

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF ELECTRONICS, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY

OBJECT DETECTION AND RECOGNITION SYSTEM

EMBEDDED ON A NAO ROBOT

DIPLOMA THESIS

Submitted in partial fulfillment of the requirements for the Degree of

Engineer in the domain Technology and Telecommunication Systems

Study program: Telecommunications and Information Technology

Thesis advisor(s): Student:

Lecturer Anamaria RĂDOI, Ph.D Diana AVRAM

Prof. Corneliu BURILEANU, Ph.D

Bucharest

2018

Table of Contents

Table of Contents..7

List of Figures..9

List of Tables ..11

List of Abbreviations ..13

Acknowledgments ..15

CHAPTER 1 Introduction ..17

1.1 Motivation...17

1.2 The robot Nao…...………...……………………………………………………..….…..17

1.3 The proposed solution…………………..………………………………...………….....21

CHAPTER 2 Nao’s Recognition Module..23

2.1. NAOqi Framework………………………………………………………………….….23

2.2. Choregraphe……………..………………………………………………...…………...25

2.3 Recognition workflow……….……...……………………………………………...…...26

2.4. Limitations……………….………………………………………...……………….......28

CHAPTER 3 Recognition using convolutional neural networks……………..………………..…...29

3.1. Neural network………………………………………………………….……………...29

3.1.1 Perceptrons…………………………………………………….……...……....29

3.1.2 Architecture of a Feed-Forward Neural Network….……...….…………........30

3.1.3 Multi-layer Perceptron………………………...….…………………...……....31

3.1.4 Activation functions….………………………….……………………......…..32

3.1.5 Back-propagation Algorithm……………….…………………………...….…33

3.2 Convolutional Neural Networks…….……………………………………………..……40

3.3 Mobile Nets…….……………………………………………………………………….48

3.3.1 Introduction……………………………………………………….......……....49

3.3.2 Architecture…………………………………………………………...……....49

3.3.3 Advantages………………………………………………….…...……..…......51

3.4 Single Shot MultiBox Detector…….……………………………….…………….…….52

3.4.1 Introduction………………………………………………….…...…………...52

3.4.2 Architecture...……………………………………………….…...……...........54

3.4.3 MultiBox…….………………………………………….…...…....................55

3.4.4 Intersection over Union ratio………….………………………………………55

CHAPTER 4 The Implemented Vision Algorithm………………………………………..….….....57

4.1 Working principle……………………………………………………..…...…………....57

4.2 Object detection using MobileNet SSD …………….………………………………….62

 4.2.1 Real time object recognition model, using Tensorflow…………………….....62

 4.2.2 Object recognition model, using Caffe………...……………………..............67

CHAPTER 5 Experimental Results………………………………………...……………………....73

 5.1. Results on Nao…………….………………………………….…...……………...….....73

5.2. The performance of the Convolutional Network……………………………................78

CHAPTER 6 Conclusions and Future Steps………………………………………………..............81

 6.1 General Conclusions………………………………………………….…...…….............81

 6.2 Personal contributions…………………………………...……………...……................82

 6.3 Future work…………………………………...………………………...……................82

References..83

List of Figures

Figure 1.2.1 - Technical features of Nao ..18

Figure 1.2.2 - Mobility & equilibrium of Nao...19

Figure 1.2.3 - Nao’s actuators..20

Figure 2.1.1 - The relation between brokers, modules and the corresponding methods…...............24

Figure 2.2.1 - Parallel actions by Nao in Choregraphe………….……………………………….…25

Figure 2.2.2 - Series actions by Nao in Choregraphe……….………………………………………25

Figure 2.3.1 – ALVisionRecognition Module Workflow…………………………………………..26

Figure 2.3.2 – Parameters of PictureDetected……………………………………………………....27

Figure 3.1.1.1 – Working principle of the perceptron………………..…………………………..…30

Figure 3.1.2.1 – An example of a feed-forward neural network, with one hidden layer…………...31

Figure 3.1.4.1 – Neural network with one hidden layer…………...………...……...………...….…32

Figure 3.1.4.2 – Graphical representation of the activation functions……………………..…….…33

Figure 3.1.5.1 a – Gradient descent for cost function ()………………………………………...35

Figure 3.1.5.1 b – Gradient descent for cost function ()…………………………….…….....35

Figure 3.1.5.2 a - Big learning rate…………………………………….……...…………….……....37

Figure 3.1.5.2 b - Small learning rate…………………………………….……...………….……....37

Figure 3.1.5.3 – Sample of MNIST dataset………………..…………………….………….……....37

Figure 3.1.5.4 - Neural network with one hidden layer……..…………….…………….……..........38

Figure 3.1.5.5 - Small parts of digit “4”…………………..………………………….……..............39

Figure 3.2.1 – Regular Neural Network vs. Convolutional Neural Network…………...…………..40

Figure 3.2.1 – An example of ConvNet…………………………………………………………….41

Figure 3.2.2 - The representation of a picture by a matrix of numbers…………………………..…42

Figure 3.2.3 - The greyscale image to be analyzed and its corresponding matrix, G……...……….42

Figure 3.2.4 - The convolution process………………………………….……...………….……....43

Figure 3.2.5 - Convolution with three filters……..…………………….………………..…………44

Figure 3.2.6 - Example of MaxPooling……..…………………………………………...….....……45

Figure 3.2.7 - The fully connected layers from the network given as example in Figure 3.2.1……45

Figure 3.2.8 - Visualization of a ConvNet’s layers……...………………………..………………...46

Figure 3.3.2.1 – Splitting standard convolution into depthwise and pointwise convolutions………49

Figure 3.4.1 - Detection examples of SSD on personal dataset……………………………...……..53

Figure 3.4.4.1 Dog detection example - the corresponding ground-truth and predicted bounding

boxes………………………………………………………………………………………...………55

Figure 4.1.1 – Detection algorithm on Nao, with pictures taken with a 12 MP camera (on

smartphone)………..………………………………………………………………………...……...58

Figure 4.1.2 – Detection algorithm on Nao, with pictures taken with an 8 MP camera (on

smartphone)…………………………………………………………………………………...…….59

Figure 4.1.3 - The recognized classes by Nao………………………………………………………60

Figure 4.1.4 - General flow diagram of the program…………………………….………………….61

Figure 4.2.1.1 (a) - COCO 2017 object categories, labels not shown…………….………….……..62

Figure 4.2.1.1 (b) - COCO dataset examples………………………..………….…………………..62

Figure 4.2.1.2 – Results from real time detection…………………………………………………..64

Figure 4.2.1.3 – Unsuccessful results from real time detection…………………….…..…………..65

Figure 4.2.2.1 - Successful and unsuccessful recognitions (computer implementations) ………….68

Figure 5.1.1 – Succesful recognitions on Nao………………………………………..……………..73

Figure 5.1.2 - Succesful real time recognitions, on Nao…………………………….……………..76

Figure 5.2.1 - Example of test pictures………………………………………………….…………..78

Figure 5.2.2 – Successful vs. unsuccessful people recognition……………………………………..80

List of Tables

Table 1.2.1 - Degrees of freedom for Nao………………………………………………..………...20

Table 2.4.1 – Limitations of ALVisionRecognition module……………………………….....……27

Table 3.1.4.1 – Activation functions………………………………….………………………….…33

Table 3.2.1 - Layers’ dimensions for a CIFAR-10 input image………………………..….……..…41

Table 3.2.2 - Comparison between different architectures, considering the dataset used for training,

the number of parameters and the validation error…………………………………………….……47

Table 4.1.1 - Parameters of ALPhotoCapture module………………………………….…….…….58

Table 4.2.1.1 - Precision and Accuracy for the models provided by Google’s API…….…….……63

Table 5.2.1 - Results from the Caffe model…………………………………………….….……….78

List of Abbreviations

API - Application Programming Interface

CAFFE - Convolutional Architecture for Fast Feature Embedding

CIFAR - Canadian Institute For Advanced Research

CNN - Convolutional Neural Network

COCO - Common Objects in Context

ConvNet - - Convolutional Neural Network

CPU - Central Processing Unit

FPS - Frames per Second

GPU - Graphics processing unit

ILSVRC - ImageNet Large Scale Visual Recognition Challenge

IP - Internet Protocol

MNIST - Modified National Institute of Standards and Technology

OpenCV - Open Source Computer Vision Library

SSD – Single Shot Detection

VGA - Quarter Video Graphics Array

VOC - Visual Object Classes

Acknowledgements

I want to thank my coordinators, Lecturer Anamaria RĂDOI Ph.D and Prof. Corneliu

BURILEANU, Ph.D for their support in the practical and the theoretical part of this thesis. I am

very thankful for their moral support and also for the equipment they provided me in the laboratory,

for achieving my goal in this project.

In addition, I am deeply grateful to Eng. Georgian NICOLAE and Eng. Ana-Antonia NEACȘU for

their introduction in the world of Artificial Intelligence, as well as for Georgian’s guidance

throughout the practical implementation.

17

 1

Introduction

1.1 Motivation

With the high evolution nowadays in the robotics and autonomous systems area, the robots need to

be skillful in a particular domain. Achieving this means getting information about the environment

through sensors; and since vision is the most important sense, offering up to 80% of all impressions

by means of our sight for humans, then one of the richest and most useful information is the one

captured by cameras.

Developing algorithms for detecting objects with high accuracy remains a challenge and a domain

of research in robotics. And this is a problem of utmost importance, since only by having a good

perception of the surroundings, will the robots be able to perform specific tasks.

1.2 The robot Nao

General aspects

Nao is the most used humanoid robot for education worldwide; its friendly aspect, mobility and

possibility to be fully programmed makes Nao a powerful tool in the education and research areas

like helping children develop their robotics appetite, aid for autistic children in therapy modules and

laboratory assistants.

The humanoid robot is designed to be personalized, depending on the wanted application. Not only

does it have several sensors and motors that can be manipulated by the user, but it also has a user-

friendly programming software, which enables an easy interaction with these sensors and motors.

Thus, using Choregraphe, Nao can be programmed to have a particular personality.

