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  1 
 

Introduction 
 

1.1 Motivation 

With the high evolution nowadays in the robotics and autonomous systems area, the robots need to 

be skillful in a particular domain. Achieving this means getting information about the environment 

through sensors; and since vision is the most important sense, offering up to 80% of all impressions  

by means of our sight for humans, then  one of the richest and most useful information is the one 

captured by cameras.  

 

Developing algorithms for detecting objects with high accuracy remains a challenge and a domain 

of research in robotics. And this is a problem of utmost importance, since only by having a good 

perception of the surroundings, will the robots be able to perform specific tasks.  

 

1.2 The robot Nao 

General aspects 

Nao is the most used humanoid robot for education worldwide; its friendly aspect, mobility and 

possibility to be fully programmed makes Nao a powerful tool in the education and research areas 

like helping children develop their robotics appetite, aid for autistic children in therapy modules and 

laboratory assistants.  

The humanoid robot is designed to be personalized, depending on the wanted application. Not only 

does it have several sensors and motors that can be manipulated by the user, but it also has a user-

friendly programming software, which enables an easy interaction with these sensors and motors. 

Thus, using Choregraphe, Nao can be programmed to have a particular personality.  

The robot was firstly presented in 2006 and since then, it continued to develop. It was firstly 

designed with the idea of helping children with mental disabilities in mind and this project aims to 

make a step forward in this direction. With a view to helping Nao become more autonomous and 
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implicitly making the interaction with the robot more enjoyable, an object detection and recognition 

system embedded on the robot was developed.   

Technical details 

While working on the main program, I encountered several limitations, imposed by the robot; and 

since the application was intended to be embedded from the beginning, the restrictions needed to be 

acknowledged. Some technical features are presented in Figure 1.2.1.  

Currently in the fifth version, about 10 000 Nao robots have been sold around the world, in 

educational institutes from over 70 countries. The new generation of Nao has a 1.6 GHz processor, 

two HD cameras and a height of 58 cm; also, its big advantage is its humanoid look, as it can be 

observed from Figure 1.2.1. The robot has 4 microphones, through which it can communicate in 8 

languages; apart from these, it is fitted with a distance sensor, two infrared emitters and receivers, 9 

tactile sensors and 8 pressure sensors.  

 

Figure 2.2.1 - Technical features of Nao 

 

The robot’s shape, along with its capacity to move, thanks to its 25 degrees of freedom allow it to 

move, to maintain its equilibrium and to be aware of its standing or lying position; this equilibrium 

ability is presented below.  
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Figure 1.2.2 - Mobility & equilibrium of Nao 

Available resources 

With 58 cm height and 28 cm width, the 4.5 kg robot is able to perform complex moves, from 

moving forward and backwards, sitting down and getting up, to stretching and maintaining 

equilibrium on a single foot, as shown in the Figure 1.2.2.   

Battery  

Nao has a Lithium Ion battery with nominal voltage 21.6 V, autonomy of 90 minutes at normal use 

and a charging duration of 3 hours; the robot can be used when it is plugged in. 

Motherboard 

The fourth version of Nao - which I used in this project – has two main processors, one at the head 

level and one at the torso level.  

 The one at the head level is an Intel x68 processor, ATOM Z530, with a cache memory of 

512 KB; the clock rate is 1.6GHz for the 32 bits instruction set. It is a single core processor, 

designed mainly for mobile applications and it has the advantage its power efficiency. 

Additionally, ATOM Z530’s architecture is based on Bonnell’s microarchitecture, thus 

being able to execute two instructions per cycle.   

 The processor from the torso level is an ARM7TDMI type, which controls the actuators 

(that move the robot). The ARM7TDMI microcontroller has a 32 bits instruction set, of type 

RISC, also offering good performances for reduced power consumption. The local 

microcontrollers from the actuators are Microchip 16-bit dsPICS and they communicate 

with the second CPU by two buses, RS-485 type, at a throughput of 460 Kb/s.  

Audio  

The robot has a stereo system, comprised of two speakers on each side of the head and 4 

microphones also placed on the head, having a frequency range of 300Hz – 8KHz.    
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Video 

On the front side of Nao, two identical video cameras are placed, which offer images of 1280x960 

resolution, at 90 frames per second. They are used to identify objects around and the space where 

Nao moves.  

Actuators 

The actuators are the motors that permit the robot to move; they are placed at joints and Nao has 25 

actuators, hence its great mobility.  

 

Figure 1.2.3 - Nao’s actuators 

The multitude of the robot’s actuators placement is presented in Figure 1.2.3; these offer Nao 25 

degrees of freedom. So, there are 25 independent parameters that define Nao’s state, starting from 

its head to its feet, as follows:  

 

Location Degrees of 

freedom 

Observations 

Head 2 the head can yaw and pitch 

Arm 10 5 in each arm: 2 at shoulder,  

2 at elbow, 1 at wrist level 

Hand 2 1 in each hand, for hand grasping 

Pelvis 1 - 

Leg 10 5 in each leg: 2 at ankle, 1 at knee, 2 at hip level 
 

Table 1.2.2 - Degrees of freedom for Nao 
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1.3 The proposed solution 

There are many projects considering the object recognition problem and each is particularized for 

its specific task, considering different conditions and training datasets. This project aims to propose 

a way to detect and recognize objects for the Nao robot. This implies the robot taking several 

pictures using its front camera and applying an algorithm, in the end outputting though its 

microphone the identified objects. This local processing has the great advantage of independence 

from other resources, like an external camera or memory, but there are also some limitations that 

need to be considered.  

Particularly, the processed images have a limited resolution, of               and the processing 

resources are also limited, namely the processor and the memory.  The user has limited access to 

resources, specifically an ATOM Z530 1.6 GHz CPU and a 1 GB of RAM. In addition, a very big 

disadvantage of working on the robot is that it does not support some libraries used in every 

computer vision application, such as OpenCV3, or frameworks like TensorFlow.  

Consequently, a compromise needs to be made between the computational power of the robot, its 

limited memory and a good network architecture, that produces reasonable results.  
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2 
 

Nao’s recognition 

module 
 

2.1. NAOqi Framework 

In order to make the work with the robot easier and more user-friendly, the NAOqi framework was 

created. Its role is to offer the possibility of working with multiple modules that the robot has, like 

video, audio and motion modules, keeping in mind the need for parallelism, synchronization and 

events, used for a robot. In this way, the user can access the needed resources, while sharing 

information between them.  

This framework allows introspection; this means that the framework knows the available functions 

from the modules and where to look for them. So, the robot knows what are the available API 

functions. 

NAOqi Modules APIs 

 The robot has several modules APIs: 

 Motion – offers methods which allow Nao to move, by controlling  the joint stiffness and 

position, or to walk 

 Audio – offers modules to play or record  audio files, detect sound events and even  speech 

recognition and text to speech methods 

 Sensors – deals with the bumpers, tactile hands and head, the battery and LEDs 

 Vision - offers modules for detection of: backlighting , darkness, faces, movement, photos 

and red balls. 

In order to access the NAOqi Modules, a broker is needed; its scope is to load libraries 

containing the wanted modules and also to provide directory services and network access for 

calling them. The hierarchy is presented below, in Figure 2.1.1.  



24 
 

To work with modules, proxies are needed, that act like the corresponding modules. So, to make 

the robot able to react to defined circumstances, modules can subscribe to events. For instance, 

if the robot listens for the user’s words, in order to recognize some specific ones from a 

vocabulary, a proxy needs to be subscribed to “WordRecognized’. After this, the reaction is 

specified is case of successful recognition.  

Broker 

This is an object that has two roles: it provides directory services (allowing the user to find 

modules and methods – see Figure 2.1.1) and works transparently.  

Proxy 

This is an object that behaves as the module it represents. Concretely, if the user creates a proxy 

to the ALMotion module, they get an object that contains all the ALMotion methods. The 

creation of a proxy is simple: the user has to use the name of the module in their code (local 

call). More details about this can be found in the NAO Software 1.14.5 documentation about 

NAOqi Framework [1]. 

 

Figure 2.1.1 - The relation between brokers, modules and the corresponding methods 

From the vision class, apart from the mentioned modules, the robot has one which is noteworthy, 

because it offers vision learning and recognition capabilities: ALVisionRecognition 

ALVisionRecognition 

The scope of this module is to make Nao recognize previously learned objects or pictures.  
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Working principle 

This vision module is easy to work with using Choregraphe. 

2.2. Choregraphe 

This is a user-friendly  multi-platform desktop application, developed by Aldebaran Robotics, that 

allows programming of the robot . This graphical environment enables the user to make connections 

of high level behaviors easily, by using specific behavior boxes. Apart from this, it gives the 

possibility for fine tuning of joint motions. Finally, at the lowest level, this application allows 

programming in Python.  

Choregraphe provides the user with the NAOqi functions, in a friendly way. Thus, the user can 

execute some predefined behaviors, by linking some specific boxes. For instance, if the user wants 

the robot to execute some chained actions, they have to link the according boxes sequentially; if 

they want to execute several behaviors in the same time, the boxes need to be linked parallel. An 

example of a series and parallel linking, to obtain a more complex behavior is presented in Figures 

2.2.1 and 2.2.2. 

