Mm

Min Object Diameter for Cylindrical

Grip

45 Mm

Max Object Diameter for Cylindrical

Grip

100 Mm

MIN OBJECT DIAMETER FOR

OBJECT-ON-THE-GROUND Pinch

8 Mm

Total Weight 727 G

Gripping Force

3 Fingers 40 N

2 Fingers 25 N

Opening or Closing Travel Time 1.2 Sec

Operating Temperature -10 °C To 40 °C

Thesis Tile

25

The gripper consists of 2 or 3 underactuated fingers that can be individually controlled. Their

unique bi-injected plastic structure endows them with great flexibility and unrivalled grip. In

contrast to the previous version, Jaco² has a slimmer gripper and a friction pad which allows the

fingers to adjust to any object whatever its shape; thus, they can gently pick up an egg, or firmly

grasp a jar.

2.1.3 The controller

Figure 2.3 Jaco – Controller Specifications [2]

Jaco² can be controlled with a computer (see the “Software” section below) or Kinova’s 3-axis, 7-

button joystick. The control is intuitive and allows users to navigate using 3 different modes:

translate, rotate and grip. It offers two types of control: Angular control and Cartesian control. The

first one implies moving each actuator separately as shown in the image bellow:

Figure 2.4 Angular Mode [1]

 Cartesian Mode is characterized by a more complex movement, in which one can control the end

effector of the robotic arm through the established kinematics, on three axes as bellow:

Thesis Tile

26

Figure 2.5 Cartesian Mode [2]

 For this project, I used the angular mode, because the precision the movements was higher.

 Also, Kinova’s Intelligent Singularity Avoidance System always keeps Jaco² safely away from

unwanted locations. JACO² is highly flexible and can adapt to all user needs. The detailed

specifications are listed in the table below:

Table 2.4 Jaco Controller Specifications [2]

Controller Specifications

Joystick 1 Mbps

CANBUS

Power Supply 18 To 29 VDC

USB 2.0 12 Mbps

Ethernet Not Available

Control System Frequency 100 Hz (High Level

Api)

500 Hz (Low Level

API)

CPU 360 Mhz

SDK

APIs High and Low Level

Compatibility Windows, Linux

Ubuntu & ROS

Port USB 2.0

Programming Languages C++

Thesis Tile

27

2.1.4 The Joystick

The Kinova’s standard controller is a 3-axis joystick mounted on a support which includes 5

independent push buttons and 4 auxiliary inputs (on the back side).

Figure 2.6 Jaco – Joystick Specifications [2]

This Joystick allows the users to control the arm in two different operation modes Angular Mode

and Cartesian Mode. In Cartesian mode, the arm may be manipulated using 2 or 3 axes.

Figure 2.7 Jaco – Control Mode [2]

2.2 KINECT MODULE

The Kinect module represents a motion-sensing device, which was originally developed for the

Xbox 360 gaming console. One of the distinguishing factors that make this device stand out among

others in this genre, is that it is not a simple hand-controlled device, instead it can detect body

position, motion and voice. Kinect provides a Natural User Interface (NUI) for interaction using

body motion and gesture, as well as spoken commands. The controller that was once the heart of

a gaming device, finds itself redundant in this Kinect age. For the latest releases of the Kinect, the

controller is represented by the user itself.

This module has ushered a new revolution in the gaming world, and it has completely changed

the perception of a gaming device. Since its inception, it has gone on to shatter several records in

the gaming hardware domain. [12] It has now outgrown its Xbox roots and the Kinect sensor is

no longer limited to only gaming.

Thesis Tile

28

 Kinect for Windows is a specially designed PC-centric sensor that helps developers to write their

own code, creating real-life applications with human gestures and body motions. With the launch

of the PC-centric Kinect for Windows devices, interest in motion-sensing software development

has scaled a new peak. Understanding the Kinect Device [12]. As Kinect blazed through the

market in such a short span of time, it has also created a necessity of resources that help people

learn the technology in an appropriate way. As Kinect is still a relatively new entry into the market,

the resources for learning how to develop applications for this device are quite few. The Kinect

module can be programed in C# and can interact with other devices using Kinect for Windows

Software Development Kit (SDK).

Kinect is a horizontal device with depth sensors, color camera, and a set of microphones with

everything secured inside a small, flat box. The flat box is attached to a small motor working as

the base that enables the device to be tilted in a horizontal direction. The Kinect sensor includes

the following key components:

• Color camera

• Infrared (IR) emitter

• IR depth sensor

• Tilt motor

• Microphone array

• LED

Apart from the previously mentioned components, the Kinect device also has a power adapter for

external power supply and a USB adapter to connect with the computer. The following figure

shows the above-mentioned components of the Kinect sensor:

Figure 2.8 Kinect Architecture [12]

The following image shows how the Kinect looks in real-life, without the outer case:

Figure 2.9 Kinect Architecture – reality

Thesis Tile

29

2.2.1 The color camera

The camera is used to capture and stream the color video data. Its function is to detect the primary

colors form the source (RGB – Red, Green, Blue). It returns data stream consisting in a succession

of image frames. The Kinect color stream supports a speed of 30 FPS at a resolution of 640 x 480

pixels. The value of FPS depends on the image resolution: the maximum resolution is 1280 x 960

at up to 12 FPS.