The robot was firstly presented in 2006 and since then, it continued to develop. It was firstly

designed with the idea of helping children with mental disabilities in mind and this project aims to

make a step forward in this direction. With a view to helping Nao become more autonomous and

18

implicitly making the interaction with the robot more enjoyable, an object detection and recognition

system embedded on the robot was developed.

Technical details

While working on the main program, I encountered several limitations, imposed by the robot; and

since the application was intended to be embedded from the beginning, the restrictions needed to be

acknowledged. Some technical features are presented in Figure 1.2.1.

Currently in the fifth version, about 10 000 Nao robots have been sold around the world, in

educational institutes from over 70 countries. The new generation of Nao has a 1.6 GHz processor,

two HD cameras and a height of 58 cm; also, its big advantage is its humanoid look, as it can be

observed from Figure 1.2.1. The robot has 4 microphones, through which it can communicate in 8

languages; apart from these, it is fitted with a distance sensor, two infrared emitters and receivers, 9

tactile sensors and 8 pressure sensors.

Figure 2.2.1 - Technical features of Nao

The robot’s shape, along with its capacity to move, thanks to its 25 degrees of freedom allow it to

move, to maintain its equilibrium and to be aware of its standing or lying position; this equilibrium

ability is presented below.

19

Figure 1.2.2 - Mobility & equilibrium of Nao

Available resources

With 58 cm height and 28 cm width, the 4.5 kg robot is able to perform complex moves, from

moving forward and backwards, sitting down and getting up, to stretching and maintaining

equilibrium on a single foot, as shown in the Figure 1.2.2.

Battery

Nao has a Lithium Ion battery with nominal voltage 21.6 V, autonomy of 90 minutes at normal use

and a charging duration of 3 hours; the robot can be used when it is plugged in.

Motherboard

The fourth version of Nao - which I used in this project – has two main processors, one at the head

level and one at the torso level.

 The one at the head level is an Intel x68 processor, ATOM Z530, with a cache memory of

512 KB; the clock rate is 1.6GHz for the 32 bits instruction set. It is a single core processor,

designed mainly for mobile applications and it has the advantage its power efficiency.

Additionally, ATOM Z530’s architecture is based on Bonnell’s microarchitecture, thus

being able to execute two instructions per cycle.

 The processor from the torso level is an ARM7TDMI type, which controls the actuators

(that move the robot). The ARM7TDMI microcontroller has a 32 bits instruction set, of type

RISC, also offering good performances for reduced power consumption. The local

microcontrollers from the actuators are Microchip 16-bit dsPICS and they communicate

with the second CPU by two buses, RS-485 type, at a throughput of 460 Kb/s.

Audio

The robot has a stereo system, comprised of two speakers on each side of the head and 4

microphones also placed on the head, having a frequency range of 300Hz – 8KHz.

20

Video

On the front side of Nao, two identical video cameras are placed, which offer images of 1280x960

resolution, at 90 frames per second. They are used to identify objects around and the space where

Nao moves.

Actuators

The actuators are the motors that permit the robot to move; they are placed at joints and Nao has 25

actuators, hence its great mobility.

Figure 1.2.3 - Nao’s actuators

The multitude of the robot’s actuators placement is presented in Figure 1.2.3; these offer Nao 25

degrees of freedom. So, there are 25 independent parameters that define Nao’s state, starting from

its head to its feet, as follows:

Location Degrees of

freedom

Observations

Head 2 the head can yaw and pitch

Arm 10 5 in each arm: 2 at shoulder,

2 at elbow, 1 at wrist level

Hand 2 1 in each hand, for hand grasping

Pelvis 1 -

Leg 10 5 in each leg: 2 at ankle, 1 at knee, 2 at hip level

Table 1.2.2 - Degrees of freedom for Nao

21

1.3 The proposed solution

There are many projects considering the object recognition problem and each is particularized for

its specific task, considering different conditions and training datasets. This project aims to propose

a way to detect and recognize objects for the Nao robot. This implies the robot taking several

pictures using its front camera and applying an algorithm, in the end outputting though its

microphone the identified objects. This local processing has the great advantage of independence

from other resources, like an external camera or memory, but there are also some limitations that

need to be considered.

Particularly, the processed images have a limited resolution, of and the processing

resources are also limited, namely the processor and the memory. The user has limited access to

resources, specifically an ATOM Z530 1.6 GHz CPU and a 1 GB of RAM. In addition, a very big

disadvantage of working on the robot is that it does not support some libraries used in every

computer vision application, such as OpenCV3, or frameworks like TensorFlow.

Consequently, a compromise needs to be made between the computational power of the robot, its

limited memory and a good network architecture, that produces reasonable results.

22

23

2

Nao’s recognition

module

2.1. NAOqi Framework

In order to make the work with the robot easier and more user-friendly, the NAOqi framework was

created. Its role is to offer the possibility of working with multiple modules that the robot has, like

video, audio and motion modules, keeping in mind the need for parallelism, synchronization and

events, used for a robot. In this way, the user can access the needed resources, while sharing

information between them.

This framework allows introspection; this means that the framework knows the available functions

from the modules and where to look for them. So, the robot knows what are the available API

functions.

NAOqi Modules APIs

 The robot has several modules APIs:

 Motion – offers methods which allow Nao to move, by controlling the joint stiffness and

position, or to walk

 Audio – offers modules to play or record audio files, detect sound events and even speech

recognition and text to speech methods

 Sensors – deals with the bumpers, tactile hands and head, the battery and LEDs

 Vision - offers modules for detection of: backlighting , darkness, faces, movement, photos

and red balls.

In order to access the NAOqi Modules, a broker is needed; its scope is to load libraries

containing the wanted modules and also to provide directory services and network access for

calling them. The hierarchy is presented below, in Figure 2.1.1.

24

To work with modules, proxies are needed, that act like the corresponding modules. So, to make

the robot able to react to defined circumstances, modules can subscribe to events. For instance,

if the robot listens for the user’s words, in order to recognize some specific ones from a

vocabulary, a proxy needs to be subscribed to “WordRecognized’. After this, the reaction is

specified is case of successful recognition.

Broker

This is an object that has two roles: it provides directory services (allowing the user to find

modules and methods – see Figure 2.1.1) and works transparently.

Proxy

This is an object that behaves as the module it represents. Concretely, if the user creates a proxy

to the ALMotion module, they get an object that contains all the ALMotion methods. The

creation of a proxy is simple: the user has to use the name of the module in their code (local

call). More details about this can be found in the NAO Software 1.14.5 documentation about

NAOqi Framework [1].

Figure 2.1.1 - The relation between brokers, modules and the corresponding methods

From the vision class, apart from the mentioned modules, the robot has one which is noteworthy,

because it offers vision learning and recognition capabilities: ALVisionRecognition

ALVisionRecognition

The scope of this module is to make Nao recognize previously learned objects or pictures.

25

Working principle

This vision module is easy to work with using Choregraphe.

2.2. Choregraphe

This is a user-friendly multi-platform desktop application, developed by Aldebaran Robotics, that

allows programming of the robot . This graphical environment enables the user to make connections

of high level behaviors easily, by using specific behavior boxes. Apart from this, it gives the

possibility for fine tuning of joint motions. Finally, at the lowest level, this application allows

programming in Python.

Choregraphe provides the user with the NAOqi functions, in a friendly way. Thus, the user can

execute some predefined behaviors, by linking some specific boxes. For instance, if the user wants

the robot to execute some chained actions, they have to link the according boxes sequentially; if

they want to execute several behaviors in the same time, the boxes need to be linked parallel. An

example of a series and parallel linking, to obtain a more complex behavior is presented in Figures

2.2.1 and 2.2.2.

Figure 2.2.1 - Parallel actions by Nao in Choregraphe

Figure 2.2.2 - Series actions by Nao in Choregraphe

Figure 2.2.1 presents parallel actions performed by the robot in Choregraphe, specifically standing

up and saying “Hello, I will present you my multitasking ability through Choregraphe”; and Figure

2.2.2 shows series actions performed in a similar manner, like standing up, then saying “Now, I am

going to track the sound in this room” and next performing sound tracking until stopped.

To conclude, working in Choregraphe can be intuitive. One of the interesting modules Nao has is

ALVisionRecognition and some tests were made, in order to analyze it.

26

2.3 Recognition workflow

ALVisionRecognition module aims to recognize objects, depending on previously learned models.

Below is presented a diagram of how this module briefly works:

Figure 2.3.1 – ALVisionRecognition Module Workflow

Teaching the robot to recognize specific objects

The robot learns images, objects and pictures using its video monitor. For this, the user has to

pursue the following steps:

 connect to a robot – either real or virtual

 access the video monitor - in order to see what the robot’s camera sees

 execute the learn command - now, the user is given 4 seconds to place the object in a

desired position relative to the robot’s camera; after this, a capture is taken, by switching to

QVGA resolution

27

 execute the draw command - in this moment, the user is able to draw the contour of the

object, segment by segment, in order to differentiate the object from its background

 label the new object and select the corresponding side

 export the vision recognition database on the robot

After the vision recognition database is imported on Nao, a vision recognition box needs to be

created using Choregraphe and tested. If the user does not want to use this environment, they can

also access the ALVisionRecognition module from Python. The steps are described in the

Aldebaran documentation [1].

Similar with other extractor modules, the results from the object recognition are placed in the

ALMemory. The webpage of the robot can be accessed in a browser, using its IP and by selecting

Advanced -> Memory -> PictureDetected; when something is recognized, the ALValue changes

and its parameters are explained in the following diagram:

Figure 2.3.2 – Parameters of PictureDetected

2.4. Limitations

Although the idea of making the robot recognize previously learned object is a good one, the

module has big limitations. Firstly, it enables the recognition of key points in a capture taken by the

robot, thus making the real-time recognition very difficult. Also, the module is only useful for

recognizing objects that were previously learned; therefore, the robot cannot perform in this area

when shown a different entity from the same class. Last, but not least, a great disadvantage is that

for a successful recognition, the object needs to be in the same conditions as in the training process.

The limitations are presented in the table 2.4.1.