 

Figure 2.2.1 - Parallel actions by Nao in Choregraphe

 

Figure 2.2.2 - Series actions by Nao in Choregraphe 

Figure 2.2.1 presents parallel actions performed by the robot in Choregraphe, specifically standing 

up and saying “Hello, I will present you my multitasking ability through Choregraphe”; and Figure 

2.2.2 shows series actions performed in a similar manner, like standing up, then saying “Now, I am 

going to track the sound in this room” and next performing sound tracking until stopped.  

To conclude, working in Choregraphe can be intuitive. One of the interesting modules Nao has is 

ALVisionRecognition and some tests were made, in order to analyze it. 
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2.3 Recognition workflow 

ALVisionRecognition module aims to recognize objects, depending on previously learned models. 

Below is presented a diagram of how this module briefly works: 

 

Figure 2.3.1 – ALVisionRecognition Module Workflow 

 

Teaching the robot to recognize specific objects 

The robot learns images, objects and pictures using its video monitor. For this, the user has to 

pursue the following steps: 

 connect to a robot – either real or virtual 

 access the video monitor - in order to see what the robot’s camera sees 

 execute the learn command  -  now, the user is given 4 seconds to place the object in a 

desired position relative to the robot’s camera; after this, a capture is taken, by switching to 

QVGA resolution 
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 execute the draw command  - in this moment, the user is able to draw the contour of the 

object, segment by segment, in order to differentiate the object from  its background  

 label the new object and select the corresponding  side 

 export the vision recognition database on the robot 

 

After the vision recognition database is imported on Nao, a vision recognition box needs to be 

created using Choregraphe and tested. If the user does not want to use this environment, they can 

also access the ALVisionRecognition module from Python. The steps are described in the 

Aldebaran documentation [1].  

Similar with other extractor modules, the results from the object recognition are placed in the 

ALMemory. The webpage of the robot can be accessed in a browser, using its IP and by selecting 

Advanced -> Memory -> PictureDetected; when something is recognized, the ALValue changes 

and its parameters are explained in the following diagram: 

 

Figure 2.3.2 – Parameters of PictureDetected 

2.4. Limitations 

Although the idea of making the robot recognize previously learned object  is a good one, the 

module has big limitations. Firstly, it enables the recognition of key points in a capture taken by the 

robot, thus making the real-time recognition  very difficult. Also, the module is only useful for 

recognizing objects that were previously learned; therefore, the robot cannot perform in this area 

when shown a different entity from the same class. Last, but not least, a great disadvantage is that 

for a successful recognition, the object needs to be in the same conditions as in the training process. 

The limitations are presented in the table 2.4.1. 

Limitation Additional information 

distance it must to be between half and twice the distance used for learning 

light conditions - 

angles the inclination needs to be less than 50° 

rotation - 

 

Table 2.4.1 – Limitations of ALVisionRecognition module 
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Apart from these, the module has other restrictions: 

 It cannot recognize untextured pictures – because the recognition is based on key points, not 

on the object’s shape. Also, after training, the database is exported on the robot and for 

better performance; this contains only essential information for detection.  

 At the moment, as previously mentioned, it is not able to recognize object classes (for 

instance a person), but instances (in this example, a person in general). 

 Several learning processes reduce the detection rate – this happens, because the detection 

algorithm on the robot works in the following way: every detected key point in the current 

image is compared with one point from the database; and if two scores for choosing between 

two classes are too close, the key point is dropped and it is not associated with any of the 

two possible objects.    
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3 
 

Recognition using 

convolutional 

networks 
 

3.1. Neural network 

An artificial neural network is a computational brain-inspired model, intended to replicate the way 

humans learn. Since they are similar to the way biological neural networks in the human brain 

process information, the neural networks comprise of input, output and hidden layers; the latter ones 

are meant to transform the input (for instance, an image) into something that the output can use (like 

a label). This is why they are powerful tools for finding patterns that are too complex for the human 

perceptions.  

3.1.1 Perceptrons 

The perceptron is an algorithm of supervised learning of binary classifiers, firstly developed in 1957 

by Frank Rosenblatt, in the Cornell Aeronautical Laboratory. The perceptron was intended to be a 

machine (not an algorithm) in the beginning and it was used for image recognition. After a period of 

stagnation, the idea bloomed again, when it was admitted that a multilayer perceptron would be 

more efficient.   

From another perspective, a perceptron is a single layer neural network and a multi-layer perceptron 

is called a neural network.  

The working principle is the following: a perceptron takes the input – which is represented by more 

binary inputs -, processes it and produces one single output, as in Figure 3.1.1.1. 
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Figure 3.1.1.1 – Working principle of the perceptron 

In this example, the perceptron takes three inputs, x1, x2 and x3 and outputs y; of course, the number 

of inputs can be larger. In order to compute the output, Rosenblatt had the following idea: he 

proposed giving each input some weights (w1, w2 and w3 in the analyzed case); these are real 

numbers, which express the degree of importance of the input, with respect to output. Following, 

the binary output is determined depending on the sum ∑      
 
   : if it is less or equal than a 

threshold, the output takes one value and if it is greater than the proposed threshold, the output 

takes the other value. As a remark, the threshold is a real number as well, which characterizes the 

neuron. Concretely, this idea can be written as:  

         if ∑      
 
    < threshold 

              out = 0; 

         else                                                                                                  

(1) 

              out =1; 

 

To make a parallel with the human brain, the perceptron can be regarded as a model of decision 

making. Using this idea, an efficient way of making a decision is by considering all the factors as 

inputs and assign each of them a level of importance, that is a weight. Depending on the chosen 

threshold, an optimal decision – the final output – can be taken, considering all variables.  

Of course, taking a final decision based only on one operation is the simplest case; a complex 

network of perceptrons can take more subtle decisions.  

3.1.2 Architecture of a Feed-Forward Neural Network 

A feed-forward neural network is the simplest artificial network; it has more neurons (also called 

nodes) arranged in layers. While the nodes from adjacent layers have connections, each connection 

has an associated weight.  

An example of such a network is presented in Fig. 3.1.2.1. 
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Figure 3.1.2.1 – An example of a feed-forward neural network, with one hidden layer 

Thus, a feed-forward neural network consists of the following types of layers: 

 Input layer – the input nodes provide the following layers  information about the outside 

world; no computation is performed at this layer; also, the input nodes are mandatory in a 

neural network. 

 Hidden layer – the nodes from this layer do not have a direct connection with the outside 

world; they perform computations and transfer information from input to output; unlike the 

input or output nodes, the hidden ones may or may not be present in a feed-forward network. 

 Output layer – it is responsible for computations and transfer of information from the 

network to the outside world 

Obviously, in a feed-forward neural network, the information travels in only one direction: from 

input to output; so there are no loops or cycles. Examples of this type of network are the single layer 

perceptron, presented in the previous paragraph of this section and also the multi-layer perceptron, 

which shall be discussed in the following section.  

3.1.3 Multi-layer Perceptron 

This type of network contains one or more hidden layers and unlike the single layer perceptron, this 

one can learn non-linear function. 

An example of such a network is shown in Figure 3.1.1.2. In that network, the first layer – which is 

the first column of perceptrons – makes very simple decisions, by analyzing the input. Afterwards, 

the second layer takes as input the output of the first layer and takes a decision, at a more complex 

level than the first one. Following this rule, multi-layer networks can be imagined for more 

sophisticated problems. Of course, the output layer provides the final result.  

Mathematically, the multi-layer network problem can be written as: 

if ∑      
 
    + bias<0 
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out = 0; 

     else                                                      (2) 

out =1; 

The bias = - threshold and it measures how easy it is to get the perceptron to output a one. So, the 

bigger the bias, the easier it is for the perceptron to output a one; and of course, for a negative bias, 

it is difficult for the perceptron to output 1.  

3.1.4 Activation functions 

The process of creating an efficient leaning algorithm is difficult and this is why making some 

adjustments during this process is a very good idea. Specifically, let us take the example of having 

some images of animals provided and an animal classification network is needed. In order to see 

how the process of learning works, some small changes in the weights or bias are made; it is desired 

that one small change produces a small corresponding change in the network’s output. 

Schematically, this is what is wanted:  

 

Figure 3.1.4.1 – Neural network with one hidden layer 

As Figure 3.1.4.1 suggests, a small change in any weight or bias causes a small change in the 

output.  

But sometimes, a small change in the weights or biases can cause the output to wrongly flip from 

one value to the other; and that flip can cause the next layer to change its parameters, thus changing 

the behavior of the whole network.  

To solve this problem, a neuron is introduced, that performs a certain fixed mathematical function 

operation: sigmoid, tanh or ReLU. They have the following characteristics: 
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Table 3.1.4.1 – Activation functions 

 

 

Figure 3.1.4.2 – Graphical representation of the activation functions  

These functions take as input real values and shrink the range to a certain interval, specified Table 

3.1.4.1.  

3.1.5 Back-propagation Algorithm  

This is the process by which an artificial Neural Network is trained. As it will be discussed in the 

following sections, neural networks can learn their weights and biases, using an algorithm, gradient 

descent, which computes the gradient of the cost function; and the algorithm to do this is known as 

back-propagation. 