The viewable range for the Kinect cameras is 43 degrees vertical by 57 degrees horizontal, as

shown below:

Figure 2.10 Sensitivity range of the Kinect camera [11]

2.2.2 IR emitter and IR depth sensor

The depth is represented by an IR emitter and an IR depth sensor working simultaneous. The

Emitter is a projector of infrared light in a pseudo-random dot pattern over all the objects in front

of it. These dots are invisible to humans, but they can provide depth information to the IR depth

sensor. The dotted light reflects off different objects, and the IR depth sensor reads them from the

objects and converts them into depth information by measuring the distance between the sensor

and the object from where the IR dot was read [12]. The following figure shows how the overall

depth sensing looks:

Figure 2.11 IR Emitter and Depth sensor [12]

Thesis Tile

30

Figure 2.12represents the image captured using this sensor:

 Figure 2.12 Depth image

2.2.3 Tilt Motor

The base and the body parts of the Kinect sensor are connected to a motor used to change the

camera angles. The motor can be tilted vertically up to 27 degrees, so the Kinect sensor's angles

can be shifted upwards or downwards by 27 degrees. The following figure shows an illustration

of the angle being changed when the motor is tilted:

Figure 2.13 Titled motor [12]

2.2.4 Microphone array

The microphone array consists in four different microphones placed horizontally, three of them

on the right side and one on the left side.

The purpose of the microphone array is not to just let the Kinect device capture the sound, but to

also locate the direction of the audio wave. The main advantages of having an array of

microphones over a single microphone are that capturing and recognizing the voice is done more

effectively with enhanced noise suppression, echo cancellation, and beam-forming technology.

This enables Kinect to be a highly bidirectional microphone that can identify the source of the

sound and recognize the voice irrespective of the noise and echo present in the environment:

Thesis Tile

31

Figure 2.14 Microphone array [12]

2.2.5 LED

The LED is placed in between the camera and the IR projector. It is used for indicating the status

of the Kinect device. The green color of the LED indicates that the Kinect device drivers have

been loaded properly. If you are plugging Kinect into a computer, the LED will light up in green

once your system detects the device.

2.3 HARDWARE

2.3.1 Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal

oscillator, a USB connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a computer with a USB

cable or power it with a AC-to-DC adapter or battery to get started. The Uno differs from all

preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the

Atmega8U2 programmed as a USB-to-serial converter.

The Arduino Uno can be powered via the USB connection or with an external power supply. The

power source is selected automatically. External (non-USB) power can come either from an AC-

to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-

positive plug into the board's power jack. Leads from a battery can be inserted in the GND and

VIN pin headers of the Power connector. [3]

Thesis Tile

32

Table 2.5 Arduino Uno- Technical Specifications [3]

Technical Specifications

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide

PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by

bootloader

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 5V, the

board may be unstable. If using more than 12V, the voltage regulator may overheat and damage

the board. The recommended range is 7 to 12 volts.

Figure 2.15 Arduino Uno architecture

Thesis Tile

33

The power pins are as follows:

• VIN - The input voltage to the Arduino board when it's using an external power source

(different than 5 volts from the USB connection or other regulated power source)

• 5V - The regulated power supply used to power the microcontroller and other components

on the board.

• 3,3V - A 3.3-volt supply generated by the on-board regulator. Maximum current draw is

50 mA.

• GND - Ground pins.

All 14 digital pins on the board can be used as both input or output and operate at 5V. Each pin

receives a maximum on 40 mA and has an internal pull-up resistor (disconnected by default) of

20-50 kOhm. Some of the pins have specialized functions:

• Serial: 0 (RX) and 1 (TX) - Used to receive (RX) and transmit (TX) TTL serial data.

These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial

chip.

• External Interrupts: pins 2 and 3 - These pins can be configured to trigger an interrupt

on a low value, a rising or falling edge, or a change in value.

• Pins 3, 5, 6, 9, 10, and 11 - 8-bit PWM.

• SPI: Pins 10(SS), 11(MOSI), 12(MISO), 13(SCK) - These pins support SPI interfacing.

• LED Pin 13 - There is a built-in LED connected to the digital Pin 13. When the pin is set

on HIGH value, the LED is on, when the pin is LOW, the LED is off. [3]

2.3.2 Servo motor DS04-NFC

The Servo DC gear motor is a 360-degree continuous rotation motor which can rotate

continuously with both forward & backward. This motor has high torque and it is easy to interface

it with any type of microcontroller. [11]

The Features of DS04-NFC Servo 360-Degree Continuous Rotation Servo DC Gear Motor are

listed in the table below:

Table 2.6 DS04 – NFC Servo 360 - Technical Specifications [11]

Technical Specifications

Model DS04-NFC

Weight 38g

Dimensions 40.8 x 20 x 39.5 mm

Torque 5.5kg/cm (at 4.8 V)

Speed 0.22sec/60 °C (at 4.8V)

Operating voltage 4.8v-6v

Operating temperature 0 °C -60 °C

Current 1000mA

Thesis Tile

34

2.3.3 Hall Sensor A44 E

A Hall effect sensor is a transducer that varies its output voltage in response to a magnetic field.

Hall effect sensors are used for proximity switching, positioning, speed detection, and current

sensing applications. The stand of the Pyraminx has three magnets attached to it, 120 ° apart from

each other. The motor stops when the magnet passes by the Hall sensor and the Kinect module

takes a picture.

The Hall Module Sensor A44E can deliver an analogic or digital output, using LM393 comparator

and the threshold voltage can be adjusted.

Table 2.7 Hall Module Sensor A44E - Technical Specifications [10]

 Technical Specifications

Supply Voltage 4.5-24 [V]

Output Saturation Voltage 400 mV

Output Leakage Current 10 µA

Supply Current 9.0 mA

Output Rise Time 2.0 µs

Output Fall Time 2.0 µs

Thesis Tile

35

CHAPTER 3 IMAGE

PROCESSING

This step represents the data acquisition part of the project. The Kinect module captures some

images that are later processed to find the color of all the pieces of the Pyraminx. This module

returns a matrix of colors that serves as input for the solving algorithm.