Limitation Additional information

distance it must to be between half and twice the distance used for learning

light conditions -

angles the inclination needs to be less than 50°

rotation -

Table 2.4.1 – Limitations of ALVisionRecognition module

28

Apart from these, the module has other restrictions:

 It cannot recognize untextured pictures – because the recognition is based on key points, not

on the object’s shape. Also, after training, the database is exported on the robot and for

better performance; this contains only essential information for detection.

 At the moment, as previously mentioned, it is not able to recognize object classes (for

instance a person), but instances (in this example, a person in general).

 Several learning processes reduce the detection rate – this happens, because the detection

algorithm on the robot works in the following way: every detected key point in the current

image is compared with one point from the database; and if two scores for choosing between

two classes are too close, the key point is dropped and it is not associated with any of the

two possible objects.

29

3

Recognition using

convolutional

networks

3.1. Neural network

An artificial neural network is a computational brain-inspired model, intended to replicate the way

humans learn. Since they are similar to the way biological neural networks in the human brain

process information, the neural networks comprise of input, output and hidden layers; the latter ones

are meant to transform the input (for instance, an image) into something that the output can use (like

a label). This is why they are powerful tools for finding patterns that are too complex for the human

perceptions.

3.1.1 Perceptrons

The perceptron is an algorithm of supervised learning of binary classifiers, firstly developed in 1957

by Frank Rosenblatt, in the Cornell Aeronautical Laboratory. The perceptron was intended to be a

machine (not an algorithm) in the beginning and it was used for image recognition. After a period of

stagnation, the idea bloomed again, when it was admitted that a multilayer perceptron would be

more efficient.

From another perspective, a perceptron is a single layer neural network and a multi-layer perceptron

is called a neural network.

The working principle is the following: a perceptron takes the input – which is represented by more

binary inputs -, processes it and produces one single output, as in Figure 3.1.1.1.

30

Figure 3.1.1.1 – Working principle of the perceptron

In this example, the perceptron takes three inputs, x1, x2 and x3 and outputs y; of course, the number

of inputs can be larger. In order to compute the output, Rosenblatt had the following idea: he

proposed giving each input some weights (w1, w2 and w3 in the analyzed case); these are real

numbers, which express the degree of importance of the input, with respect to output. Following,

the binary output is determined depending on the sum ∑

 : if it is less or equal than a

threshold, the output takes one value and if it is greater than the proposed threshold, the output

takes the other value. As a remark, the threshold is a real number as well, which characterizes the

neuron. Concretely, this idea can be written as:

 if ∑

 < threshold

 out = 0;

 else

(1)

 out =1;

To make a parallel with the human brain, the perceptron can be regarded as a model of decision

making. Using this idea, an efficient way of making a decision is by considering all the factors as

inputs and assign each of them a level of importance, that is a weight. Depending on the chosen

threshold, an optimal decision – the final output – can be taken, considering all variables.

Of course, taking a final decision based only on one operation is the simplest case; a complex

network of perceptrons can take more subtle decisions.

3.1.2 Architecture of a Feed-Forward Neural Network

A feed-forward neural network is the simplest artificial network; it has more neurons (also called

nodes) arranged in layers. While the nodes from adjacent layers have connections, each connection

has an associated weight.

An example of such a network is presented in Fig. 3.1.2.1.

31

Figure 3.1.2.1 – An example of a feed-forward neural network, with one hidden layer

Thus, a feed-forward neural network consists of the following types of layers:

 Input layer – the input nodes provide the following layers information about the outside

world; no computation is performed at this layer; also, the input nodes are mandatory in a

neural network.

 Hidden layer – the nodes from this layer do not have a direct connection with the outside

world; they perform computations and transfer information from input to output; unlike the

input or output nodes, the hidden ones may or may not be present in a feed-forward network.

 Output layer – it is responsible for computations and transfer of information from the

network to the outside world

Obviously, in a feed-forward neural network, the information travels in only one direction: from

input to output; so there are no loops or cycles. Examples of this type of network are the single layer

perceptron, presented in the previous paragraph of this section and also the multi-layer perceptron,

which shall be discussed in the following section.

3.1.3 Multi-layer Perceptron

This type of network contains one or more hidden layers and unlike the single layer perceptron, this

one can learn non-linear function.

An example of such a network is shown in Figure 3.1.1.2. In that network, the first layer – which is

the first column of perceptrons – makes very simple decisions, by analyzing the input. Afterwards,

the second layer takes as input the output of the first layer and takes a decision, at a more complex

level than the first one. Following this rule, multi-layer networks can be imagined for more

sophisticated problems. Of course, the output layer provides the final result.

Mathematically, the multi-layer network problem can be written as:

if ∑

 + bias<0

32

out = 0;

 else (2)

out =1;

The bias = - threshold and it measures how easy it is to get the perceptron to output a one. So, the

bigger the bias, the easier it is for the perceptron to output a one; and of course, for a negative bias,

it is difficult for the perceptron to output 1.

3.1.4 Activation functions

The process of creating an efficient leaning algorithm is difficult and this is why making some

adjustments during this process is a very good idea. Specifically, let us take the example of having

some images of animals provided and an animal classification network is needed. In order to see

how the process of learning works, some small changes in the weights or bias are made; it is desired

that one small change produces a small corresponding change in the network’s output.

Schematically, this is what is wanted:

Figure 3.1.4.1 – Neural network with one hidden layer

As Figure 3.1.4.1 suggests, a small change in any weight or bias causes a small change in the

output.

But sometimes, a small change in the weights or biases can cause the output to wrongly flip from

one value to the other; and that flip can cause the next layer to change its parameters, thus changing

the behavior of the whole network.

To solve this problem, a neuron is introduced, that performs a certain fixed mathematical function

operation: sigmoid, tanh or ReLU. They have the following characteristics:

33

Table 3.1.4.1 – Activation functions

Figure 3.1.4.2 – Graphical representation of the activation functions

These functions take as input real values and shrink the range to a certain interval, specified Table

3.1.4.1.

3.1.5 Back-propagation Algorithm

This is the process by which an artificial Neural Network is trained. As it will be discussed in the

following sections, neural networks can learn their weights and biases, using an algorithm, gradient

descent, which computes the gradient of the cost function; and the algorithm to do this is known as

back-propagation.

The base of this algorithm is an expression for the partial derivatives of the cost function C, with

respect to any weight or bias in the network,

. Mathematically, this expression gives information

about how fast the cost changes, when the weights change; practically, back-propagation gives

Activation functions

Name Operation Range

Sigmoid σ(x) = 1 / (1 + exp(−x)) [0, 1]

Tanh tanh(x) = 2σ(2x) − 1 [-1, 1]

ReLU f(x) = max(0, x) [0, ∞]

34

details about how the overall behavior of the network is affected by the weights and biases

changing.

Cost function

Let us consider a neural network and we desire an algorithm, which finds weights and biases, in

such a way that the output from the network approximates y(x) (the correct output), for all training

inputs, x, as good as possible. In order to quantify how well this goal is achieved, a cost function is

defined. This is also referred as loss function and intuitively, it can be defined as the following:

 ()

∑ || () ()||

 (3)

where:

 w - represents all the weights in the network;

 b - represents all the biases;

 n - is the total number of training inputs;

 a - is the vector of outputs from the network, when x is input and the sum is over all inputs;

So, as the notation suggests, the cost function will be given by the length of the vector resulting

from the summation and squaring it. For this, C is called mean square error. The reasons to choose

this specific cost function will be presented in the following paragraph.

First of all, the mean square error function is always positive, since every term is squared.

Therefore, its minimum is easy to be found. In addition, the cost decreases as the output of the

network, a, becomes closer to the correct output, y(x); in this way, this function can find weights

and biases so that C(w,b)≈0.

This is a very good result, because knowing this, the algorithm can be thought to minimize the cost

function; and since that depends on the weights and biases, these two can be finally found in an

optimized form.

As a remark, the choice of the cost function depends on the application. It can be adjusted and

different minimizing weights and biases can be obtained, but in this paper, the cost function from

equation 3 shall be presented.

To conclude, the cost function is used to monitor the predictions’ error. This is why minimizing it

means getting the lowest value of the error, which means increasing the accuracy. The algorithm

that does the minimization is the gradient descent.

Gradient descent

This is an algorithm that minimizes the cost function, by getting the lowest error value. Graphically,

if C was dependent only on one variable, the algorithm would be similar to the one in Fig. 3.1.5.1 a.

35

(a)

(b)

Figure 3.1.5.1 (a) – Gradient descent for cost function (). (b) Gradient descent for cost function

 ()

If the cost function depends on two variables: the weight and the bias, the representation can be

similar to Figure 3.1.5.1 b. Furthermore, for cases with dependency on more variables, the principle

applies similarly, but the representation and visualization of the results is more difficult. So, for a

better understanding, the intuitive case with the cost function dependent on two variables shall be

analyzed further.

36

For the simpler cases, the gradient can be understood as the slope of a function, as suggested in

Figure 3.1.5.1 a. If the gradient is high, the slope will be steep and the model will be learned faster.

But this presents a risk, which will be discussed in the next subchapter, Importance of learning rate.

To generalize, the gradient is the partial derivative of the cost function, with respect to all inputs.

From the graphical representation of the function in Figure 3.1.5.1 b, the minimum of the function

is obvious and easy to spot, but the function for more complicated problems will have a more

complex graph. But for that case, the gradient descent rule can be explained; if a random point is

chosen, the problem can be seen as a ball rolling down a valley, until the minimum point where it

stabilizes. This simulation is made by computing the partial derivatives of C, because they give

information about the local shape of the valley and what trajectory should the ball have. Concretely,

if the ball moves by a small amount Δv1 in the v1 direction and Δv2 in the v2 direction, then the cost

function will be:

 (4)

In this equation, w and b were replaced by v = [v1, v2]

For simplification in writing, the following notations are made:

 the vector of changes:

 = (,)
T

(transposed matrix) (5)

 the gradient vector:

∇C = (

)

 (6)

Considering these notations, equation (4) can be rewritten as:

 = ∇C (7)

Thus, from equation (7), it is intuitive how to choose , in order to make negative. In

particular, if we denote as the learning parameter, it can be chosen as:

 = ∇C (8)

In this way, equation (7) becomes:

 = ∇C = ∇C (∇C) = ||∇ || ; (9)

So, the cost function will always decrease, if v changes according to (8).