The base of this algorithm is an expression for the partial derivatives of the cost function C, with 

respect to any weight or bias in the network, 
  

  
. Mathematically, this expression gives information 

about how fast the cost changes, when the weights change; practically, back-propagation gives 

Activation functions 

Name Operation Range 

Sigmoid σ(x) = 1 / (1 + exp(−x)) [0, 1] 

Tanh tanh(x) = 2σ(2x) − 1 [-1, 1] 

ReLU f(x) = max(0, x) [0, ∞] 
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details about how the overall behavior of the network is affected by the weights and biases 

changing.  

Cost function 

Let us consider a neural network and we desire an algorithm, which finds weights and biases, in 

such a way that the output from the network approximates y(x) (the correct output), for all training 

inputs, x, as good as possible. In order to quantify how well this goal is achieved, a cost function is 

defined. This is also referred as loss function and intuitively, it can be defined as the following:  

  (   )    
 

  
∑ || ( )   (     )||

 
        (3) 

where: 

 w - represents all the weights in the network; 

 b - represents all the biases; 

 n - is the total number of training inputs; 

 a - is the vector of outputs from the network, when x is input and the sum is over all inputs; 

So, as the notation suggests, the cost function will be given by the length of the vector resulting 

from the summation and squaring it. For this, C is called mean square error. The reasons to choose 

this specific cost function will be presented in the following paragraph.  

First of all, the mean square error function is always positive, since every term is squared. 

Therefore, its minimum is easy to be found. In addition, the cost decreases as the output of the 

network, a, becomes closer to the correct output, y(x); in this way, this function can find weights 

and biases so that C(w,b)≈0.  

This is a very good result, because knowing this, the algorithm can be thought to minimize the cost 

function; and since that depends on the weights and biases, these two can be finally found in an 

optimized form.  

As a remark, the choice of the cost function depends on the application. It can be adjusted and 

different minimizing weights and biases can be obtained, but in this paper, the cost function from 

equation 3 shall be presented. 

To conclude, the cost function is used to monitor the predictions’ error. This is why minimizing it 

means getting the lowest value of the error, which means increasing the accuracy. The algorithm 

that does the minimization is the gradient descent. 

Gradient descent 

This is an algorithm that minimizes the cost function, by getting the lowest error value. Graphically, 

if C was dependent only on one variable, the algorithm would be similar to the one in Fig. 3.1.5.1 a.  
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(a) 

 

(b) 

Figure 3.1.5.1 (a) – Gradient descent for cost function  ( ). (b) Gradient descent for cost function 

 (   ) 

If the cost function depends on two variables: the weight and the bias, the representation can be 

similar to Figure 3.1.5.1 b. Furthermore, for cases with dependency on more variables, the principle 

applies similarly, but the representation and visualization of the results is more difficult. So, for a 

better understanding, the intuitive case with the cost function dependent on two variables shall be 

analyzed further.  
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For the simpler cases, the gradient can be understood as the slope of a function, as suggested in 

Figure 3.1.5.1 a. If the gradient is high, the slope will be steep and the model will be learned faster. 

But this presents a risk, which will be discussed in the next subchapter, Importance of learning rate. 

To generalize, the gradient is the partial derivative of the cost function, with respect to all inputs.  

From the graphical representation of the function in Figure 3.1.5.1 b, the minimum of the function 

is obvious and easy to spot, but the function for more complicated problems will have a more 

complex graph. But for that case, the gradient descent rule can be explained; if a random point is 

chosen, the problem can be seen as a ball rolling down a valley, until the minimum point where it 

stabilizes.  This simulation is made by computing the partial derivatives of C, because they give 

information about the local shape of the valley and what trajectory should the ball have. Concretely, 

if the ball moves by a small amount Δv1 in the v1 direction and Δv2 in the v2 direction, then the cost 

function will be: 

   
  

   
    

  

   
                  (4) 

In this equation, w and b were replaced by v = [v1, v2] 

For simplification in writing, the following notations are made:  

 the vector of changes:  

   = (   ,    )
T 

(transposed matrix)     (5) 

 the gradient vector: 

∇C = (
  

   
 
  

   
)
 

                             (6) 

Considering these notations, equation (4) can be rewritten as: 

   = ∇C                                   (7) 

Thus, from equation (7), it is intuitive how to choose   , in order to make    negative. In 

particular, if we denote    as the learning parameter, it can be chosen as: 

   =     ∇C          (8) 

In this way, equation (7) becomes: 

   = ∇C      = ∇C   (    ∇C) =     ||∇ ||    ;        (9) 

So, the cost function will always decrease, if v changes according to (8).  

In the parallel with the ball on the hill, the ball’s move is described by the equation:  

                  ∇  ,     (10) 

Which is the adaptation of the original formula in (8). 

To sum up, the gradient descent repeatedly decreases C, until a global minimum is reached.  
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The same formulas apply if C is a function of several variables, n. 

Importance of learning rate 

This parameter represents how big are the steps that the gradient descent takes, in order to find the 

minimum. So, this parameter determines how slow or fast the function will reach the optimal 

weights. Two limit cases are distinguished; either the step is too big, or too small. 

 if the learning rate is too big, it is possible that the gradient descent algorithm does not reach 

the local minimum, but only oscillates around it, like in Figure 3.1.5.6 a; 

 if   is too small, the changes in    will also be small, therefore the minimum of the cost 

function will be found after a long time; Figure 3.1.5.6 b illustrates this situation. 

   

(a)                                                                            (b)  

Figure 3.1.5.2 (a) big learning rate. (b) small learning rate 

In practical implementations, the learning rate is varied until a compromise is obtained between 

keeping equation (7) valid, while not making the algorithm too slow. 

Example  

In this section, an example of handwritten digit recognition, using neural networks will be 

explained. This idea is elaborated in more details in Michael Nielsen’s book, Neural Networks and 

Deep Learning [2]. 

First of all, an image containing several digits needs to be split into several small images, each 

containing a digit. For instance, the initial image is segmented, like in Figure 3.1.5.3. 

 

Figure 3.1.5.3 – Sample of MNIST dataset, source: [16] 

Choosing the Network architecture 

After this step, an algorithm needs to be implemented, which for instance recognizes correctly the 

digits; this is the real challenge, since a neural network needs to be implemented, in order to 
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recognize the handwritten digits. A simple way to solve this problem is to implement a neural 

network with only one hidden layer, as in the figure below: 

 

Figure 3.1.5.4 - Neural network with one hidden layer; source: [2] 

The layers of this network are analyzed: 

 The input layer contains neurons in which values of the input pixels are encoded; the 

provided images are 28x28 pixels and they represent black and white scans of handwritten 

digits. Thus, the input layer needs to have 784 (28 x 28) neurons, each pixel having the 

values between 0 (representing white) and 1 (representing black); 

 The hidden layer of the network has n = 15 hidden neurons; but it can have a higher number 

as well; 

 The output layer has 10 neurons, each representing the corresponding digit that needs to be 

decoded by the network. For instance, if the 5
th

 neuron fires, then the output of the network 

will be 4, because the first neuron indicates the digit 0.  

To understand what the hidden layers do, let us consider the example of the 5
th

  output neuron 

trying to decide if the input image is a “4” or not. To make this decision, the output neuron takes the 

information provided by the hidden one. This neuron takes parts of the image and compares them to 

what those particular parts would look like, if in the image the digit “4” was present. For this 

particular example, the first hidden layer might detect if an image like in Figure 3.1.5.5 (a) is 

present in the input; one possible way to do this  is by assigning higher weights to the input pixels 

that overlap with the ones from the image and smaller weights for the other ones. Following the 

same example, it can be supposed that the second, the third and the fourth hidden neurons detect 

whether the images from Figure 3.1.5.5 (b), (c) and (d) are present in the input image.  
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         (a)                                (b)                         (c)                             (d)                           (e) 

Figure 3.1.5.5 - Small parts of digit “4” 

Of course, all of the images together make the initial image of the digit “4”, shown in picture 3.1.5.5 

(e); and if all neurons fire, the conclusion is that the input digit was a “4”. 

Even though in this presented case, the output is obviously depending on the hidden layers’ output, 

there are many other cases; the network can operate different than detecting parts of the initial 

image.  

The learning process 

Once the architecture is designed, it needs to be learned to recognize digits. This process involves 

two steps: choosing the dataset to learn and learning with gradient descent.  

A good database for training handwritten digits is MNIST - Modified National Institute of 

Standards and Technology database. This contains more than 70 000 images for training and 

testing, with the specifications mentioned in the previous section. 

The following notations can be made: 

 x – training input 

 y(x) – its corresponding desired output  

As mentioned before, the input x is a 784-dimensional vector and each of its entries represents 

different shades of gray for a single pixel in the image. The output is a 10-D vector; so, for instance, 

if an image is detected as containing the digit “3”, y(x) = [                   ] . 

Following, a cost function is defined, as in equation (3); the gradient descent is applied as 

previously explained and finally, the optimal weights and biases are obtained. Having these 

parameters, the program can be implemented and tested.  

3.2 Convolutional Neural Networks 

The CNNs are similar to the usual Neural Network presented before; they comprise of neurons with 

learnable weights and biases and each neuron receives inputs, performs a product and gives it to its 

output. Also, the scope of the network is to classify images - provided as pixels to the network – 

and even classify objects, like faces, traffic signs and many others.  