The image processing block implies the following steps:

Figure 3.1 Data acquisition

Image
Caption

Shape
recognition

Color
detection

Thesis Tile

36

3.1 IMAGE CAPTION

To be able to create a matrix that contains all the colors from the pyramid, it is not enough to have

only one image of the puzzle. As my objective is to create an autonomous system I didn’t consider

the option of moving the Kinect sensor manually to take pictures from different angles. The

solution that I’ve implemented consists in rotating the stand that is holding the pyramid using a

servo-motor and a Hall sensor connected to an Arduino board, as seen in Figure 3.2.

The system works as follows: the Kinect sensor takes a picture, the servo motor rotates the

pyramid at 120°, then a second photo is taken. To be able to obtain all the colors from the puzzle,

three photos are needed, one for every lateral face (the top face appears in all of them).

The electric scheme is shown below:

Figure 3.2 Servo-motor

3.2 SHAPE RECOGNITION AND COLOR DETECTION – METHOD I

Object detection and segmentation is the most important and challenging fundamental task of

computer vision. It is a critical part in many applications such as image search, scene

understanding etc. However, it is still an open problem due to the variety and complexity of object

classes and backgrounds.

The images obtained at the previous step must be processed, to extract the color of every triangle.

To do that, the first method I tried was a shape recognition algorithm that detects the vertexes of

all the triangles from the image.

The shape recognition is implemented using OpenCV library and implies the following steps:

Figure 3.3 Shape recognition

3.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine

learning software library. This application was built to provide a common infrastructure for

computer vision applications and to accelerate the use of machine perception in the commercial

Thesis Tile

37

products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and

modify the code. [9]

The library has more than 2500 optimized algorithms, which includes a comprehensive set of both

classic and state-of-the-art computer vision and machine learning algorithms. These algorithms

can be used to detect and recognize faces, identify objects, classify human actions in videos, track

camera movements, track moving objects, extract 3D models of objects, produce 3D point clouds

from stereo cameras, stitch images together to produce a high resolution image of an entire scene,

find similar images from an image database, remove red eyes from images taken using flash,

follow eye movements, recognize scenery and establish markers to overlay it with augmented

reality etc.

For my project, I used this library to detect the edges of all the triangles on each face of the

Pyraminx, as well as to recognize the colors of the pieces.

3.2.2 HSV conversion

HSV is one of the most used cylindrical-coordinate representation of points in a RGB model. This

kind of representation implies a rearrangement of the geometry of the RGB to be more intuitive

and perceptually relevant than the Cartesian representation. HSV, along with HSL were developed

mainly for computer graphics applications, but nowadays are used in color pickers, image editing,

image analysis and computer vision.

In HSV, the angle around the vertical axis represents the “hue” component, the distance from the

axis corresponds to "saturation", and the distance along the axis corresponds "value" or

"brightness".

Figure 3.4 HSV Representation

The justification for choosing the HSV representation resides in the way the colors are distanced.

Pyraminx colors are not corresponding to the ones obtained by the standard subtractive synthesis.

The green is not exactly the basic, standard green, therefore using the RGB Representation, the

means obtained for yellow and green will be very narrow and overlapping each other as values.

The visual system of the Kinect is not as sensitive as it would be required to avoid misinterpreting

of the pieces. After studying the options, I considered as a pertinent solution the HSV

Representation. Since the coordinates are cylindrical instead of Cartesian, the confidence means

will be broader and more reliable. For a better understanding, in what follows, Table 3.1 had been

drafted to illustrate the parallel between the RGB and HSV Representations.

Thesis Tile

38

Table 3.1 RGB Representation versus HSV Representation

 RGB Representation HSV Representation

Color

quantity

Red Green Blue Hue Saturation Value

Red Δ 130-255 0-162 0-155 0-9 / 151-180 1.00 1.00

Green Δ 0-50 150-255 0-50 46-100 0.875 0.795

Blue Δ 0-50 0-100 150-255 101-150 0.887 0.918

Yellow Δ 0-207 200-255 0-150 16-45 0.467 0.998

3.2.3 Edge detection

The purpose of this step is to find the contour of the Pyraminx in the image taken by the Kinect,

so the task of triangle detection becomes easier. For this, I used Canny Edge Detection algorithm,

which is a very precise technique to extract useful structural information from different vision

objects. The algorithm implies several steps:

• Noise reduction – edge detection is very susceptible to noise, so the first step is to remove

it with a 5x5 Gaussian filter.

• Finding Intensity Gradient of the Image (G) – The image is further filtered with a Sobel

Kernel in both vertical and horizontal directions to obtain the first derivatives in each

direction (Gx, Gy)

𝐺 = √𝐺𝑥2 + 𝐺𝑦2

𝜃 = 𝑡𝑎𝑛−1 (
Gy

Gx
)

• Non-maximum Suppression - After getting gradient magnitude and direction, a full scan

of image is done to remove any unwanted pixels which may not constitute the edge

• Hysteresis Thresholding – This is the decision step, which compares the gradient with a

threshold value to determine the edges. [9]

Figure 3.5 Canny Edge detection

3.2.4 Triangle detection

Using a shape approximation algorithm, I detect the vertexes of every triangle from the Pyraminx

and compute the center of gravity for each of them. Around that point, I select a square of pixels

Thesis Tile

39

on which I perform color detection, comparing the mean hue value of pixels with the intervals

from Table 3.1. The triangle detection algorithm may return some vertexes twice, and the

duplicate triangles must be filtered out. This is done by imposing the condition that all the triangles

must be disjunctive.