In the parallel with the ball on the hill, the ball’s move is described by the equation:

 ∇ , (10)

Which is the adaptation of the original formula in (8).

To sum up, the gradient descent repeatedly decreases C, until a global minimum is reached.

37

The same formulas apply if C is a function of several variables, n.

Importance of learning rate

This parameter represents how big are the steps that the gradient descent takes, in order to find the

minimum. So, this parameter determines how slow or fast the function will reach the optimal

weights. Two limit cases are distinguished; either the step is too big, or too small.

 if the learning rate is too big, it is possible that the gradient descent algorithm does not reach

the local minimum, but only oscillates around it, like in Figure 3.1.5.6 a;

 if is too small, the changes in will also be small, therefore the minimum of the cost

function will be found after a long time; Figure 3.1.5.6 b illustrates this situation.

(a) (b)

Figure 3.1.5.2 (a) big learning rate. (b) small learning rate

In practical implementations, the learning rate is varied until a compromise is obtained between

keeping equation (7) valid, while not making the algorithm too slow.

Example

In this section, an example of handwritten digit recognition, using neural networks will be

explained. This idea is elaborated in more details in Michael Nielsen’s book, Neural Networks and

Deep Learning [2].

First of all, an image containing several digits needs to be split into several small images, each

containing a digit. For instance, the initial image is segmented, like in Figure 3.1.5.3.

Figure 3.1.5.3 – Sample of MNIST dataset, source: [16]

Choosing the Network architecture

After this step, an algorithm needs to be implemented, which for instance recognizes correctly the

digits; this is the real challenge, since a neural network needs to be implemented, in order to

38

recognize the handwritten digits. A simple way to solve this problem is to implement a neural

network with only one hidden layer, as in the figure below:

Figure 3.1.5.4 - Neural network with one hidden layer; source: [2]

The layers of this network are analyzed:

 The input layer contains neurons in which values of the input pixels are encoded; the

provided images are 28x28 pixels and they represent black and white scans of handwritten

digits. Thus, the input layer needs to have 784 (28 x 28) neurons, each pixel having the

values between 0 (representing white) and 1 (representing black);

 The hidden layer of the network has n = 15 hidden neurons; but it can have a higher number

as well;

 The output layer has 10 neurons, each representing the corresponding digit that needs to be

decoded by the network. For instance, if the 5
th

 neuron fires, then the output of the network

will be 4, because the first neuron indicates the digit 0.

To understand what the hidden layers do, let us consider the example of the 5
th

 output neuron

trying to decide if the input image is a “4” or not. To make this decision, the output neuron takes the

information provided by the hidden one. This neuron takes parts of the image and compares them to

what those particular parts would look like, if in the image the digit “4” was present. For this

particular example, the first hidden layer might detect if an image like in Figure 3.1.5.5 (a) is

present in the input; one possible way to do this is by assigning higher weights to the input pixels

that overlap with the ones from the image and smaller weights for the other ones. Following the

same example, it can be supposed that the second, the third and the fourth hidden neurons detect

whether the images from Figure 3.1.5.5 (b), (c) and (d) are present in the input image.

39

 (a) (b) (c) (d) (e)

Figure 3.1.5.5 - Small parts of digit “4”

Of course, all of the images together make the initial image of the digit “4”, shown in picture 3.1.5.5

(e); and if all neurons fire, the conclusion is that the input digit was a “4”.

Even though in this presented case, the output is obviously depending on the hidden layers’ output,

there are many other cases; the network can operate different than detecting parts of the initial

image.

The learning process

Once the architecture is designed, it needs to be learned to recognize digits. This process involves

two steps: choosing the dataset to learn and learning with gradient descent.

A good database for training handwritten digits is MNIST - Modified National Institute of

Standards and Technology database. This contains more than 70 000 images for training and

testing, with the specifications mentioned in the previous section.

The following notations can be made:

 x – training input

 y(x) – its corresponding desired output

As mentioned before, the input x is a 784-dimensional vector and each of its entries represents

different shades of gray for a single pixel in the image. The output is a 10-D vector; so, for instance,

if an image is detected as containing the digit “3”, y(x) = [] .

Following, a cost function is defined, as in equation (3); the gradient descent is applied as

previously explained and finally, the optimal weights and biases are obtained. Having these

parameters, the program can be implemented and tested.

3.2 Convolutional Neural Networks

The CNNs are similar to the usual Neural Network presented before; they comprise of neurons with

learnable weights and biases and each neuron receives inputs, performs a product and gives it to its

output. Also, the scope of the network is to classify images - provided as pixels to the network –

and even classify objects, like faces, traffic signs and many others.

The difference is the following: the architecture on ConvNets makes the explicit assumption that the

inputs are images. This is extremely useful, because it makes the forward function more efficient

and also reduces the number of parameters of the network.

40

Architecture

Regular Neural Networks do not scale well to full images, because the number of weights is huge

for a good quality picture; having a fully-connected structure is not a good idea in this case. For

instance, for a picture with size 1,280x720x3 (1,280 horizontal pixels x 720 vertical pixels x 3 color

channels), the neurons would need to have weights. Consequently, this

fully-connected architecture is not used for the convolutional neural networks.

A novelty that the CNNs come with is the 3D volume of the neurons. This means that since

ConvNets are used for images as input, a specific feature for their architecture appears: the neurons

have 3 dimensions: width, height and depth. Also, the neurons of a layer are connected to a small

region of the previous one, and not fully connected. In the figure below, there is a visualization of a

regular three-layer Neural Network (Figure 3.2.1 a) and of a ConvNet equivalent (Figure 3.2.1 b).

 (a) (b)

Figure 3.2.1 (a) – Regular Neural Network. (b) Convolutional Neural Network; source: [3]

Layers

As described above, a convolutional network is formed of several layers and each of them

transforms one volume of activations into another, through a function. Three types of layers are: the

convolutional layer, the pooling layer and the fully connected one. The function of these layers is

exemplified below, through an example of image classification, using an image from the CIFAR-10

dataset (Canadian Institute For Advanced Research).

 Input layer – this is identical with the one from the general neural nets, so it keeps the input

image’s pixels values; for the analyzed CIFAR image, the dimensions of each layer are

given in Table 3.2.1;

 Convolutional layer (CONV) – computes the output of neurons connected to input (totally

or just locally), but computing the dot product between their weights and a small region with

which they are connected to input;

 Rectified Linear Unit (ReLU) Layer – applies an element wise activation function, as shown

in the last graph from Figure 3.1.4.2;

 Pool Layer – performs a down-sampling of the input image, to reduce its dimensions;

 Fully Connected (FC) Layer – computes the final scores of a class.

41

Layer Dimension Details

INPUT 32X32X3 if the image has: width 32, height 32 and three color channels R,G,B

CONV 32X32X12 if 12 filters are used

RELU 32X32X12 this layer leaves the volume unchanged

POOL 16X16X12 down sampling on width & height only

FC 1X1X10 each of the 10 numbers correspond to a class score

Table 3.2.1 - Layers’ dimensions for a CIFAR-10 input image

A convolutional network’s simplest architecture consists of the above mentioned types of layers

that aim to transform the image volume, as pixels, into an output volume, that holds the class

scores.

Each layer transforms a 3D input into a 3D output through a differentiable function. It is interesting

to notice that some layers contain parameters and some do not; the CONV and FC layers’

transformations depend on the activations in the input volume and also on the weights and biases of

the neuron, whereas RELU and POOL implement a fixed function. So, for the first case, the specific

parameters are trained using gradient descent, in order to make the scores of the class resulting

from the CNN correspond with the labels in the training set for each image.

Case Study

In the following paragraphs, an explanation about how a given architecture learns to recognize

images will be given. For this, the convolutional neural network from Figure 3.2.1 shall be

analyzed. This architecture aims to classify an input image into one of the four categories: dog, cat,

boat or bird. As it can be seen from the figure below, when an image with boats is fed at input, the

network classifies it correctly, by assigning the highest probability of 94% to that class.

Figure 3.2.1 – An example of ConvNet, source: [3]

In the proposed CNN there are four main operations, which will be explained in what follows.

1. Convolution

2. Non Linearity (ReLU)

3. Pooling (sub-sampling)

4. Classification (fully connected layer)

An image is represented by multiple pixels

To understand how the neural networks process the images, it is necessary to know how the

computer perceives an image; and that is by a matrix of triplets, where each triplet represents the

42

R,G,B values that correspond to each pixel. In the figure below, this idea is illustrated; the

corresponding matrix was obtained using the imread function in Matlab and one of the three

channels is shown.

Figure 3.2.2 - The representation of a picture by a matrix of numbers

Intuitively, the better quality of the picture, the bigger the size of the corresponding matrix. So, in

order to feed the image of the dog on the left of Figure 3.2.2 to a neural network, the corresponding

matrix to its right needs to be fed at input.

A. Convolution

In the case of ConvNets, the convolution operator is meant to extract features from the input

image. It does this while preserving the spatial relationship between pixels and this process

of learning is done on small parts of the input data.

To understand how this process works, the grayscale image in Figure 3.2.3 is considered,

which has as pixel values only 0 and 1, that is a pixel is either black or white.

 G =

Figure 3.2.3 - The greyscale image to be analyzed and its corresponding matrix, G

Apart from this, the following 3x3 matrix F, called filter is considered:

F =

 The convolution process and its results are presented in Fig. 3.2.4:

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

43

 Step 1 Step 2

Step 3

Figure 3.2.4 - The convolution process

And so on, until:

Step 9

Figure 3.2.4 - The convolution process

So, the convolution process is described as follows: the filter matrix F slides over the input image,

represented by G, by one pixel (by one stride); for every position, the element-wise multiplication is

computed between the two matrices and the results are added. The final number resulting from this

sum represents one element of the output matrix.

As terminology, the following terms are used: F is named filter or feature detector and the resulting

matrix from sliding the filter over the original image is called Convolved Feature or Feature Map.

Obviously, different values of the filter matrix produce different feature maps, for the same image.