The difference is the following: the architecture on ConvNets makes the explicit assumption that the 

inputs are images. This is extremely useful, because it makes the forward function more efficient 

and also reduces the number of parameters of the network.   
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Architecture  

Regular Neural Networks do not scale well to full images, because the number of weights is huge 

for a good quality picture; having a fully-connected structure is not a good idea in this case. For 

instance, for a picture with size 1,280x720x3 (1,280 horizontal pixels x 720 vertical pixels x 3 color 

channels), the neurons would need to have                       weights. Consequently, this 

fully-connected architecture is not used for the convolutional neural networks. 

A novelty that the CNNs come with is the 3D volume of the neurons. This means that since 

ConvNets are used for images as input, a specific feature for their architecture appears: the neurons 

have 3 dimensions: width, height and depth. Also, the neurons of a layer are connected to a small 

region of the previous one, and not fully connected. In the figure below, there is a visualization of a 

regular three-layer Neural Network (Figure 3.2.1 a) and of a ConvNet equivalent (Figure 3.2.1 b). 

         

                                (a)                                                         (b)  

Figure 3.2.1 (a) – Regular Neural Network. (b) Convolutional Neural Network; source: [3] 

 

Layers 

As described above, a convolutional network is formed of several layers and each of them 

transforms one volume of activations into another, through a function. Three types of layers are: the 

convolutional layer, the pooling layer and the fully connected one. The function of these layers is 

exemplified below, through an example of image classification, using an image from the CIFAR-10 

dataset (Canadian Institute For Advanced Research). 

 Input layer – this is identical with the one from the general neural nets, so it keeps the input 

image’s pixels values; for the analyzed CIFAR image, the dimensions of each layer are 

given in Table 3.2.1;  

 Convolutional layer (CONV) – computes the output of neurons connected to input (totally 

or just locally), but computing the dot product between their weights and a small region with 

which they are connected to input; 

 Rectified Linear Unit (ReLU) Layer – applies an element wise activation function, as shown 

in the last graph from Figure 3.1.4.2; 

 Pool Layer – performs a down-sampling of the input image, to reduce its dimensions; 

 Fully Connected (FC) Layer – computes the final scores of a class. 
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Layer Dimension Details 

INPUT 32X32X3 if the image has: width 32, height 32 and three color channels R,G,B 

CONV 32X32X12 if 12 filters are used  

RELU 32X32X12 this layer leaves the volume unchanged 

POOL 16X16X12 down sampling on width & height only 

FC 1X1X10 each of the 10 numbers correspond to a class score 

 

Table 3.2.1 - Layers’ dimensions for a CIFAR-10 input image 

A convolutional network’s simplest architecture consists of the above mentioned types of layers 

that aim to transform the image volume, as pixels, into an output volume, that holds the class 

scores.  

Each layer transforms a 3D input into a 3D output through a differentiable function. It is interesting 

to notice that some layers contain parameters and some do not; the CONV and FC layers’ 

transformations depend on the activations in the input volume and also on the weights and biases of 

the neuron, whereas RELU and POOL implement a fixed function. So, for the first case, the specific 

parameters are trained using gradient descent, in order to make the scores of the class resulting 

from the CNN correspond with the labels in the training set for each image.   

Case Study  

In the following paragraphs, an explanation about how a given architecture learns to recognize 

images will be given. For this, the convolutional neural network from Figure 3.2.1 shall be 

analyzed. This architecture aims to classify an input image into one of the four categories: dog, cat, 

boat or bird. As it can be seen from the figure below, when an image with boats is fed at input, the 

network classifies it correctly, by assigning the highest probability of 94% to that class.  

Figure 3.2.1 – An example of ConvNet, source: [3] 

In the proposed CNN there are four main operations, which will be explained in what follows.  

1. Convolution 

2. Non Linearity (ReLU) 

3. Pooling (sub-sampling) 

4. Classification (fully connected layer) 

An image is represented by multiple pixels  

To understand how the neural networks process the images, it is necessary to know how the 

computer perceives an image; and that is by a matrix of triplets, where each triplet represents the 
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R,G,B values that correspond to each pixel. In the figure below, this idea is illustrated; the 

corresponding matrix was obtained using the imread function in Matlab and one of the three 

channels is shown. 

   

Figure 3.2.2 - The representation of a picture by a matrix of numbers 

Intuitively, the better quality of the picture, the bigger the size of the corresponding matrix. So, in 

order to feed the image of the dog on the left of Figure 3.2.2 to a neural network, the corresponding 

matrix to its right needs to be fed at input.  

 

A. Convolution 

In the case of ConvNets, the convolution operator is meant to extract features from the input 

image. It does this while preserving the spatial relationship between pixels and this process 

of learning is done on small parts of the input data.  

To understand how this process works, the grayscale image in Figure 3.2.3 is considered, 

which has as pixel values only 0 and 1, that is a pixel is either black or white. 

 

     

 

  G  = 

      

 

 

Figure 3.2.3 - The greyscale image to be analyzed and its corresponding matrix, G 

                                                                                                           

Apart from this, the following 3x3 matrix F, called filter is considered:          

 

 

F = 

 

 The convolution process and its results are presented in Fig. 3.2.4:  

1 1 1 0 0 

0 1 1 1 0 

0 0 1 1 1 

0 0 1 1 0 

0 1 1 0 0 

1 0 1 

0 1 0 

1 0 1 
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                                   Step 1                                    Step 2 

 

 

Step 3 

Figure 3.2.4 - The convolution process 

And so on, until: 

 

Step 9 

Figure 3.2.4 - The convolution process 

So, the convolution process is described as follows: the filter matrix F slides over the input image, 

represented by G, by one pixel (by one stride); for every position, the element-wise multiplication is 

computed between the two matrices and the results are added. The final number resulting from this 

sum represents one element of the output matrix.  

As terminology, the following terms are used: F is named filter or feature detector and the resulting 

matrix from sliding the filter over the original image is called Convolved Feature or Feature Map.  

Obviously, different values of the filter matrix produce different feature maps, for the same image. 

Thus, operations like blur, sharpen, edge or curve detection can be performed, by a proper choice of 

the filter’s numerical values, depending on the wanted effect.  

In practice, during the learning process, a convolutional neural network learns the values that the 

filters need to have, in order to extract specific parameters. Naturally, more filters in the network 

mean more extracted features and this leads to better patterns recognition in new images.  
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The most important parameter that controls the Feature Map is the depth. This is the number of 

filters used in the convolution. In the network presented in Figure 3.2.1, the first convolution 

operation is made using three different filters, resulting in three feature maps, as shown below. 

 

Figure 3.2.5 - Convolution with three filters 

 

B. Non Linearity 

After every convolution operation, an additional one was introduced in the network from Figure 

3.2.1: an activation function. From the ones presented in Table 3.1.4.1 – Activation functions, 

the last one was chosen, because it has been found to perform better in most situations.  

ReLU is the abbreviation from Rectified Linear Unit; its function is  

           (       ) 

and its graphical representation is in Figure 3.1.4.2 – Graphical representation of the activation 

functions; from the latter one, it can be observed the non-linearity of this function.  

Most of the real world data that the CNN needs to learn is non-linear, but the convolution is a 

linear operation, since it is an element-wise multiplication and addition. This is why a non-linear 

function is applied after a CONV. The output feature map after this operation is called the 

Rectified Feature Map. 

C. Pooling 

 

This operation reduces the dimensions of the input representation, while preserving the most 

important information. Its main functions are: 

 reduces the size of the input feature map 

 reduces the parameters and computations in the network 

 reduces the effect of small input variations on the output; this is because after taking 

the maximum, or the average value of an area in a matrix, a small distortions in input 

does not necessarily affect the output 

 helps detection of objects in an image, no matter their location; pooling is useful for 

making an almost scale invariant representation of the image 

Polling can be of different types, like max, average, sum and others.  
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The case of Max Pooling will be presented. In the Rectified Feature Map presented above 

(after convolution and ReLU), some spatial neighborhoods are defined – in Figure 3.2.6 they 

are represented by the four colors - and the largest element is kept. 

 

Figure 3.2.6 - Example of MaxPooling 

 

D. Classification 

The fully-connected (FC) layer is a general multi-layer perceptron, as described in section 

3.1.3 Multi-layer Perceptron; every neuron in this layer is fully connected with the ones 

from the previous layer.  

This last layer is meant to use all of the features provided by CONV and POOL layers, in 

order to classify the input image into a class. Specifically, for the network given as an 

example in Figure 3.2.1 – An example of ConvNet, there are 4 possible outputs, as show in 

Figure 3.2.7. 

 

Figure 3.2.7 - The fully connected layers from the network given as example in Figure 3.2.1 

The four possible predictions for the input image are accompanied by their corresponding 

probabilities and the sum of all must be one. This is achieved by using the Softmax function; 

what it does is to transform a vector of scores into one with values between 0 and 1, such 

that the sum of the elements is one.  