Figure 3.6 Triangle detection

3.2.5 Color detection

After the previous step is performed, color detection becomes a simple task: using the coordinates

of the three vertexes of all the triangles, we can find the middle point of each of them.

We perform color detection on a small area around the middle of each triangle, using the HSV

conversion. Finally, after all the processing the program will return a 5x12 color matrix.

Each row of the matrix represents a row of colors on the pyramid, and each 3 rows form a face of

the puzzle. Here is an example for the top face. Each letter represents a color:

y 0 0 0 0

b y g 0 0

y r b b g

Using this method, I have obtained good results only in certain conditions: natural light and white

background. Because the colors of the puzzle are not matte, if there is too much light, it will be

reflected; in this case the recognition task becomes much more difficult and the error rate increases

significantly.

From experimental point of view, I have observed that this algorithm does not distinguish between

the yellow color of the triangle and the white contour of the Pyraminx, which lead to frequent and

significant errors in the recognition task, even in optimal light conditions. Hence, I decided to try

another method, presented the following sub-chapter.

3.3 SHAPE RECOGNITION AND COLOR DETECTION – METHOD II

To overcome the disadvantages from the previous method, I tried a totally different approach,

based on machine learning techniques, starting from the observation that, depending on the light

and angle, the colors of the pieces have very different properties, covering a wide range of shades.

So, for each color I defined several classes, to cover all the possibilities. The idea is to train a

system that can separate the colors form the Pyraminx, considering the colors to be discrete

random variables. The separation is done based on two parameters of the image: the mean and the

Thesis Tile

40

standard deviation. In this method, the whole image is analyzed. Afterwards, the color detection

is performed and the last step consists in shape recognition.

3.3.1 Data Acquisition

To apply such an algorithm, I needed a data base consisting in different images with the Pyraminx,

which I created using the Kinect Module. The data base contains 100 pictures of the puzzle, taken

in different light setup (natural light and different neon light). Next, I have separated all the pieces

from all the images based on their colors, using Paint.net, resulting in four images (one for each

color) containing all the useful information from the data base. This images were used for training

a system that discriminates colors. Figure 3.7 shows the training images for two colors.

Figure 3.7 Train images- Green and Blue

3.3.2 Parameters

As mentioned above, the color discrimination is made based on two parameters:

• Mean – the mean value is computed for each component of the RGB: Red mean, Green

mean and Blue mean for all the colored pixels from the training images and represents the

expected value of that set. More practically, the expected value of a discrete random

variable is the probability-weighted average of all possible values. In other words, each

possible value the random variable can assume is multiplied by its probability of occurring,

and the resulting products are summed to produce the expected value.

• Standard Deviation (SD)- is a measure that is used to quantify the amount of variation or

dispersion of a set of data. A low SD indicates that the data points tend to be close to the

mean of the set, while a high SD indicates that the data points are spread out over a wider

range of values. The standard deviation of a random variable, statistical population, data

set, or probability distribution is the square root of its variance. It is algebraically simpler,

though in practice less robust, than the average absolute deviation. A useful property of

the standard deviation is that, unlike the variance, it is expressed in the same units as the

data. There are also other measures of deviation from the norm, including average absolute

deviation, which provide different mathematical properties from standard deviation. [8] In

this case, to minimize the errors I imposed a maximum value for SD.

Thesis Tile

41

3.3.3 K-means

As a second method used for color recognition I approached the K-Means clustering algorithm.

This vector quantization process derived from the signal processing domain. In data mining the

method is very popular for cluster analysis. Parsing n observations into K groups named "clusters"

is made based on the proximity of the observation to the prototype of the array. This prototype is

a matrix for the cluster and its characteristics become object of comparison. The obtained space

that is populated with clusters is known as Voronoi space, and the clusters become Voronoi cells.

In computationally applications this method is very efficient. The algorithm needs initially random

established centroids and from this point on the process itself is iterative and consists in moving

the centroids. These centroids are chosen by color relevance. For the colors red, blue and green I

used 3 centroids for each class, and for yellow, four. K-means moves the centroids to the average

of the observations belonging to a cluster. By calculating the average of all the observations in the

cell, the prototype will be moved to that specific position. This process repeats itself until no more

moves are executed. The starting point can be inputted by the programmer or randomly chosen.

for proper results, the K-means algorithm is recommended to be run multiple times but with

different starting points to treat exhaustively each centroids path. The output is comparable based

on the clusters distortion. The distortion is the sum of the squared differences between each

observation and its allocated centroid. There is no perfect value for K but running it repeatedly

with different values and other starting point, the generated result is examined and the clusters

that don't make sense are determined. The K value also needs to be decreased if there are

unpopulated cells.

Using this method, I obtained better results than with the previous one, but still there were

problems regarding the recognition of the yellow color, because it reflected most of the light.

Hence, I decided to replace the shiny stickers from the Pyraminx with matte ones and use a uni-

color background when the Kinect module takes the pictures. This way, the color recognition

works perfectly, regardless the light conditions. Having a one-color background, the shape

detection task becomes trivial; I apply the triangle detection algorithm mentioned in section 3.2.4

and in this context, it works perfectly. The result is displayed in Figure 3.8:

Figure 3.8 K-means Output

Thesis Tile

42

Thesis Tile

43

CHAPTER 4 SOLVING

ALGORITHM

The Pyraminx is a complex puzzle in the shape of a regular tetrahedron, divided into 4 axial pieces,

6 edge pieces and 4 trivial tips. It can be twisted along its cuts to permute its pieces. The axial

pieces are octahedral in shape, and can only rotate around the axis they are attached to. The 6 edge

pieces can be freely permuted. The trivial tips are so called because they can be twisted

independently of all the other pieces, making them trivial to place in solved position. [5]

The purpose of the Pyraminx is to scramble the colors, and then restore them to their original

configuration.