Thus, operations like blur, sharpen, edge or curve detection can be performed, by a proper choice of

the filter’s numerical values, depending on the wanted effect.

In practice, during the learning process, a convolutional neural network learns the values that the

filters need to have, in order to extract specific parameters. Naturally, more filters in the network

mean more extracted features and this leads to better patterns recognition in new images.

44

The most important parameter that controls the Feature Map is the depth. This is the number of

filters used in the convolution. In the network presented in Figure 3.2.1, the first convolution

operation is made using three different filters, resulting in three feature maps, as shown below.

Figure 3.2.5 - Convolution with three filters

B. Non Linearity

After every convolution operation, an additional one was introduced in the network from Figure

3.2.1: an activation function. From the ones presented in Table 3.1.4.1 – Activation functions,

the last one was chosen, because it has been found to perform better in most situations.

ReLU is the abbreviation from Rectified Linear Unit; its function is

 ()

and its graphical representation is in Figure 3.1.4.2 – Graphical representation of the activation

functions; from the latter one, it can be observed the non-linearity of this function.

Most of the real world data that the CNN needs to learn is non-linear, but the convolution is a

linear operation, since it is an element-wise multiplication and addition. This is why a non-linear

function is applied after a CONV. The output feature map after this operation is called the

Rectified Feature Map.

C. Pooling

This operation reduces the dimensions of the input representation, while preserving the most

important information. Its main functions are:

 reduces the size of the input feature map

 reduces the parameters and computations in the network

 reduces the effect of small input variations on the output; this is because after taking

the maximum, or the average value of an area in a matrix, a small distortions in input

does not necessarily affect the output

 helps detection of objects in an image, no matter their location; pooling is useful for

making an almost scale invariant representation of the image

Polling can be of different types, like max, average, sum and others.

45

The case of Max Pooling will be presented. In the Rectified Feature Map presented above

(after convolution and ReLU), some spatial neighborhoods are defined – in Figure 3.2.6 they

are represented by the four colors - and the largest element is kept.

Figure 3.2.6 - Example of MaxPooling

D. Classification

The fully-connected (FC) layer is a general multi-layer perceptron, as described in section

3.1.3 Multi-layer Perceptron; every neuron in this layer is fully connected with the ones

from the previous layer.

This last layer is meant to use all of the features provided by CONV and POOL layers, in

order to classify the input image into a class. Specifically, for the network given as an

example in Figure 3.2.1 – An example of ConvNet, there are 4 possible outputs, as show in

Figure 3.2.7.

Figure 3.2.7 - The fully connected layers from the network given as example in Figure 3.2.1

The four possible predictions for the input image are accompanied by their corresponding

probabilities and the sum of all must be one. This is achieved by using the Softmax function;

what it does is to transform a vector of scores into one with values between 0 and 1, such

that the sum of the elements is one.

Training using back propagation

The training process of the Convolutional Network is briefly the following:

(a) Initialization of parameters - all filters and weights are initialized randomly

(b) Forward propagation – the input is fed and it goes through the network – convolution,

ReLU, pooling and finally propagation in the fully connected layer; finally, it finds

output probabilities for each class (for the first training example, these are random, since

the initialization of the parameters is also random)

(c) Error computation – the total error at the output layers is computed

46

(d) Back-propagation – through it, the gradients of the error, with respect to the weights

are computed; afterwards, using gradient descent, the filter weights are updated, in order

to minimize the output error.

The steps (b), (c) and (d) are repeated for all images in the training set.

In this way, the network learns. For instance, if in the beginning, the network given as

example in Figure 3.2.1 had as prediction vector [0.1 0.15 0.5 0.25], when the image is

fed again, the weights are adjusted and that vector might improve to [0.05 0.1 0.8 0.05],

which is closer to final wanted probabilities, [0 0 1 0].

Example of a Convolutional Neural Network

In order to visualize a ConvNet, an application was created by Adam Harley[4]; it is intuitive and

offers a good way to understand how the layers of a ConvNet work.

Firstly, a digit is drawn by the user, as in the picture below.

(a) introducing the input (b) layers visualization

Figure 3.2.8 - Visualization of a ConvNet’s layers

The image is down-sampled to 32x32 pixels (1024) and then the first convolution layer is formed,

by convolution of 6 different filters with the input image; from here, as it can be seen in Figure

3.2.8 b, at the convolution layer #1, since six 5x5 filters are used, a feature map of depth 6 is

obtained.

The next step is pooling and a 2x2 MaxPooling is made over the six feature maps previously

obtained at the pooling layer #1.

Afterwards, these two steps are repeated and next are 3 fully connected layers: 120 neurons in the

first one, 100 in the second one and 10 in the last FC, which is the output layer. Even though not

specifically represented, each node from a FC layer is connected to each one from the previous

layer.

47

The output layer has only one bright node, which corresponds to the digit “9”, as that one has the

highest probability among all digits.

Other network architectures

 LeNet Architecture – was one of the first convolutional neural networks; it was used for

character recognition, like zip codes or digits. An explanation on how images are recognized

using this architecture has been developed in this paragraph, since the main concepts of

LeNet Architecture are used in the networks from nowadays.

Network

Dataset

Number of
Parameters
[millions]

Validation
error [%]
(top - 1)

VGG-19 ILSVRC-2012 144 24.4
AlexNet ILSVRC-2010 &

ILSVRC-2012
62

37.5

Res-Net101 IMAGENET 44.5 21.8
Inception-v4 ILSVR 2015 65 17.7
GoogLeNet ILSVRC 2014 11 31.3
MobileNet IMAGENET-

2012
3.3 33.49

Table 3.2.2 - Comparison between different architectures, considering the dataset used for

training, the number of parameters and the validation error

 AlexNet – it is a deeper and wider version of the LeNet architecture and won in 2012 the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It was a real breakthrough

at that moment and current applications of ConvNets can be attributed to this work.

 GoogLeNet – this architecture won the first prize in the same competition in 2014 and the

novelty is the development of an Inception Module, which reduced considerably the number

of parameters in a network.

 VGGNet – its main contribution was proving that the depth of the network is a critical

component for good performance.

 ENet – the real-time applications, that require low latency are made using this architecture

developed in 2017, since it is faster and requires less parameters than existing models

 SE – an innovation has been brought in 2018 in this domain by the Squeeze-and-Excitation

Networks; the SE block “adaptively recalibrates channel-wise feature responses by

explicitly modeling interdependencies between channels”. [5]

As a comparison between all present architectures, there are many factors to take into account, like

power consumption, accuracy, number of operations, size of the network, memory used and this is

why a comparison between architectures is very difficult. However, Table 3.2.2 presents different

architectures, and their corresponding dataset used for training, the number of parameters and the

validation error. In this way, a visual analogy can be made; as a remark, the networks are ordered

chronologically.

48

3.3 Mobile Nets

As previously described, since deep learning has enhanced the progress in computer vision, the

problem of image detection found its answer with the development of ConvNets; from there, many

variations have been designed, in order to assure the requirements for different applications.

Many mobile deep learning applications used to be performed in the cloud; so, when an image was

fed for a classification, it was sent to a server and the classification was done remotely, afterwards

sending the result to the mobile application.

Using MobileNet neural networks [6], this is no this is no longer the case, thus having the advantage

of a portable application, without the need of external devices or an Internet connection.

This architecture was designed to effectively maximize the accuracy, while compromising on the

limited resources of an embedded application. Apart from its small size, low latency and power,

MobileNets has several versions, which offer the possibility of tuning the resource – accuracy trade-

off for a specific problem. The release contained the model definition, as well as 16 pre-trained

classification checkpoints for use in projects. Using the biggest MobileNets, 1.0, 244, an accuracy

of 95.5% can be achieved with just 4 minutes of training, as for the smallest, 0.24, 128, an accuracy

of 89.2% can be achieved, using just 930kb of memory [9], depending, of course on the hardware

used. As far as the final implementation presented in this paper, using the SSD300 model, trained

with MS-COCO dataset, on an NVidia Quadro M4000, the training process lasted 8 days.

In the first section, the architecture, advantages and trade-offs of MobileNet will be presented,

while in the second one a SSD model will be explained, together with its advantages. Also, the

influence of the SSD model on computational speed and size will be described.

3.3.1 Introduction

Since many research work focus on the development of a small network, rather than optimizing its

volume for the speed of the process, the MobileNets represent a great advantage, for they are:

 low latency models

 small sized

 suitable for mobile and embedded applications

While the general trend is to compress a pre-trained network or to train a small one, the priority of

MobileNets is to optimize small networks for latency.

3.3.2 Architecture

MobileNets are developed from depth-wise separable convolutions that are used to reduce the

computation volume for the first layers.

Depth-wise Separable Convolution

The MobileNet model is based on depth-wise separable convolutions, factorizing the standard

convolution operation into 2 sub-operations: a depth-wise convolution and a 1×1 convolution,

called a point-wise convolution.

The depth-wise convolution applies a single filter to each input channel, whereas the point-wise

convolution applies a 1×1 convolution, to combine the outputs the depth-wise convolution.

49

Unlike the standard convolution, which filters and combines the outputs in a single step, the depth-

wise separable convolution splits this into two layers: one for filtering and another one for

combining. The effect is of drastically reducing computation and model size.

The idea of splitting the standard convolution (a) into two separate layers: a depth-wise

convolution (b) and a 1 × 1 point-wise convolution (c) is presented in Figure 3.3.2.1 below.

Figure 3.3.2.1 – Splitting standard convolution into depthwise and pointwise convolutions, source: [6]

The input of a standard convolutional layer is a feature map F of dimensions DF · DF · M and it

produces a feature map G of dimensions DG · DG · N; where:

 DF is the spatial width and height of a square input feature map;

 M is the number of input channels, so the input depth;

 DG is the spatial width and height of a square output feature map;

 N is the number of output channels, so the output depth.

The convolution kernel K - or the convolution matrix, as previously explained - has the size

DK · DK · M · N, where DK is the spatial dimension of the kernel (assumed to be square) and M and

N are defined as previously.

The standard computational cost of the convolutions is: DK · DK · M · N · DF · DF.