 

Training using back propagation  

The training process of the Convolutional Network is briefly the following: 

(a) Initialization of parameters - all filters and weights are initialized randomly 

(b) Forward propagation – the input is fed and it goes through the network – convolution, 

ReLU, pooling and finally propagation in the fully connected layer; finally, it finds 

output probabilities for each class (for the first training example, these are random, since 

the initialization of the parameters is also random) 

(c) Error computation – the total error at the output layers is computed 
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(d) Back-propagation – through it, the gradients of the error, with respect to the weights 

are computed; afterwards, using gradient descent, the filter weights are updated, in order 

to minimize the output error.  

The steps (b), (c) and (d) are repeated for all images in the training set. 

 

In this way, the network learns. For instance, if in the beginning, the network given as 

example in Figure 3.2.1 had as prediction vector [0.1 0.15 0.5 0.25], when the image is 

fed again, the weights are adjusted and that vector might improve to [0.05 0.1 0.8 0.05], 

which is closer to final wanted probabilities, [0 0 1 0]. 

 

Example of a Convolutional Neural Network 

In order to visualize a ConvNet, an application was created by Adam Harley[4]; it is intuitive and 

offers a good way to understand how the layers of a ConvNet work.  

Firstly, a digit is drawn by the user, as in the picture below. 

        

(a) introducing the input                                            (b) layers visualization  

Figure 3.2.8 - Visualization of a ConvNet’s layers 

The image is down-sampled to 32x32 pixels (1024) and then the first convolution layer is formed, 

by convolution of 6 different filters with the input image; from here, as it can be seen in Figure 

3.2.8 b, at the convolution layer #1, since six 5x5 filters are used, a feature map of depth 6 is 

obtained.  

The next step is pooling and a 2x2 MaxPooling is made over the six feature maps previously 

obtained at the pooling layer #1. 

Afterwards, these two steps are repeated and next are 3 fully connected layers: 120 neurons in the 

first one, 100 in the second one and 10 in the last FC, which is the output layer. Even though not 

specifically represented, each node from a FC layer is connected to each one from the previous 

layer.  
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The output layer has only one bright node, which corresponds to the digit “9”, as that one has the 

highest probability among all digits.  

Other network architectures 

 LeNet Architecture – was one of the first convolutional neural networks; it was used for 

character recognition, like zip codes or digits. An explanation on how images are recognized 

using this architecture has been developed in this paragraph, since the main concepts of 

LeNet Architecture are used in the networks from nowadays.  

 

 
Network 

 
Dataset 

Number of 
Parameters 
[millions] 

Validation 
error [%]     
(top - 1) 

VGG-19 ILSVRC-2012 144 24.4 
AlexNet ILSVRC-2010 & 

ILSVRC-2012  
62 

37.5 

Res-Net101 IMAGENET 44.5 21.8 
Inception-v4 ILSVR 2015 65 17.7 
GoogLeNet ILSVRC 2014 11 31.3 
MobileNet IMAGENET-

2012 
3.3 33.49 

Table 3.2.2 - Comparison between different architectures, considering the dataset used for 

training, the number of parameters and the validation error 

 AlexNet – it is a deeper and wider version of the LeNet architecture and won in 2012 the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It was a real breakthrough 

at that moment and current applications of ConvNets can be attributed to this work. 

 GoogLeNet – this architecture won the first prize in the same competition in 2014 and the 

novelty is the development of an Inception Module, which reduced considerably the number 

of parameters in a network.  

 VGGNet – its main contribution was proving that the depth of the network is a critical 

component for good performance.  

 ENet – the real-time applications, that require low latency are made using this architecture 

developed in 2017, since it is faster and requires less parameters than existing models 

 SE – an innovation has been brought in 2018 in this domain by the Squeeze-and-Excitation 

Networks; the SE block “adaptively recalibrates channel-wise feature responses by 

explicitly modeling interdependencies between channels”. [5] 

As a comparison between all present architectures, there are many factors to take into account, like 

power consumption, accuracy, number of operations, size of the network, memory used and this is 

why a comparison between architectures is very difficult. However, Table 3.2.2 presents different 

architectures, and their corresponding dataset used for training, the number of parameters and the 

validation error. In this way, a visual analogy can be made; as a remark, the networks are ordered 

chronologically.  
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3.3 Mobile Nets 

As previously described, since deep learning has enhanced the progress in computer vision, the 

problem of image detection found its answer with the development of ConvNets; from there, many 

variations have been designed, in order to assure the requirements for different applications.  

Many mobile deep learning applications used to be performed in the cloud; so, when an image was 

fed for a classification, it was sent to a server and the classification was done remotely, afterwards 

sending the result to the mobile application.  

Using MobileNet neural networks [6], this is no this is no longer the case, thus having the advantage 

of a portable application, without the need of external devices or an Internet connection.  

This architecture was designed to effectively maximize the accuracy, while compromising on the 

limited resources of an embedded application. Apart from its small size, low latency and power, 

MobileNets has several versions, which offer the possibility of tuning the resource – accuracy trade-

off for a specific problem. The release contained the model definition, as well as 16 pre-trained 

classification checkpoints for use in projects. Using the biggest MobileNets, 1.0, 244, an accuracy 

of 95.5% can be achieved with just 4 minutes of training, as for the smallest, 0.24, 128, an accuracy 

of 89.2% can be achieved, using just 930kb of memory [9], depending, of course on the hardware 

used. As far as the final implementation presented in this paper, using the SSD300 model, trained 

with MS-COCO dataset, on an NVidia Quadro M4000, the training process lasted 8 days.  

In the first section, the architecture, advantages and trade-offs of MobileNet will be presented, 

while in the second one a SSD model will be explained, together with its  advantages. Also, the 

influence of the SSD model on computational speed and size will be described. 

3.3.1 Introduction 

Since many research work focus on the development of a small network, rather than optimizing its 

volume for the speed of the process, the MobileNets represent a great advantage, for they are: 

 low latency models 

 small sized  

 suitable for mobile and embedded applications  

While the general trend is to compress a pre-trained network or to train a small one, the priority of 

MobileNets is to optimize small networks for latency. 

3.3.2 Architecture 

MobileNets are developed from depth-wise separable convolutions that are used to reduce the 

computation volume for the first layers.  

Depth-wise Separable Convolution 

The MobileNet model is based on depth-wise separable convolutions, factorizing the standard 

convolution operation into 2 sub-operations: a depth-wise convolution and a 1×1 convolution, 

called a point-wise convolution. 

The depth-wise convolution applies a single filter to each input channel, whereas the point-wise 

convolution applies a 1×1 convolution, to combine the outputs the depth-wise convolution.  
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Unlike the standard convolution, which filters and combines the outputs in a single step, the depth-

wise separable convolution splits this into two layers: one for filtering and another one for 

combining. The effect is of drastically reducing computation and model size.  

The idea of splitting the standard convolution  (a) into two separate layers: a depth-wise 

convolution (b) and a 1 × 1 point-wise convolution (c) is presented in Figure 3.3.2.1 below. 

 

Figure 3.3.2.1 – Splitting standard convolution into depthwise and pointwise convolutions, source: [6] 

The input of a standard convolutional layer is a feature map F of dimensions DF · DF · M and it 

produces a feature map G of dimensions DG · DG · N; where: 

 DF is the spatial width and height of a square input feature map; 

 M is the number of input channels, so the input depth; 

 DG is the spatial width and height of a square output feature map; 

 N is the number of output channels, so the output depth.  

The convolution kernel K - or the convolution matrix, as previously explained - has the size        

DK · DK · M · N, where DK is the spatial dimension of the kernel (assumed to be square) and M and 

N are defined as previously. 

The standard computational cost of the convolutions is: DK · DK · M · N · DF · DF. 

MobileNet uses depth-wise convolutions to apply a single filter on each input channel.  Point-wise 

convolution, a simple 1×1 convolution, is then used to create a linear combination of the output of 

the depth-wise layer. MobileNets use batchnorm and ReLU nonlinearities for both layers. K is the 

depth-wise convolutional kernel, of size DK · DK · M, where the m
th

 filter in K is applied to the m
th

 

channel in F, to produce the m
th

 channel of the filtered output feature map G. Depth-wise 

convolution has a computational cost of: DK · DK · M · DF · DF. 
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With this type of convolution, which only filters the input channels, an additional layer of 1 × 1 

convolution is needed in order to generate the new features. The combination of depth-wise 

convolution and 1 × 1 (point-wise) convolution is called depth-wise separable convolution. 

Depth-wise separable convolutions’ cost is: DK · DK · M · DF · DF + M · N · DF · DF. 

By expressing convolution as a two-step process, a reduction in computation of: 
 

 
 + 

 

   
 can be 

obtained.  

In this way, thanks to 3 × 3 depth-wise separable convolutions, MobileNets aims to reduce the 

computation volume between 8 to 9 times than the time necessary for a standard convolution, while 

making only a small reduction in accuracy. 

Network Structure and Training 

The MobileNet structure is built on depth-wise separable convolutions, as mentioned in the 

previous section, except for the first layer, which is a full convolution. All layers are followed by a 

batchnorm [7] and ReLU nonlinearity with the exception of the final fully connected layer, which 

has no nonlinearity and feeds into a softmax layer for classification.  

Counting depth-wise and point-wise convolutions as separate layers, MobileNet has 28 layers. This 

type of structure has the advantage of making possible its implementation with highly optimized 

general matrix multiply functions. 