4.1 SOLVING METHODS

There are many methods that can be used to solve the puzzle. Depending on what part one decides

to solve first, the methods can be split into two main groups:

• V-first methods - two or three edges are solved first, and then some specific algorithms

(LL algorithms) are applied to solve the rest of the pyramid

• Top-first methods - the top face, consisting in three edges around a corner, is solved first

and the remaining is solved using a set of algorithms, keeping the top block in place.

Common V-first methods:

Thesis Tile

44

a) Layer by Layer - In this method, a face is solved first. This implies that a layer is solved

as well. After that, the remaining puzzle is solved using algorithms particularly for this

method.

b) L4E- L4E – is like Layer by Layer, the only difference is that two edges are solved around

three centers.

c) Intuitive L4E – is the most advanced V-first method and requires a bigger amount of

visualization capability. There are no specific algorithms, cubers try to intuitively solve

each case by anticipating the movement of pieces.

Common Top-First methods:

a) One Flip - this method uses two edges around one center solved and the third edge flipped.

There are six possible cases after this step, for which different algorithms must be

executed. The third step involves using a common set of algorithms for all Top-First

methods, called Keyhole last layer, which involves 5 algorithms, four of them being the

mirrors of each other.

b) Keyhole- it uses two edges in the right place around one center and the third edge does not

match any color of the edge (i.e. it is not in the right place or is flipped). The centers of the

fourth color are then solved. The last step is solved using Keyhole last layer algorithms.

c) OKA- one edge is oriented around two edges in the wrong place, but one of the edges that

is in the wrong place belongs to the block itself. The last edge is found on the bottom layer

and a very simple algorithm is executed to get it in the right place, followed by keyhole

last layer algorithms.

All the methods described above have some advantages and disadvantages, depending on how the

pieces are distributed. Usually, professional cubers learn all the methods and while observing a

case, they decide which method best suits that case. [4]

4.2 PYRAMINX MOVES

For this thesis, I chose to implement my own method of solving the Pyraminx, which implies four

main steps that will be further explained in this paper:

• Step 1: get all centers in the correct position

• Step 2: get all corners in the correct position

• Step 3: solve the top face

• Step 4: solve the rest of the pyramid

 In order to permute all the pieces, a minimum of four moves that will be performed by the robotic

arm is required. Using only these moves in different combinations, one can solve the Pyraminx in

all situations. I defined the moves in only one direction, (clockwise for move 1 and 2 and counter-

clockwise for move 3); the reverse move is equivalent with two successive moves. For the

simplicity of the algorithms, I assigned a number to every face of the pyramid and to every move,

as shown in the figure below.

Thesis Tile

45

Figure 4.1 Pyramid Faces and moves

• Move 1: means that that the 4th face (green one), will go over the first one (yellow), the

second will go over the fourth, and the first over the second, like so:

4 1

2 4

1 2

• Move 2: following the same principle as above:

2 1

1 3

3 2

• Move 3: this time the move is counter clockwise:

4 1

3 4

1 3

• Move 4: represents the rotation of the first layer:

2 4

4 3

3 1

The first three moves represent permutations of the edges or corners, and the forth move means

the clockwise rotation of the top layer. To implement the algorithm, one must know how each

move affects the position of the pieces, in order to compute the necessary moves required to solve

the Pyraminx. To have complete information about every piece of the puzzle, I stored the

information regarding the position of every tringle in a three-dimensional vector, called fete

[faceNumber][LineNumber][ColumnNumber], where the lineNumber and columnNumber

represent the position of the piece and face number is pointing to a certain face as you can see in

the figure below.

Thesis Tile

46

Figure 4.2 Position of the pieces

The yellow face will be positioned on top, as in the image above, and the counting will start from

the top corner. For the remaining faces, the counting will start in the reverse way, beginning with

the biggest edge, as they would naturally be looked at.

4.3 SOLVING ALGORITHM - CENTERS AND CORNERS

The first step in solving the Pyraminx is to know, even if the pieces are scrambled, what color

corresponds to each face. There are two easy ways to figure out what is the color of one face: if

one can match three center pieces having the same color on one face, that is the color of the face.

The other solution is concentrating on the corner pieces. All three corner pieces from a face can

be positioned to match color, and that is the color of the face. [6]

For my project, the pyramid will always be placed in the stand with the yellow face on top, so the

face recognition step will be skipped. The second step is to correctly position the center pieces,

and that is done using a simple function. The verification must be done over just one face. If the

centers are correctly positioned on one face, all the other center pieces will be in place. The same

principle is applying also for corners.

After all the centers are in the right position, the task of matching the corners becomes very simple:

the corner color must match the one from the associated center. After this step is complete, the

pyramid should look like in Figure 4.3.

Thesis Tile

47

Figure 4.3 Centers and Corners

4.4 SOLVING ALGORITHM – TOP FACE

4.4.1 Get Piece on the second Layer

After the centers and the corners are in place, the next step is to put the rest of the yellow edge

pieces in their position. The algorithm for that is more complex and multiple possibilities must be

taken into consideration. There are 12 possible positions for a side edge piece, and only one of

them is the correct one. [7]

From this point on, since only side-edge pieces must be permuted, I redefined the moves presented

in section 4.2 moves only for the side-edge pieces, and will be called sides. Figure 4.4 shows how

the sides are numbered. The first number represent the face and the second the position. Each face

has three sides.