MobileNet uses depth-wise convolutions to apply a single filter on each input channel. Point-wise

convolution, a simple 1×1 convolution, is then used to create a linear combination of the output of

the depth-wise layer. MobileNets use batchnorm and ReLU nonlinearities for both layers. K is the

depth-wise convolutional kernel, of size DK · DK · M, where the m
th

 filter in K is applied to the m
th

channel in F, to produce the m
th

 channel of the filtered output feature map G. Depth-wise

convolution has a computational cost of: DK · DK · M · DF · DF.

50

With this type of convolution, which only filters the input channels, an additional layer of 1 × 1

convolution is needed in order to generate the new features. The combination of depth-wise

convolution and 1 × 1 (point-wise) convolution is called depth-wise separable convolution.

Depth-wise separable convolutions’ cost is: DK · DK · M · DF · DF + M · N · DF · DF.

By expressing convolution as a two-step process, a reduction in computation of:

 +

 can be

obtained.

In this way, thanks to 3 × 3 depth-wise separable convolutions, MobileNets aims to reduce the

computation volume between 8 to 9 times than the time necessary for a standard convolution, while

making only a small reduction in accuracy.

Network Structure and Training

The MobileNet structure is built on depth-wise separable convolutions, as mentioned in the

previous section, except for the first layer, which is a full convolution. All layers are followed by a

batchnorm [7] and ReLU nonlinearity with the exception of the final fully connected layer, which

has no nonlinearity and feeds into a softmax layer for classification.

Counting depth-wise and point-wise convolutions as separate layers, MobileNet has 28 layers. This

type of structure has the advantage of making possible its implementation with highly optimized

general matrix multiply functions.

MobileNet spends 95% of its computation time in 1 × 1 convolutions, which also has 75% of the

parameters. Nearly all of the additional parameters are in the fully connected layer.

The final implemented MobileNet model presented in the thesis was trained in Caffe on the COCO

image set, using a training script initially developed by the Stanford University researchers, which

resulted in a Caffe model with 90 single shot detectable object classes. The training set contains

over 100 000 images, the training batch size is 16 and the number of iterations is 400 000. I also

used a 0.9 momentum value, which is keeping the loss function decay at a reasonable step, so that it

will converge at a high enough speed.

3.3.3 Advantages

As previously mentioned, the advantages of MobileNet are the size and especially the speed,

because small neural networks are not generally optimized for higher speed, the developers only

taking into account the size of the network. Also, it is important to mention that the MobileNet can

be shrunk even more, with the help of 2 hyper-parameters:

 α - width multiplier – its role is to thin a network uniformly at each layer; the number of

input channels M becomes αM and the number of output channels N becomes αN. The

computational cost of a depth-wise separable convolution with width multiplier α is:

DK · DK · αM · DF · DF + αM · αN · DF · DF

 ρ – resolution multiplier - this is second hyper-parameter that reduces the computational

cost of a neural network; it is applied to the input image, so the internal representation of

every layer is subsequently reduced by ρ.

51

The computational cost for the core layers of the network, as depth-wise separable convolutions,

with width multiplier α and resolution multiplier ρ becomes:

DK · DK · αM · ρDF · ρDF + αM · αN · ρDF · ρDF,

where ρ ∈ (0, 1] and α ∈ (0, 1]. These parameters reduce the computational cost by , respectively

 .

In conclusion, the cost is much lower than the cost of using a full convolutional layer and the neural

network has a much smaller size and it is scalable. Even more, with the α and ρ parameters, these

optimizations result in a small cost of the accuracy, depending on the hyper-parameters that are

chosen. With the hyper-parameters set on 1 (this representing the standard MobileNet) the accuracy

will decrease with 1% on a MobileNet, in comparison with a deep neural network with full

convolutional layers. Rescaling the neural network with the 2 hyper-parameters will slowly

decrease accuracy. From the value of 0.25 of the hyper-parameters, the accuracy will drastically

drop, so it is not recommended to reach such a value if high accuracy is wanted.

3.4 Single Shot MultiBox Detector

3.4.1 Introduction

The real time detection is achieved using Single Shot MultiBox Detector [8] framework. The

novelty consists of the localization and classification being done in a single forward pass of the

network.

A Single Shot MultiBox Detector (SSD), as described by its authors in [8] is a method for detecting

objects in images using a single deep neural network. This method discretizes the output space of

bounding boxes into a set of default boxes, over different aspect ratios and scales per feature map

location. At prediction time, the network generates scores for the presence of each object category

in each default box and produces adjustments to the box, to better match the object shape.

Additionally, the network combines predictions from multiple feature maps, with different

resolutions, to naturally handle objects of various sizes. Some examples of objects detected using

this method are presented in Figure 3.4.1 a, b and c below.

52

(a)

(b)

53

(c)

Figure 3.4.1 - Detection examples of SSD on personal dataset

In the above detections, each color corresponds to a category of objects.

3.4.2 Architecture

To understand better what the Single Shot MultiBox Detector does, the provenience of its name

should be analyzed:

 Single Shot – the object localization and identification are done in a single forward pass

through the network

 MultiBox – this is a novelty with regard to the bounding box regression and it is explained

in detail in the following

 Detector – since the network is an object detector

The SSD’s architecture is built on the VGG-16 architecture, discarding the fully connected layers.

The reason why VGG-16 was used as a base network was because of its great performance in high

quality image classification. Apart from this, the FC layers were discarded, adding instead

convolutional layers, in order to allow extraction of features at multiple scales, while also

decreasing the size of the analyzed frame at each layer.

54

3.4.3 MultiBox

In this new approach, in order to express the loss of the predicition , two new components were

added: confidence loss and location loss; the first one measures how confident the network is about

the objectness of the computed bounding box, while the latter one computes how far the network’s

predicted bounding boxes are from the ones in the training set. Briefly:

multibox_loss = confidence_loss + α location_loss (11)

Multibox Priors

In MultiBox, the ‘prior’ entities are created, which are pre-computed bounding-boxes that

match as much as possible the original truth boxes. These are used as predictions and the scope is to

get them closer to the real boxes. The SSD architecture associates each feature map with default,

carefully chosen bounding boxes, hence it generalizes any type of input, without the need of pre-

training.

While the accuracy increases, these architectures offer amazing opportunities for real-time

detection, from military applications, recognizing traffic signs or lane detection algorithms, to

teaching robots like Nao how to interact with the world.

3.4.4 Intersection over Union ratio

This is an evaluation metric that measures the accuracy of an object detector on a particular dataset.

The priors discussed above need to be chosen in such a way that their IoU - Intersection over Union

ratio – is higher than 0.5. Such a number is not good enough, as it can be noticed from Figure 3.4.4.1,

but it offers a good starting point for the bounding box regression algorithm and it is certainly better

than the previous approach, of starting the prediction with randomly initialized coordinates.

In order to apply the IoU and evaluate an object detector, two boxes are needed:

 the ground-truth bounding box – that is the manually labeled bounding box, in which the

coordinates of the object are given

 the predicted bounding boxes – from the model that is tested

The intersection over Union is defined as:

IoU =

 (12)

This ratio is computed because in practice, it is desired that the two boxes overlap as much as

possible. Even though their perfect match is not sought, a higher ratio however indicates a better

prediction.

55

Figure 3.4.4.1 Dog detection example - the corresponding ground-truth and predicted bounding boxes

So, the MultiBox starts with priors as predictions and attempt to regress closer to the ground truth

bounding boxes; the result is that this architecture has a total of 1420 priors per image, allowing

coverage of input images of different dimensions. In the end, MultiBox retains only a number “K”

of top predictions that minimized both the location and confidence losses.

As a remark, the classification is not performed by MultiBox, but by SSD. Thus, for each predicted

grounded box, a set of “c” class predictions are computed, for every possible class in the dataset.

In conclusion, combining the MobileNet neural network with a SSD, not only can we obtain a

smaller neural network, but also, a faster one, with the cost of a small reduction of accuracy.

Other remarks from the SSD paper are the following:

 SSD confuses objects from similar categories; this might happen because locations for

multiple classes are shared;

 more default boxes bring forth more accurate detections, with a speed trade-off;

 having MultiBox on multiple layers result in having a better detection also, since the

detector runs on features at multiple resolutions;

 smaller objects are detected with less accuracy, as they might not appear across all feature

maps.

56

57

4

The implemented vision

algorithm

Having in mind all the considered aspects, regarding the limitations of the robot (discussed in

Chapter 1, section 1.2 The robot Nao – Technical details and also in Chapter 2, section 2.4.

Limitations), a computer vision algorithm was thought, that would have the power to generalize the

Aldebaran module, taking into account Nao’s limitations; thus, a more complex program was

implemented, in Python.

4.1 Working principle

The general flow diagram of the implemented algorithm is presented in Figure 4.1.4 and the

working principle is explained in detail in the following.

 First of all, the arguments that will be given as input for a specific frame are created; they

are necessary for the program to know different parameters; these are:

 image – the path of the capture that will be fed to the network

 model - the parameters of the network

 confidence – minimum probability to filter weak detections

 Afterwards, some presetting for using the ALSpeechRecognition module need to be made:

the language and the vocabulary are set: the language is English and the recognized words

will be “start” and “finish”. More details about this module can be found in the robot’s

documentation [1].

 Once this module is on (that is the robot subscribes to the event of SpeechRecognition), if a

speaker is heard, the element of the list that best matches what is heard by Nao is placed in

the WordRecognized key. This will be used in some next steps.

 Until this moment, the robot is set for speech recognition, having as vocabulary the words

"start" and "finish". Therefore, it starts listening for voice commands.

58

 While the user’s words differ from "start" and the accuracy probability is smaller than a

threshold of 0.45, Nao keeps waiting for a valid start command.

 Considering the start voice command has been given and the robot has a confidence of over

45% of that, the next step is to take pictures using the robot’s camera, with the help of

another module, ALPhotoCapture. The parameters of the capture are presented below.