MobileNet spends 95% of its computation time in 1 × 1 convolutions, which also has 75% of the 

parameters. Nearly all of the additional parameters are in the fully connected layer.  

The final implemented MobileNet model presented in the thesis was trained in Caffe on the COCO 

image set, using a training script initially developed by the Stanford University researchers, which 

resulted in a Caffe model with 90 single shot detectable object classes. The training set contains 

over 100 000 images, the training batch size is 16 and the number of iterations is 400 000. I also 

used a 0.9 momentum value, which is keeping the loss function decay at a reasonable step, so that it 

will converge at a high enough speed.  

3.3.3 Advantages 

As previously mentioned, the advantages of MobileNet are the size and especially the speed, 

because small neural networks are not generally optimized for higher speed, the developers only 

taking into account the size of the network. Also, it is important to mention that the MobileNet can 

be shrunk even more, with the help of 2 hyper-parameters:  

 α - width multiplier – its role is to thin a network uniformly at each layer; the number of 

input channels M becomes αM and the number of output channels N becomes αN. The 

computational cost of a depth-wise separable convolution with width multiplier α is:   

DK · DK · αM · DF · DF + αM · αN · DF · DF 

 ρ – resolution multiplier - this is second hyper-parameter that reduces the computational 

cost of a neural network; it is applied to the input image, so the internal representation of 

every layer is subsequently reduced by ρ. 



51 
 

The computational cost for the core layers of the network, as depth-wise separable convolutions, 

with width multiplier α and resolution multiplier ρ becomes:  

DK · DK · αM · ρDF · ρDF + αM · αN · ρDF · ρDF, 

where ρ ∈ (0, 1] and α ∈ (0, 1]. These parameters reduce the computational cost by   , respectively 

  . 

In conclusion, the cost is much lower than the cost of using a full convolutional layer and the neural 

network has a much smaller size and it is scalable. Even more, with the α and ρ parameters, these 

optimizations result in a small cost of the accuracy, depending on the hyper-parameters that are 

chosen. With the hyper-parameters set on 1 (this representing the standard MobileNet) the accuracy 

will decrease with 1% on a MobileNet, in comparison with a deep neural network with full 

convolutional layers. Rescaling the neural network with the 2 hyper-parameters will slowly 

decrease accuracy. From the value of 0.25 of the hyper-parameters, the accuracy will drastically 

drop, so it is not recommended to reach such a value if high accuracy is wanted. 

 

3.4 Single Shot MultiBox Detector 

3.4.1 Introduction 

The real time detection is achieved using Single Shot MultiBox Detector [8] framework. The 

novelty consists of the localization and classification being done in a single forward pass of the 

network.  

A Single Shot MultiBox Detector (SSD), as described by its authors in [8] is a method for detecting 

objects in images using a single deep neural network. This method discretizes the output space of 

bounding boxes into a set of default boxes, over different aspect ratios and scales per feature map 

location. At prediction time, the network generates scores for the presence of each object category 

in each default box and produces adjustments to the box, to better match the object shape. 

Additionally, the network combines predictions from multiple feature maps, with different 

resolutions, to naturally handle objects of various sizes. Some examples of objects detected using 

this method are presented in Figure 3.4.1 a, b and c below. 

 



52 
 

 
(a) 

 

 
(b) 
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(c) 

Figure 3.4.1 - Detection examples of SSD on personal dataset 

 

In the above detections, each color corresponds to a category of objects.  

3.4.2 Architecture 

To understand better what the Single Shot MultiBox Detector does, the provenience of its name 

should be analyzed:  

 Single Shot – the object localization and identification are done in a single forward pass 

through the network 

 MultiBox – this is a novelty with regard to the bounding box regression and it is explained 

in detail in the following 

 Detector – since the network is an object detector 

The SSD’s architecture is built on the VGG-16 architecture, discarding the fully connected layers. 

The reason why VGG-16 was used as a base network was because of its great performance in high 

quality image classification. Apart from this, the FC layers were discarded, adding instead 

convolutional layers, in order to allow extraction of features at multiple scales, while also 

decreasing the size of the analyzed frame at each layer. 
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3.4.3 MultiBox 

In this new approach, in order to express the loss of the predicition , two new components were 

added: confidence loss and location loss; the first one measures how confident the network is about 

the objectness of the computed bounding box, while the latter one computes how far the network’s 

predicted bounding boxes are from the ones in the training set. Briefly: 

 

multibox_loss = confidence_loss + α   location_loss                (11) 

 

Multibox Priors 

 

In MultiBox, the ‘prior’ entities are created, which are pre-computed bounding-boxes that 

match as much as possible the original truth boxes. These are used as predictions and the scope is to 

get them closer to the real boxes.  The SSD architecture associates each feature map with default, 

carefully chosen bounding boxes, hence it generalizes any type of input, without the need of pre-

training.  

While the accuracy increases, these architectures offer amazing opportunities for real-time 

detection, from military applications, recognizing traffic signs or lane detection algorithms, to 

teaching robots like Nao how to interact with the world.  

 

3.4.4 Intersection over Union ratio 

 

This is an evaluation metric that measures the accuracy of an object detector on a particular dataset. 

The priors discussed above need to be chosen in such a way that their IoU - Intersection over Union 

ratio – is higher than 0.5. Such a number is not good enough, as it can be noticed from Figure 3.4.4.1, 

but it offers a good starting point for the bounding box regression algorithm and it is certainly better 

than the previous approach, of starting the prediction with randomly initialized coordinates. 

In order to apply the IoU and evaluate an object detector, two boxes are needed:  

 the ground-truth bounding box – that is the manually labeled bounding box, in which the 

coordinates of the object are given 

 the predicted bounding boxes – from the model that is tested 

The intersection over Union is defined as:  

IoU = 
               

             
              (12) 

This ratio is computed because in practice, it is desired that the two boxes overlap as much as 

possible. Even though their perfect match is not sought, a higher ratio however indicates a better 

prediction.  
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Figure 3.4.4.1 Dog detection example - the corresponding ground-truth and predicted bounding boxes 

 

So, the MultiBox starts with priors as predictions and attempt to regress closer to the ground truth 

bounding boxes; the result is that this architecture has a total of 1420 priors per image, allowing 

coverage of input images of different dimensions. In the end, MultiBox retains only a number “K” 

of top predictions that minimized both the location and confidence losses. 

As a remark, the classification is not performed by MultiBox, but by SSD. Thus, for each predicted 

grounded box, a set of “c” class predictions are computed, for every possible class in the dataset.  

In conclusion, combining the MobileNet neural network with a SSD, not only can we obtain a 

smaller neural network, but also, a faster one, with the cost of a small reduction of accuracy. 

Other remarks from the SSD paper are the following: 

 SSD confuses objects from similar categories; this might happen because locations for 

multiple classes are shared; 

 more default boxes bring forth more accurate detections, with a speed trade-off; 

 having MultiBox on multiple layers result in having a better detection also, since the 

detector runs on features at multiple resolutions; 

 smaller objects are detected with less accuracy, as they might not appear across all feature 

maps. 
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4 
 

The implemented vision 

algorithm 
 

Having in mind all the considered aspects, regarding the limitations of the robot (discussed in 

Chapter 1, section 1.2 The robot Nao – Technical details and also in Chapter 2, section 2.4. 

Limitations), a computer vision algorithm was thought, that would have the power to generalize the 

Aldebaran module, taking into account Nao’s limitations; thus, a more complex program was 

implemented, in Python.  

4.1 Working principle 

The general flow diagram of the implemented algorithm is presented in Figure 4.1.4 and the 

working principle is explained in detail in the following. 

 First of all, the arguments that will be given as input for a specific frame are created; they 

are necessary for the program to know different parameters; these are: 

 image – the path of the capture that will be fed to the network  

 model - the parameters of the network 

 confidence – minimum probability to filter weak detections  

 Afterwards, some presetting for using the ALSpeechRecognition module need to be made: 

the language and the vocabulary are set: the language is English and the recognized words 

will be “start” and “finish”.  More details about this module can be found in the robot’s 

documentation [1]. 

 Once this module is on (that is the robot subscribes to the event of SpeechRecognition), if a 

speaker is heard, the element of the list that best matches what is heard by Nao is placed in 

the WordRecognized key. This will be used in some next steps. 

 Until this moment, the robot is set for speech recognition, having as vocabulary the words 

"start" and "finish". Therefore, it starts listening for voice commands.  
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 While the user’s words differ from "start" and the accuracy probability is smaller than a 

threshold of 0.45, Nao keeps waiting for a valid start command. 

 Considering the start voice command has been given and the robot has a confidence of over 

45% of that, the next step is to take pictures using the robot’s camera, with the help of 

another module, ALPhotoCapture. The parameters of the capture are presented below. 

Camera ID: top camera 

Color space: RGB 

Resolution VGA (640x480) 

Picture format: jpg 

 

Table 4.1.1 - Parameters of ALPhotoCapture module 

 

 The classes that will be recognized by the convolutional neural network on the robot are 

stored in a list; the categories of objects that Nao will be able to recognize are the 

following: plane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, 

horse, motorbike, person, potted plant, sheep, sofa, train and TV monitor. In figures 4.1.1 

and 4.1.2, examples of the robot recognizing some of these objects are shown. 