Figure 4.4 Sides

Theoretically, there are 12 different sides, but practically, two by two represent the same piece.

The connections between the sides are the following:

• side [1][1] = side [2][3];

• side [1][2] = side [3][3];

• side [1][3] = side [4][2];

Thesis Tile

48

• side [2][1] = side [4][1];

• side [2][2] = side [3][1];

• side [3][2] = side [4][3].

Using the sides, and considering the actual pieces, the moves can be redefined as:

• Move 1:

side [1][3] side [4][1]

side [1][1] side [4][2]

side [4][1] side [2][3]

side [4][2] side [2][1]

side [2][3] side [1][3]

side [2][1] side [1][1]

• Move 2:

side [1][2] side [2][3]

side [1][1] side [2][2]

side [2][3] side [3][1]

side [2][2] side [3][3]

side [3][1] side [1][2]

side [3][3] side [1][1]

• Move 3:

side [1][3] side [4][3]

side [1][2] side [4][2]

side [4][3] side [3][3]

side [4][2] side [3][2]

side [3][3] side [1][3]

side [3][2] side [1][2]

• Move 4:

 side [1][1] side [1][2]

side [1][2] side [1][3]

side [1][3] side [1][1]

side [3][3] side [4][2]

side [4][2] side [2][3]

side [2][3] side [3][3]

The first possibility that I am considering in this algorithm is the one in which the desired side is

placed on the top face, but not in the right position. In this case, the piece must be lowered on the

second layer, and later positioned correctly on the first layer. Depending on its position, a different

combination of moves is required to lower a certain piece. All the possible cases are illustrated

below, together with the set of moves required to move that piece, keeping the centers and the

Thesis Tile

49

corners in place. A number followed by the sign “ ‘ ”, means the counter direction move, or twice

the same move.

 Figure 4.5 Get Piece on Layer 2 – side [1][1]

Figure 4.6 Get Piece on Layer 2 – side [1][2]

Thesis Tile

50

Figure 4.7 Get Piece on Layer 2 – side [1][3]

4.4.2 Solving the top face

After all the sides are placed somewhere on the second layer, one can focus on solving the top

face. The goal is to position all the yellow sides in the right place, without changing the centers

and the corners, and of course without changing the position of the other sides from the top face

(otherwise this step will become an infinite loop). Because I have already eliminated five possible

positions (on the top layer), only six cases are left for each side.

For this step, it is useful to define some fundamental sets of moves, that will be used to move a

certain side into the right position. This moves, relative to Face 2 are described in the figure below:

Figure 4.8 Fundamental sets 1 and 2

Thesis Tile

51

Figure 4.9 Fundamental sets 3 and 4

With this fundamental sets, one can lift the yellow and red side from Face 2, to its correct position

on the top face. Applying the same principle, I was able to translate these sets in relation with the

other two faces as follows:

• Translation relative to Face 3:

 1 2

 4 4

 3 1

 2 3’

• Translation relative to Face 4:

 1 3’

 2 1

 3 2’

 4 4

Using the above fundamental moves and the respective translations, Face 1 can be solved entirely.

This step normally consists in six cases per side, but I also included here the case in which the

piece is reversed on its position, because it’s simpler to directly reverse the piece using a

fundamental move set, than to firstly lower it on the second layer and then put it back in the correct

position. This gives a total of seven cases per side. The moves combination is listed below for all

the sides.

Thesis Tile

52

Figure 4.10 Get side [1][1] in place

Figure 4.11 Get side [1][2] in place

Thesis Tile

53

Figure 4.12 Get side [1][3] in place

4.5 SOLVING ALGORITHM – PLACING THE LOWER EDGES

After the top piece is solved, there are only three lower edges that can be out of place. Depending

on their position, four different cases can occur:

• Case A: In the most fortunate case, after solving the top face, all the lower edge pieces are

in the right place and the pyramid is solved.

Figure 4.13 Case A

Thesis Tile

54

• Case B: one edge piece is in the correct position and the other two need to be flipped.

There are three possible scenarios:

Figure 4.14 Case B

• Case C: one edge piece is wrong and the other two have one color that lines up with the

adjoining side. To determine this case, it is enough to impose some simple conditions as

follows:

side [2][2] ≠ red and side [3][1] ≠ blue – case B1;

side [2][1] ≠ red and side [4][1] ≠ green – case B3;

side [3][2] ≠ blue and side [4][3] ≠ green – case B2.

 In this case, one must apply the same algorithm as in case B, but the result won’t be the

solved pyramid, instead it will look like a Case D.

• Case D: All three edge pieces are completely wrong but when you turn the top corner, they

will line up with the bottom perfectly. There are two possibilities in this scenario, as shown

in the figure below, depending on the direction, the edges must be changed.

Thesis Tile

55

Figure 4.15 Case D

Using the algorithms described above, the three remaining edges will be placed in the correct

position, without altering the top face. The pyramid is now solved.

Thesis Tile

56

Thesis Tile

57

CHAPTER 5 PERFORMING

THE MOVES

5.1 GENERAL DESCRIPTION

This part represents the interface with the robotic arm, transposing the set of movements

computed by the algorithm into pure movement data, passed to the Kinova’s controller. The

input will consist in a string of numbers, each number being corelated with one of the four

moves.

Since all the moves are complex and require high precision, the position of all the actuators are

updated during a move, so the action is smooth and as natural as possible. The actual programming

of the robotic arm requires two steps:

• Manipulate the arm using the joystick in angular mode as specified in Chapter 2. I firstly

performed the movement controlling the arm with the joystick and record the position

(angles) of all the actuators in different points.