Camera ID: top camera

Color space: RGB

Resolution VGA (640x480)

Picture format: jpg

Table 4.1.1 - Parameters of ALPhotoCapture module

 The classes that will be recognized by the convolutional neural network on the robot are

stored in a list; the categories of objects that Nao will be able to recognize are the

following: plane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog,

horse, motorbike, person, potted plant, sheep, sofa, train and TV monitor. In figures 4.1.1

and 4.1.2, examples of the robot recognizing some of these objects are shown.

Figure 4.1.1 – Detection algorithm on Nao, with pictures taken with a 12 MP camera (on smartphone)

59

Figure 4.1.2 – Detection algorithm on Nao, with pictures taken with an 8 MP camera (on

smartphone)

 After all the initializations are done and the start command is given, the robot enters a state

in which it listens for the stop command, while executing the main program.

 The next step is to take pictures, with the parameters specified in Table 4.1.1 and to store

them into a specific location in Nao’s memory.

 The captured frame is then loaded into the program and it will be used to feed-forward the

convolutional neural network; but some preprocessing needs to be made before.

 This preprocessing is made by the OpenCV’s function blobFromImage. Briefly, this

function creates a 4-dimensional blob from the original image; that blob contains the

necessary features of the image for the network. If necessary, the function blobFromImage

resizes the image, subtracts the mean values, scales by a factor and swaps the Red and Blue

channels. The blob is discussed in more details in the section below entitled Blob.

 After the blob is passed through the network, the detections and predictions are obtained

for each object in the image, by using the blob as input for the network

 Following, the weak detections need to be filtered out, by setting a default threshold for the

confidence for each detection; in this paper, the threshold was set to 30%. In case of

success, the robot outputs the name of the class through the microphone and also on the

console, as in Picture 4.1.3.

 At this moment, the detections for each object are made and ready to be output by the

robot, using the ALTextToSpeech module.

 During the tests, some improvements for this initial approach were made.

 One idea was to prevent the robot from repeating the same class name several times for a

single capture. That is, after this refinement, Nao would only say the name of a class once,

even though multiple instances could be present in a capture. This solution was brought

because repeating the class names is not necessary for the proposed application; its scope is

to detect and recognize objects around.

 Another improvement that was made in order to reduce redundant information was to

eliminate the class labels from a capture that were identical to the previous one. In this way,

60

Nao interprets only the new objects that appear in the frame. A capture before applying this

update is show below.

Figure 4.1.3 - The recognized classes by Nao

 The robot outputs the class names of the detected objects and after this, it has two options:

either it stops, due to the voice command, using the same principle explained for the start

command, or it continues to capture pictures of the environment and to give information

about it.

Blob

A Caffe network is composed of layers and each one of them is made up of blobs. Therefore, it can

be assumed that a blob is the basic building block in Caffe networks. These entities can be thought

of as envelopes, to conveniently access data, since it is of utmost importance to encapsulate data

similarly, thus ensuring modularity when designing the networks.

The blobs are 4-dimensional arrays with convenient methods, which store weights of the neurons,

activation values and the derivatives of the two. They keep the same dimensions (heights and

weight) and the same depth (number of channels), so they will all be processed in the same manner.

61

Figure 4.1.4 - General flow diagram of the program

62

4.2 Object detection using MobileNet SSD

In order to implement on Nao an object detection algorithm, several steps were made. First of all,

some algorithms were implemented on a Desktop AMBUJ97, with 8 GB of RAM and a i5-4200H

CPU @2.80GHz processor. Afterwards, I wanted to port the successful algorithms on the robot, but

because of its limitations, this was a difficult step.

Two main algorithms were tested on the desktop computer and will be presented in the following

sections; the first one could only be implemented on the computer and the second one was ported

on the robot.

4.2.1 Real time object recognition model, using Tensorflow

The first algorithms that were studied were object classifiers, object identification, shape detection

[10], pattern recognition and eventually a more complex algorithm was chosen as a possible

implementation on Nao. That was an object recognition program, which could detect and label the

objects in a video in real time; this project was achievable, because Google released in June 2017 an

Object Detection API (Application Programming Interface), which includes trainable detection

models, listed in Table 4.2.1.1 and presented in more details on their blog [11]. The weights were

trained on the COCO dataset for each model and one of them is designed to operate on less

complex machines, thus it can be run in real time on mobile devices.

About APIs

Briefly, an application programming interface is an application software, which allows two

applications to interact with each other; it can be regarded as the messenger that delivers the user’s

request to the system and in the end providing the results back.

The API that Google released was trained on COCO dataset [12], so on approximately 300,000

images, resulting in 90 detectable classes. Some examples of the trained images are presented

below, in Figure 4.2.1.1 a and b.

Figure 4.2.1.1 (a) - COCO 2017 object categories, labels not shown; source: [12]

Figure 4.2.1.1 (b) - COCO dataset examples; source: [12]

63

Models

The API comes with five models, presented in Table 4.2.1.1, each providing a different accuracy

and speed when placing the bounding boxes, so that the user can chose the most suitable one for a

specific application.

Model Name
Mean Average

Speed
Precision

SSD with MobileNet 21 fast

SSD with Inception V2 24 fast

R-FCN with Resnet 101 30 medium

Faster RCNN with Resnet 101 32 medium

Faster RCNN with Inception Resnet v2 37 slow

Table 4.2.1.1 - Precision and Accuracy for the models provided by Google’s API

In this table, the notations below were made; they all represent object detection systems that

combine different features computed by a convolutional neural network.

 SSD – Single Shot Detection

 R-FCN - Region-Based Fully Convolutional Networks

 R-CNN: Region-based Convolutional Neural Networks

The mean average precision (mAP) measures the accuracy of the detection; in this case, it is the

product between precision and recall, on detecting bounding boxes. And since the precision

measures the accuracy of prediction and the recall is a measure of how good all the positives were

found, it can be concluded that the mAP is a good measure of how sensitive the network is, while

avoiding false alarms. More details about the models can be found on the git Tensorflow detection

model zoo [13].

Results

For the practical implementation, the first model from the five was chosen, because it is the most

lightweight from all. That model was tested on some real time videos on the computer and the

results are shown below.

64

(a) (b)

 (c) (d)

Figure 4.2.1.2 – Results from real time detection

65

(e)

Figure 4.2.1.2 – Results from real time detection

 (a) (b)

Figure 4.2.1.3 – Unsuccessful results from real time detection

Software resources

 Tensorflow

Tensorflow is a software library used for numerical computations using flow graphs, in the

following way: the mathematical operations are represented by nodes and the edges of the graph

stand for data arrays (which are multidimensional), called tensors. These tensors stand between

the nodes of the graph.

It was firstly developed in 2015 by the Google Brain team, for internal use at Google in machine

learning and deep neural network research area; but today, it is an open source library for

numerical computation used in many domains.

66

One big advantage of Tensorflow is that it has a flexible architecture, allowing the use of more

CPUs or GPUs in a desktop or mobile device, without rewriting the code.

However, the biggest problem I encountered regards memory problems. Even though on the

computer, this did not appear as a problem, when porting the program on the robot, it turned out

to be a huge obstacle, thus leading me to choose an architecture with another model, a Caffe

model.

 OpenCV

Open Source Computer Vision Library (OpenCV) [14] is another open source library, which

was developed for computational efficiency, considering real time applications. It has C++, Java

and Python interfaces and supports Windows, MacOS, Linux, iOS and Android.

This library has more than 2500 optimized algorithms, used for several vision algorithms; some

examples are listed:

 face detection and recognition

 object identification

 classification of people’s actions

 camera movement tracking

 moving objects tracking

 extracting 3D models of objects source: [14]

 combining images to get one image of the entire scene

 finding similar images in a database

Future steps

As it can be observed from Pictures 4.2.1.3 a and b, there are cases when the detection could have

been better. For instance, in the first capture from the two, the pear was misidentified, while in the

second, the apple was not identified at all. So, there is room for progress for the analyzed model.

However, getting closer to the camera solved the last problem, as it can be noticed in Figure 4.2.1.2

d.

Another good improvement would be to speed up the models, in order to integrate them on mobile

devices, such as on smartphones or cars. Additionally, other models can be trained with a personal

dataset, for personalized applications.

Last, but not least, the biggest upgrade that needs to be made is making Tensorflow less prone to

memory problems; improving memory usage and management is an area where Tensorflow

developers are working at the moment.

4.2.2 Object recognition model, using Caffe

Considering the memory restrictions that Nao imposes, a smaller sized model, designed using Caffe

framework was implemented.

67

Software resources

 Caffe

Another deep leaning framework is Convolutional Architecture for Fast Feature Embedding

(Caffe); as its developers from Berkeley AI Research team state, it is made with speed and

modularity in mind and this is why the final implementation of this project is built on this

framework.

One of the reasons why Caffe is used by research and industry developers is its speed; because

of this, state-of-the-art models are already implemented on this framework.

Caffe is written in C, with a Python interface; it supports Windows, Linux and MacOS and since

its release in April 2017, it has been a powerful tool in vision, speech and multimedia

applications.

 OpenCV

In August 2017, the version 3.3 of OpenCV was released, featuring an improved deep learning

module, dnn. This was highly convenient, since it supported Caffe framework.

As a remark, the models are not trained using OpenCV; using it, some pretrained models are

taken using deep learning libraries (like dnn) and used in programs. Thus, using the version 3.3

from OpenCV, models can be trained on some device – this process being the most time and

computational expensive – and afterwards, the model can be transferred on another machine and

can feed forward the network, in order to provide an output for the desired application.

 Single Shot Detector & Mobile Nets

As previously explained, when these two methods are combined, they provide a very fast, real-

time object detection on resource limited devices, like smartphones or development boards.

Final program

The model on which the program was designed is a Caffe version of the Tensorflow

implementation of Google's MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications [15]. The model was trained on COCO dataset and afterwards fine-tuned on

PASCAL VOC. The fine tuning was made, because the neural network was trained on a large set of

images and the final weights were adjusted using a smaller dataset, different from the training one.

Eventually, the model could detect 20 objects in images, with a 72.7 % mean average precision.

Since the model was trained on COCO dataset - Common Objects in Context - the classes that are

recognized are the following: birds, cats, dogs, cows, horses, sheeps, people, bottles, airplanes,

bikes, boats, buses, trains, chairs, sofas, tables, monitors and plants.