 
Figure 4.1.1 – Detection algorithm on Nao, with pictures taken with a 12 MP camera (on smartphone) 
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Figure 4.1.2 – Detection algorithm on Nao, with pictures taken with an 8 MP camera (on 

smartphone) 

 After all the initializations are done and the start command is given, the robot enters a state 

in which it listens for the stop command, while executing the main program. 

 The next step is to take pictures, with the parameters specified in Table 4.1.1 and to store 

them into a specific location in Nao’s memory. 

 The captured frame is then loaded into the program and it will be used to feed-forward the 

convolutional neural network; but some preprocessing needs to be made before. 

 This preprocessing is made by the OpenCV’s function blobFromImage. Briefly, this 

function creates a 4-dimensional blob from the original image; that blob contains the 

necessary features of the image for the network. If necessary, the function blobFromImage 

resizes the image, subtracts the mean values, scales by a factor and swaps the Red and Blue 

channels. The blob is discussed in more details in the section below entitled Blob.  

 After the blob is passed through the network, the detections and predictions are obtained 

for each object in the image, by using the blob as input for the network 

 Following, the weak detections need to be filtered out, by setting a default threshold for the 

confidence for each detection; in this paper, the threshold was set to 30%. In case of 

success, the robot outputs the name of the class through the microphone and also on the 

console, as in Picture 4.1.3. 

 At this moment, the detections for each object are made and ready to be output by the 

robot, using the ALTextToSpeech module.  

 During the tests, some improvements for this initial approach were made. 

 One idea was to prevent the robot from repeating the same class name several times for a 

single capture. That is, after this refinement, Nao would only say the name of a class once, 

even though multiple instances could be present in a capture. This solution was brought 

because repeating the class names is not necessary for the proposed application; its scope is 

to detect and recognize objects around.  

 Another improvement that was made in order to reduce redundant information was to 

eliminate the class labels from a capture that were identical to the previous one. In this way, 
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Nao interprets only the new objects that appear in the frame. A capture before applying this 

update is show below. 

 
Figure 4.1.3 - The recognized classes by Nao 

 

 The robot outputs the class names of the detected objects and after this, it has two options: 

either it stops, due to the voice command, using the same principle explained for the start 

command, or it continues to capture pictures of the environment and to give information 

about it. 

Blob 

A Caffe network is composed of layers and each one of them is made up of blobs. Therefore, it can 

be assumed that a blob is the basic building block in Caffe networks. These entities can be thought 

of as envelopes, to conveniently access data, since it is of utmost importance to encapsulate data 

similarly, thus ensuring modularity when designing the networks.  

The blobs are 4-dimensional arrays with convenient methods, which store weights of the neurons, 

activation values and the derivatives of the two. They keep the same dimensions (heights and 

weight) and the same depth (number of channels), so they will all be processed in the same manner. 
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Figure 4.1.4 - General flow diagram of the program 
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4.2 Object detection using MobileNet SSD  

In order to implement on Nao an object detection algorithm, several steps were made. First of all, 

some algorithms were implemented on a Desktop AMBUJ97, with 8 GB of RAM and a i5-4200H 

CPU @2.80GHz processor. Afterwards, I wanted to port the successful algorithms on the robot, but 

because of its limitations, this was a difficult step.  

Two main algorithms were tested on the desktop computer and will be presented in the following 

sections; the first one could only be implemented on the computer and the second one was ported 

on the robot. 

4.2.1 Real time object recognition model, using Tensorflow 

The first algorithms that were studied were object classifiers, object identification, shape detection 

[10], pattern recognition and eventually a more complex algorithm was chosen as a possible 

implementation on Nao.   That was an object recognition program, which could detect and label the 

objects in a video in real time; this project was achievable, because Google released in June 2017 an 

Object Detection API (Application Programming Interface), which includes trainable detection 

models, listed in Table 4.2.1.1  and presented in more details on their blog [11]. The weights were 

trained on the COCO dataset  for each model and one of them is designed to operate on less 

complex machines, thus it can be run in real time on mobile devices.  

About APIs 

Briefly, an application programming interface is an application software, which allows two 

applications to interact with each other; it can be regarded as the messenger that delivers the user’s 

request to the system and in the end providing the results back.  

The API that Google released was trained on COCO dataset [12], so on approximately 300,000 

images, resulting in 90 detectable classes. Some examples of the trained images are presented 

below, in Figure 4.2.1.1 a and b. 

 

Figure 4.2.1.1 (a) - COCO 2017 object categories, labels not shown; source: [12] 

 

Figure 4.2.1.1 (b) - COCO dataset examples; source: [12] 
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Models 

The API comes with five models, presented in Table 4.2.1.1, each providing a different accuracy 

and speed when placing the bounding boxes, so that the user can chose the most suitable one for a 

specific application.  

Model Name 
Mean Average  

Speed 
Precision 

SSD with MobileNet 21 fast 

SSD with Inception V2 24 fast 

R-FCN with Resnet 101 30 medium 

Faster RCNN with Resnet 101 32 medium 

Faster RCNN with  Inception Resnet v2 37 slow 

Table 4.2.1.1 - Precision and Accuracy for the models provided by Google’s API 

In this table, the notations below were made; they all represent object detection systems that 

combine different features computed by a convolutional neural network. 

 SSD – Single Shot Detection 

 R-FCN - Region-Based Fully Convolutional Networks  

 R-CNN: Region-based Convolutional Neural Networks 

The mean average precision (mAP) measures the accuracy of the detection; in this case, it is the 

product between precision and recall, on detecting bounding boxes. And since the precision 

measures the accuracy of prediction and the recall is a measure of how good all the positives were 

found, it can be concluded that the mAP is a good measure of how sensitive the network is, while 

avoiding false alarms. More details about the models can be found on the git Tensorflow detection 

model zoo [13]. 

Results 

For the practical implementation, the first model from the five was chosen, because it is the most 

lightweight from all. That model was tested on some real time videos on the computer and the 

results are shown below. 
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(a)                                             (b) 

                                        
  (c)                                          (d) 

Figure 4.2.1.2 – Results from real time detection 
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(e) 

Figure 4.2.1.2 – Results from real time detection 

                                     

          (a)                                   (b) 

Figure 4.2.1.3 – Unsuccessful results from real time detection 

 

Software resources 

 Tensorflow 

Tensorflow is a software library used for numerical computations using flow graphs, in the 

following way: the mathematical operations are represented by nodes and the edges of the graph 

stand for data arrays (which are multidimensional), called tensors. These tensors stand between 

the nodes of the graph.  

It was firstly developed in 2015 by the Google Brain team, for internal use at Google in machine 

learning and deep neural network research area; but today, it is an open source library for 

numerical computation used in many domains. 
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One big advantage of Tensorflow is that it has a flexible architecture, allowing the use of more 

CPUs or GPUs in a desktop or mobile device, without rewriting the code.  

However, the biggest problem I encountered regards memory problems. Even though on the 

computer, this did not appear as a problem, when porting the program on the robot, it turned out 

to be a huge obstacle, thus leading me to choose an architecture with another model, a Caffe 

model.  

 

 OpenCV  

Open Source Computer Vision Library (OpenCV) [14] is another open source library, which 

was developed for computational efficiency, considering real time applications. It has C++, Java 

and Python interfaces and supports Windows, MacOS, Linux, iOS and Android.  

This library has more than 2500 optimized algorithms, used for several vision algorithms; some 

examples are listed: 

 face detection and recognition  

 object identification 

 classification of people’s actions 

 camera movement tracking 

 moving objects tracking  

 extracting 3D models of objects         source: [14] 

 combining images to get one image of the entire scene    

 finding similar images in a database  

 

Future steps 

As it can be observed from Pictures 4.2.1.3 a and b, there are cases when the detection could have 

been better. For instance, in the first capture from the two, the pear was misidentified, while in the 

second, the apple was not identified at all. So, there is room for progress for the analyzed model.  

However, getting closer to the camera solved the last problem, as it can be noticed in Figure 4.2.1.2 

d.  

Another good improvement would be to speed up the models, in order to integrate them on mobile 

devices, such as on smartphones or cars. Additionally, other models can be trained with a personal 

dataset, for personalized applications. 

Last, but not least, the biggest upgrade that needs to be made is making Tensorflow less prone to 

memory problems; improving memory usage and management is an area where Tensorflow 

developers are working at the moment.  

4.2.2 Object recognition model, using Caffe 

Considering the memory restrictions that Nao imposes, a smaller sized model, designed using Caffe 

framework was implemented.  
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Software resources 

 Caffe 

Another deep leaning framework is Convolutional Architecture for Fast Feature Embedding 

(Caffe); as its developers from Berkeley AI Research team state, it is made with speed and 

modularity in mind and this is why the final implementation of this project is built on this 

framework.  

One of the reasons why Caffe is used by research and industry developers is its speed; because 

of this, state-of-the-art models are already implemented on this framework.  

Caffe is written in C, with a Python interface; it supports Windows, Linux and MacOS and since 

its release in April 2017, it has been a powerful tool in vision, speech and multimedia 

applications. 