• Program the hand to automatically perform the action, using the PointToSend function

(from Kinova.dll), which receives as parameter an angle (how many degrees the actuator

rotates from its previous position). For the movement to look natural and coherent, the

actuators are updated at different moments of time.

Thesis Tile

58

5.2 MOVEMENT IMPLEMENTATION

To completely solve the Pyraminx, five complex moves are required: Rotate_Layer,

Move_BigCorner1, Move_BigCorner2, Move_BigCorner3, Move_SmallCorner. The first for

moves correspond with the moves defined in Chapter 4 as follows:

• Move_BigCorner1 Move 1

• Move_BigCorner2 Move 2

• Move_BigCorner2 Move 3

• Rotate_Layer Move 4

• Move_SmallCorner Represents the rotation of the corner facing the robotic arm.

5.2.1 Home position

For each move, the arm starts from a default initial position called home position, having the

following parameters:

Table 5.1 Home position parameters

Home position parameters

Actuators Degrees (°)

Actuator 1 275.29

Actuator 2 167.39

Actuator 3 57.13

Actuator 4 241.02

Actuator 5 82.7

Actuator 6 75.75

Finger 1 0

Finger 2 0

Finger 3 0

The picture below shows the initial position of the arm:

Thesis Tile

59

Figure 5.1 Home position

5.2.2 Move_BigCorner1

 Starting from Home position, this move rotates the big corner placed on the right side of the

robotic arm. This is the most difficult move I’ve implemented, because of the relative position

between the arm and the puzzle. The final position of the actuators was experimentally found,

using the joystick and the monitor function of Kinova Development Center API. This values

represent the final position of the robot for this move and their values are listed in the table below.

By subtracting this new coordinates of each actuator from the values from home position, I

deduced how many degrees each actuator must rotate, which is the parameter I need in my code.

Table 5.2 Move_BigCorner1

Actuators Final position (°) Relative difference (°)

Actuator 1 234.49 -40.8

Actuator 2 285.09 117.7

Actuator 3 233.6 176.47

Actuator 4 122.93 -188.09

Actuator 5 181.09 98.39

Actuator 6 -390.55 -> -30.55 -338.45 -> 21.55

Finger 1 4776 -

Finger 2 4788 -

Finger 3 4800 -

Thesis Tile

60

The fingers positions are updated using only a number between [0;6000], 0 meaning the fingers

are fully opened, and 6000 meaning they are fully closed. After the robot reaches this position,

changing the value of the Actuator 6 with -121.34 ° (using the same principle as above: find with

the joystick the new final position of Actuator 6 and subtract from it the previous value), the robot

performs Move 1 from Chapter 4. After the action is completed, the hand returns to Home position.

Since Actuator 6 has a range of [-1000 ° - +1000 °], it can rotate more than a full circle. So, the

value -390.55 ° can be reduced to the first quadrant: -390.55° + 360 ° = -33.55 °. Obviously, the

sign of the angle dictates the direction of the rotation. I chose the order in which the actuators

move so that the arm does not interact with the stand or the Kinect module. The image below

shows the position of the arm:

Figure 5.2 Move_BigCorner1

5.2.3 Move_BigCorner2

This move rotates the big corner placed on the right side of the robotic arm and it corresponds to

Move 2. I’ve had applied the same principle as above and the values of the actuators are the

following:

Thesis Tile

61

Table 5.3 Move_BigCorner2

Actuators Final position (°) Relative difference (°)

Actuator 1 176.86 101.85

Actuator 2 289.12 120.47

Actuator 3 258.25 202.39

Actuator 4 80.45 -167.25

Actuator 5 125.45 49.91

Actuator 6 184.45 108.82

Finger 1 4824 -

Finger 2 4830 -

Finger 3 4836 -

Figure 5.3 Move_BigCorner2

5.2.4 Move_BigCorner3

Starting from Home position, this move rotates the big corner placed in front of the robotic arm.

Thesis Tile

62

Table 5.4 Move_BigCorner3

Actuators Final position (°) Relative difference (°)

Actuator 1 255 -20.29

Actuator 2 169.69 2.3

Actuator 3 50.62 -6.5

Actuator 4 243.82 2.8

Actuator 5 68.18 -14.52

Actuator 6 15.82 -59.93

Finger 1 5184 -

Finger 2 5196 -

Finger 3 5148 -

Figure 5.4 Move_BigCorner3

Thesis Tile

63

5.2.5 Rotate_Layer

This move corresponds with the 4th move from Chapter 4.

Table 5.5 Rotate_Layer

Actuators Final position (°) Relative difference (°)

Actuator 1 215.68 -1.63

Actuator 2 197.91 30.52

Actuator 3 122.32 65.19

Actuator 4 250.5 -9.8

Actuator 5 205.5 122.8

Actuator 6 177.68 101.93

Finger 1 3456 -

Finger 2 3420 -

Finger 3 3414 -

Figure 5.5 Rotate_Layer

5.2.6 Move_SmallCorner

Move_SmallCorner assures the rotation of the corner corresponding to Move 3. I chose this one

because this is the vertex of the pyramid that faces the robotic arm. Rotating the corner is a very

delicate movement, requiring high precision and dexterity, so it can be performed only from this

Thesis Tile

64

position. To rotate the other corners, the arm will firstly perform Move 4 (once or twice depending

on the case), so the corner is facing the robotic arm. Following, it rotates the corner and after that

makes the reverse step, so the Pyraminx will remain in the same position.