68

Implementation on Computer

Below, there are some examples of the previously described program, implemented on the

computer.

Figure 4.2.2.1 (a) - Successful person and horse recognition (computer implementation)

Figure 4.2.2.1 (b) - Successful plane recognition

69

Figure 4.2.2.1 (c) - Successful car and bus recognition

Figure 4.2.2.1 (c), (d) - Successful person, motorbike and car recognition

70

Figure 4.2.2.1 (e) - Unsuccessful horse recognition

Implementation on Nao

After eliminating the memory issues caused by a Tensorflow model, the biggest problem I

encountered when importing the program on Nao was when porting the packages. For instance, the

dnn module is included in a newer version of the cv2 than the robot has pre-installed and porting

this package on the proprietary platform of Nao was done by using a cross-compilation tool chain.

After the successful transfer, the robot could be used to capture frames and to feed forward them to

the neural network, getting as a result the class in the console. For here on, the improvements

presented in section 4.1 Working principle were made.

71

Figure 4.2.2.1 (f) - Successful person and plant recognition

In Figure 4.2.2.1 f, an example of the object recognition with the model used by Nao can be seen,

with the picture taken in advance and in CHAPTER 5 Experimental Results, more cases are

presented, with pictures taken directly from Nao.

As a remark, apart from the grooms, the person behind them was also recognized and considering

his position and exposure in the picture, the result is surprising.

72

73

5

Experimental results

The implemented program on Nao had identical results with the computer implementation, since the

same network was used. Following, some practical results will be presented, with frames captured

by the robot and then, an analysis of the used network will be made.

5.1. Results on Nao

For this part, the object recognition model, using Caffe, described in the previous section was

applied on frames taken directly from the robot and the practical results were the following:

Figure 5.1.1 (a) – Succesful person recognition on Nao

74

Figure 5.1.1 (b) – Succesful bird recognition on Nao

Figure 5.1.1 (c) – Succesful dog recognition on Nao

75

Figure 5.1.1 (d) – Succesful airplane recognition on Nao

Figure 5.1.1 (e) – Succesful cat recognition on Nao

76

Figure 5.1.1 (e) – Succesful car recognition on Nao

In Figures 5.1.1 a to e, there were examples of the algorithm applied on frames taken in advance on

Nao, whereas the next ones represent examples of the final program, with real time detection.

Below, on the right side there is Nao’s video monitor panel. This panel displays in real time what is

seen by the active camera of the robot’s head; on the left, in the console, the detected objects at that

moment are listed.

Figure 5.1.2 (a) - Succesful bike recognition real time dection, on Nao

77

Figure 5.1.2 (b) - Succesful chair recognition real time dection, on Nao

Figure 5.1.2 (c) - Succesful dog recognition real time dection, on Nao

Figure 5.1.2 (d) - Succesful person recognition real time dection, on Nao

78

5.2. The performance of the Convolutional Network

For this part, several instances from 3 different classes were analyzed, in order to examine the

accuracy of the implemented network on the robot. The expected result was a mean average

precision of 72.7%, as the model is supposed to perform [15], but some tests with personal archive

pictures was implemented to demonstrate its effectiveness.

The results are presented in Table 5.2.1 and in Figure 5.2.1 an example of the test pictures for the

cat class is shown (27 pictures have been used for testing this class).

Table 5.2.1 - Example of test pictures

objects to true true false false
accuracy

be recognized positive negative positive negative

cat 22 0 0 5 0.81

person 54 0 1 30 0.64

car 39 0 0 11 0.78

Table 5.2.1 - Results from the Caffe model

79

The accuracy was computed using the formula:

 ()

()⁄ (13)

where:

 tp represents the True Positive cases, namely the ones when the real cases were positive and

the predicted ones were also positive;

 tn stands for True Negative and this number counts the cases when the real case was

negative and the predicted was also negative;

 fp indicates the False Positive cases, specifically those when the real case was negative and

the prediction positive;

 fn represents the False Negative cases, when the real case was positive, but the prediction

was negative.

The precision can be calculated using the same notations in the following way:

()⁄ (14)

Consequently, for the analyzed classes presented in Table 5.2.1, and taking formula 13 into account,

the mean accuracy is 0.74. Similarly, using Table 5.2.1 and formula 14, for some classes, the

precision is 1.

As illustrated in Figure 5.2.2, it is obvious that when the objects that are desired to be identified

have a more natural position, the recognition will be successful, in contrast to the cases when only

parts of them are observable.

80

Table 5.2.2 – Successful vs. unsuccessful people recognition

As the figure above suggests, if parts of objects are hidden or if they have different positions than

normal conditions - meaning the training conditions – the recognition will not be successful.

81

6

Conclusions and

future steps

6.1 General Conclusions

The main objective of the thesis was to develop a program to help the humanoid robot Nao

recognize objects around and take actions autonomously, depending on what is detected; this goal

was accomplished and some improvements were made.

The final application comprised of three parts: training the network, testing it and detection plus

recognition. In this way, the implemented program enables Nao to recognize up to 90 classes;

thereby, using the other pre-installed features on the robot, it will be able to take actions

autonomously, depending on what it sees.

In its current state, Nao is able to perform object detection and recognition, using vocal commands

to start and stop the program. For this project, convolutional neural network were used, specifically

a combination of MobileNets and SSD.

The implemented algorithm works in the following way: after launching, Nao waits for a start

command; when given, it begins the main program by taking frames of the surrounding. From the

frames that the robot takes, the algorithm reports the presence of objects around it, using one shot at

a time. The used architecture, MobileNets, especially made for embedded applications, assures a

compromise between latency and accuracy, while the SSD MultiBox technique ensures a real-time

detection. Using this approach, the algorithm performs a real-time classification and outputs the

identified object, therefore making it capable of decision making, depending on the output.

This translation from the three-dimensional world into a particular behavior increases the freedom of

the robot, making it able for autonomous human interactions.

82

6.2 Personal contributions

In order to achieve the proposed goal, my personal contributions for the final algorithm were the

following:

 importing the necessary libraries of OpenCV3 on Nao

 importing the pretrained model with 20 classes on the robot

 training the network for 90 classes and importing the new model on Nao

 implementing the speech recognition and the text to speech modules in Python, starting from

the modules offered by Aldebaran

 integrating the speech recognition, the object recognition and the text to speech modules into

the final program, in Python

6.3 Future work

With the high evolution nowadays in the robotics and autonomous systems area, the project

presented in this thesis is just a first step towards making Nao less dependent on humans. Since

research is actively carried out in this domain, it is just a matter of time until free source portable

recognition programs will be available to general public.

An interesting step towards innovation would be training the network that is on the robot for other

objects recognition; these objects could be specific for certain applications, thus enabling users to

have a robot able to detect for instance when certain people enter a room. A similar scenario would

be training Nao to recognize people on the ground, thus making it very useful as elderly assistant.

Apart from emergency cases, the robot could be a real help for old or even blind people, by

recognizing traffic signs and lights or specific features of the road.

Another good implementation of this thesis’ project could be helping children with mental

disabilities in therapy modules. It is a well-known fact that working with children with mental

illnesses is not an easy task and recent research showed that introducing small robots like Nao in

some therapies might have a good impact on the overall results.

Looking towards the future, Nao could be a great help either as an assistant, teacher, or simply as a

tool for making children interested in technology; and with the great advances of Artificial

Intelligence, it could become a powerful device in every home.

83

References:

[1] [Nao’s Modules] Aldebaran Robotics website (http://doc.aldebaran.com/1-14/dev/, accessed on

20
th

 October 2017)

[2] [Goodfellow, 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016, Deep

Learning, MIT Pres

[3] [Stanford Course, 2017] Fei-Fei Li, Justin Johnson, Serena Yeung; 2017, Course Notes,

CS231n: Convolutional Neural Networks for Visual Recognition , Stanford University

(http://cs231n.github.io, accessed on 24
th

 May 2018)

[4] [Adam Harley’s application] On-line application for a convolutional network layers’

visualization (http://scs.ryerson.ca/~aharley/vis/conv/flat.html accessed on 1
st
 June 2018)

[5] [SE Network paper, 2018] Jie Hu and Li Shen and Gang Sun, 2018, Squeeze-and-Excitation

Networks, IEEE Conference on Computer Vision and Pattern Recognition

[6] – [MobileNets paper, 2017] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,

Weyand, T., Andreetto, M., & Adam, H., 2017, MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Application

[7] [Batch Normalization paper, 2015] Ioffe, Sergey & Szegedy, Christian, 2015, Batch

Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

[8] [SSD paper, 2016] – Liu W. et al. SSD: Single Shot MultiBox Detector, 2016, In: Leibe B.,

Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. Lecture Notes in Computer

Science, vol. 9905, Springer

[9] Matt Harvey, Jul 11, 2017, Creating insanely fast image classifiers with MobileNet in

TensorFlow

[10] – [OpenCV Shape Detection], Adrian Rosebrock, 2016, Image Processing, OpenCV 3,

Tutorials (https://www.pyimagesearch.com/2016/02/08/opencv-shape-detection, accessed on 20
th

November 2017)

[11] [Google Open Source Blog], Jonathan Huang, 2017, Google Open Source Blog

(https://opensource.googleblog.com/2017/06/supercharge-your-computer-vision-models.html,

accessed on 20
th

 January 2018)

[12] [COCO dataset] (http://cocodataset.org/#explore, accessed on 3
rd

 December 2017)

[13] [Tensorflow detection model zoo]

84

(https://github.com/tensorflow/models/blob/477ed41e7e4e8a8443bc633846eb01e2182dc68a/object

_detection/g3doc/detection_model_zoo.md, accessed on 25
th

 November 2018)

[14] [Caffe deep learning framework] (http://caffe.berkeleyvision.org/, accessed on 3
rd

 December

2017)

[15] [MobileNet] (An implementation of the MobileNet architecture, available at

https://github.com/Zehaos/MobileNet, accessed on 12
th

 December 2017)

[16] [MINST dataset] (available at http://yann.lecun.com/exdb/mnist/ , accessed on 6
th

 December)

Annex 1