 

 OpenCV 

In August 2017, the version 3.3 of OpenCV was released, featuring an improved deep learning 

module, dnn. This was highly convenient, since it supported Caffe framework. 

As a remark, the models are not trained using OpenCV; using it, some pretrained models are 

taken using deep learning libraries (like dnn) and used in programs. Thus, using the version 3.3 

from OpenCV, models can be trained on some device – this process being the most time and 

computational expensive – and afterwards, the model can be transferred on another machine and 

can feed forward the network, in order to provide an output for the desired application.  

 

 Single Shot Detector & Mobile Nets 

As previously explained, when these two methods are combined, they provide a very fast, real-

time object detection on resource limited devices, like smartphones or development boards. 

 

Final program 

The model on which the program was designed is a Caffe version of the Tensorflow 

implementation of Google's MobileNets: Efficient Convolutional Neural Networks for Mobile 

Vision Applications [15]. The model was trained on COCO dataset and afterwards fine-tuned on 

PASCAL VOC. The fine tuning was made, because the neural network was trained on a large set of 

images and the final weights were adjusted using a smaller dataset, different from the training one. 

Eventually, the model could detect 20 objects in images, with a 72.7 % mean average precision. 

Since the model was trained on COCO dataset - Common Objects in Context -  the classes that are 

recognized are the following: birds, cats, dogs, cows, horses, sheeps,  people, bottles, airplanes, 

bikes, boats, buses, trains, chairs, sofas, tables, monitors and plants. 
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Implementation on Computer 

Below, there are some examples of the previously described program, implemented on the 

computer. 

 

 

Figure 4.2.2.1 (a) - Successful person and horse recognition (computer implementation) 

 

Figure 4.2.2.1 (b) - Successful plane recognition 
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Figure 4.2.2.1 (c) - Successful car and bus recognition 

      

Figure 4.2.2.1 (c), (d) - Successful person, motorbike and car recognition 
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Figure 4.2.2.1 (e) - Unsuccessful horse recognition 

 

Implementation on Nao 

After eliminating the memory issues caused by a Tensorflow model, the biggest problem I 

encountered when importing the program on Nao was when porting the packages. For instance, the 

dnn module is included in a newer version of the cv2 than the robot has pre-installed and porting 

this package on the proprietary platform of Nao was done by using a cross-compilation tool chain. 

After the successful transfer, the robot could be used to capture frames and to feed forward them to 

the neural network, getting as a result the class in the console. For here on, the improvements 

presented in section 4.1 Working principle were made. 
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Figure 4.2.2.1 (f) - Successful person and plant recognition 

 

In Figure 4.2.2.1 f, an example of the object recognition with the model used by Nao can be seen, 

with the picture taken in advance and in CHAPTER 5 Experimental Results, more cases are 

presented, with pictures taken directly from Nao.  

As a remark, apart from the grooms, the person behind them was also recognized and considering 

his position and exposure in the picture, the result is surprising. 
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Experimental results 

 
The implemented program on Nao had identical results with the computer implementation, since the 

same network was used. Following, some practical results will be presented, with frames captured 

by the robot and then, an analysis of the used network will be made. 

5.1. Results on Nao 

For this part, the object recognition model, using Caffe, described in the previous section was 

applied on frames taken directly from the robot and the practical results were the following:  

 

Figure 5.1.1 (a) – Succesful person recognition on Nao 
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Figure 5.1.1 (b) – Succesful bird recognition on Nao 

 

Figure 5.1.1 (c) – Succesful dog recognition on Nao 
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Figure 5.1.1 (d) – Succesful airplane recognition on Nao 

 

 

Figure 5.1.1 (e) – Succesful cat recognition on Nao 



76 
 

 

Figure 5.1.1 (e) – Succesful car recognition on Nao 

 

In Figures 5.1.1 a to e, there were examples of the algorithm applied on frames taken in advance on 

Nao, whereas the next ones represent examples of the final program, with real time detection. 

Below, on the right side there is Nao’s video monitor panel. This panel displays in real time what is 

seen by the active camera of the robot’s head; on the left, in the console, the detected objects at that 

moment are listed.  

 

Figure 5.1.2 (a) - Succesful bike recognition real time dection, on Nao 
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Figure 5.1.2 (b) - Succesful chair recognition real time dection, on Nao 

 

Figure 5.1.2 (c) - Succesful dog recognition real time dection, on Nao 

 

Figure 5.1.2 (d) - Succesful person recognition real time dection, on Nao 
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5.2. The performance of the Convolutional Network 

For this part, several instances from 3 different classes were analyzed, in order to examine the 

accuracy of the implemented network on the robot. The expected result was a mean average 

precision of 72.7%, as the model is supposed to perform  [15], but some tests with personal archive 

pictures was implemented to demonstrate its effectiveness.  

The results are presented in Table 5.2.1 and in Figure 5.2.1 an example of the test pictures for the 

cat class is shown (27 pictures have been used for testing this class). 

 

Table 5.2.1 - Example of test pictures 

 

objects to true  true  false  false  
accuracy 

be recognized positive negative positive negative 

cat 22 0 0 5 0.81 

person 54 0 1 30 0.64 

car 39 0 0 11 0.78 

 

Table 5.2.1 - Results from the Caffe model 
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The accuracy was computed using the formula: 

          
 (     )

(           )⁄       (13) 

where: 

 tp represents the True Positive cases, namely the ones when the real cases were positive and 

the predicted ones were also positive; 

 tn stands for True Negative and this number counts the cases when the real  case was 

negative and the predicted was also negative; 

 fp indicates the False Positive cases, specifically those when the real case was negative and 

the prediction positive; 

 fn represents the False Negative cases, when the real case was positive, but the prediction 

was negative. 

The precision can be calculated using the same notations in the following way: 

          
   

(     )⁄          (14)   

 

Consequently, for the analyzed classes presented in Table 5.2.1, and taking formula 13 into account, 

the mean accuracy is 0.74. Similarly, using Table 5.2.1 and formula 14, for some classes, the 

precision is 1.  

As illustrated in Figure 5.2.2, it is obvious that when the objects that are desired to be identified 

have a more natural position, the recognition will be successful, in contrast to the cases when only 

parts of them are observable. 
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Table 5.2.2 – Successful vs. unsuccessful people recognition 

As the figure above suggests, if parts of objects are hidden or if they have different positions than 

normal conditions - meaning the training conditions – the recognition will not be successful.  
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Conclusions and 

future steps 
 

6.1 General Conclusions 

The main objective of the thesis was to develop a program to help the humanoid robot Nao 

recognize objects around and take actions autonomously, depending on what is detected; this goal 

was accomplished and some improvements were made.  

The final application comprised of three parts: training the network, testing it and detection plus 

recognition.  In this way, the implemented program enables Nao to recognize up to 90 classes; 

thereby, using the other pre-installed features on the robot, it will be able to take actions 

autonomously, depending on what it sees. 

In its current state, Nao is able to perform object detection and recognition, using vocal commands 

to start and stop the program. For this project, convolutional neural network were used, specifically 

a combination of MobileNets and SSD.  

The implemented algorithm works in the following way: after launching, Nao waits for a start 

command; when given, it begins the main program by taking frames of the surrounding. From the 

frames that the robot takes, the algorithm reports the presence of objects around it, using one shot at 

a time. The used architecture, MobileNets, especially made for embedded applications, assures a 

compromise between latency and accuracy, while the SSD MultiBox technique ensures a real-time 

detection. Using this approach, the algorithm performs a real-time classification and outputs the 

identified object, therefore making it capable of decision making, depending on the output.  

This translation from the three-dimensional world into a particular behavior increases the freedom of 

the robot, making it able for autonomous human interactions.   
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6.2 Personal contributions 

In order to achieve the proposed goal, my personal contributions for the final algorithm were the 

following: 

 importing the necessary libraries of OpenCV3 on Nao 

 importing the pretrained model with 20 classes on the robot 

 training the network for 90 classes and importing the new model on Nao 

 implementing the speech recognition and the text to speech modules in Python, starting from 

the modules offered by Aldebaran  

 integrating the speech recognition, the object recognition and the text to speech modules into 

the final program, in Python 

 

6.3 Future work 

With the high evolution nowadays in the robotics and autonomous systems area, the project 

presented in this thesis is just a first step towards making Nao less dependent on humans. Since 

research is actively carried out in this domain, it is just a matter of time until free source portable 

recognition programs will be available to general public. 

An interesting step towards innovation would be training the network that is on the robot for other 

objects recognition; these objects could be specific for certain applications, thus enabling users to 

have a robot able to detect for instance when certain people enter a room. A similar scenario would 

be training Nao to recognize people on the ground, thus making it very useful as elderly assistant. 

Apart from emergency cases, the robot could be a real help for old or even blind people, by 

recognizing traffic signs and lights or specific features of the road. 

Another good implementation of this thesis’ project could be helping children with mental 

disabilities in therapy modules. It is a well-known fact that working with children with mental 

illnesses is not an easy task and recent research showed that introducing small robots like Nao in 

some therapies might have a good impact on the overall results.  

Looking towards the future, Nao could be a great help either as an assistant, teacher, or simply as a 

tool for making children interested in technology; and with the great advances of Artificial 

Intelligence, it could become a powerful device in every home.  
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