Table 5.6 Move_SmallCorner

Actuators Final position (°) Relative difference (°)

Actuator 1 262.78 -12.21

Actuator 2 169.68 2.3

Actuator 3 50.68 -6.45

Actuator 4 243.82 2.8

Actuator 5 79.98 -2.72

Actuator 6 264.41 188.66

Finger 1 5988 -

Finger 2 6000 -

Finger 3 5700 -

Figure 5.6 Move_SmallCorner

Thesis Tile

65

CHAPTER 6 CONCLUSIONS

AND FUTURE STEPS

6.1 GENERAL CONCLUSIONS

The main objective of the thesis was to develop an autonomous system, capable to solve the

Pyraminx puzzle using the robotic arm Jaco2, created by Kinova Robotics. This project was

composed of three main parts: data acquisition, Pyraminx solving algorithm and implementation

of the moves on the robotic arm.

Starting from the premise mentioned in the introduction, that the main purpose of the ensemble

described is to assist persons with multiple disabilities, I wanted to test the sensibility and the

precision of the robotic arm. My test consisted in solving the Pyraminx and after developing the

necessary logic and obtaining the wanted results, I was able to observe the high level of dexterity

together with the behavior of the robot in this context.

At the current configuration, Jaco2 may find its utility in the life of an autistic or a slower

developing child by interacting with him. It would be able to maintain the attention of an ADHD

child by its moves, conduct and practice. It can also play games aiming to develop the exchange

with a special case as mentioned above.

In space, the articulated member had been found to be very handy for the Curiosity project as a

manipulator. Like the Kinova product I’ve used, the space manipulator called Candarm has a place

in the multi degree of freedom robotic arms.

Thesis Tile

66

The tasks performed by my system are a manifold of movements and data interpreting means. The

decisions are taken based on the logic written entirely by me for each part of the aggregate. The

images are captured based on the script designed for the Kinect. After this step, they are interpreted

and the conduct of the robotic member is decided relying on the cases predicted in the dedicated

code.

6.2 PERSONAL CONTRIBUTIONS

For this paper, my contributions are the following:

• I created the environmental setup so that the robotic arm may interact with the puzzle.

• I found a method to rotate the 3D-printed stand, hence the Kinect module has a fixed

position.

• I developed the code for the image acquisition.

• I implemented two different methods to perform the color recognition task.

• I designed an algorithm that solves the Pyraminx based on four main moves.

• I programmed the robotic arm to execute the moves relying on the output of the solving

algorithm.

6.3 FUTURE WORK

As the technology evolves day by day, a debutant project needs to keep the pass, or at least take

into account the tendency oriented towards the artificial intelligence. That is why I am contouring

the idea of creating a server where to deploy the logic for adaptive locomotion and learned

information. By these, the arm should be able to identify and execute the fastest and targeted route

to the desired object to be grabbed.

Another feature that I would like to add to the system is the vocal command, as another type of

external stimuli. By adding sensors to the arm, it would be able to identify and avoid obstacles.

This way, the arm will be safer to use by incapacitated persons, reducing the risk of accidental

harming.

In a different context, let’s imagine 4 identical arms of this type, working together and forming a

compact ensemble. It would be able to perform almost all the moves that a human being can

execute with the same dexterity and precision. In addition, we would be able to choose the

firmness of the grabbing, from a baby grip to a titanic clutch.

Thesis Tile

67

REFERENCES

[1] [Kinova] Kinova robotics website (http://www.kinovarobotics.com)

[2] [User Guide] Kinova robotic Jaco User Guide (http://www.kinovarobotics.com)

[3] [Monk, 2011] Monk, S., “Programming Arduino Getting Started with Sketches”, 2001, McGraw-

Hills, 071784221

[4] [Nerd Paradise] Pyraminx Puzzle (http://www.nerdparadise.com/puzzles/pyraminx)

[5] [Ruwinx] Rubick’s Triangle (http://www.ruwix.com/twisty-puzzles/pyraminx-triangle-rubiks-cube)

[6] [Frey, 2001] Frey, A., Singmaster, D., “Handbook of Cubic Math”, 2001, Lutterworth Press,

0718825551

[7] [Beasley, 2006] Beasley, J.,” The Mathematics of Games”, 2006, Dover Publications, 0486449769

[8] [Online Encyclopedia]“Standard deviation”(https://en.wikipedia.org/wiki/Standard_deviation)

[9] [Open CV] “Canny Edge Detection” (http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html)

[10] [Datasheet] ”SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE

OPERATION”

[11] [Specifications] “DS04-NFC Servo 360-Degree Continuous Rotation Servo DC Gear Motor For

Arduino/Raspberry-Pi/Robotics” (https://www.robomart.com/ds04-nfc-servo-360-degree-continuous-

rotation-servos-dc-gear-motor)

[12] [User Guide] “Kinect for Windows SDK Programming Guide”

(http://www.doc.flashrobotics.com/download/doc/Kinect%20for%20Windows%20SDK%20Programmin

g%20Guide.pdf)

http://www.kinovarobotics.com/
https://en.wikipedia.org/wiki/Standard_deviation
http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
https://www.robomart.com/ds04-nfc-servo-360-degree-continuous-rotation-servos-dc-gear-motor
https://www.robomart.com/ds04-nfc-servo-360-degree-continuous-rotation-servos-dc-gear-motor
http://www.doc.flashrobotics.com/download/doc/Kinect%20for%20Windows%20SDK%20Programming%20Guide.pdf
http://www.doc.flashrobotics.com/download/doc/Kinect%20for%20Windows%20SDK%20Programming%20Guide.pdf

