

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF ELECTRONICS, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY

INFORMATION TRANSMISSION BETWEEN A TERRESTRIAL DRONE

AND AN UAV

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the Degree of Engineer

in the domain Electronics and Telecommunications, study program
Technologies and Communications Systems

Thesis advisor: Student:
Prof. Corneliu BURILEANU, Ph. D. Ioana BĂDIȚOIU

Bucharest
2018

Statement of Academic Honesty

I hereby declare that the thesis “Information Transmission between a Terrestrial Drone and an

UAV”, submitted to the Faculty of Electronics, Telecommunications and Information Technology in

partial fulfillment of the requirements for the degree of Engineer of Science in the domain

Electronics and Telecommunications, study program Technologies and Communications Systems, is

written by myself and was never before submitted to any other faculty or higher learning institution

in Romania or any other country.

I declare that all information sources sources I used, including the ones I found on the Internet, are

properly cited in the thesis as bibliographical references. Text fragments cited “as is” or translated

from other languages are written between quotes and are referenced to the source. Reformulation

using different words of a certain text is also properly referenced. I understand plagiarism

constitutes an offence punishable by law.

I declare that all the results I present as coming from simulations and measurements I performed,

together with the procedures used to obtain them, are real and indeed come from the respective

simulations and measurements. I understand that data faking is an offence punishable according to

the University regulations.

Bucharest, June 2018 Ioana BĂDIȚOIU

 (Student’s signature)

Copyright © 2018, Ioana BĂDIȚOIU

All rights reserved.

The author hereby grants to SpeeD Laboratory and UPB permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part.

TABLE OF CONTENTS

Table of Contents ... 9

List of Figures 11

List of Tables 13

List of Abbreviations .. 15

Introduction 17

Thesis Motivation ... 17

Main Objective ... 17

Specific Objectives ... 18

Chapter 1 Evolution and Analysis of Wireless Protocols from the IoT Perspective 21

1.1 Introduction ... 21

1.2 Wireless Fidelity (Wi-Fi) .. 22

1.3 ZigBee ... 23

1.4 Long-Range Wide-Area Network (LoRaWAN) ... 23

1.5 Narrowband Internet of Things (NBIoT) .. 24

1.6 Conclusions ... 26

Chapter 2 Long-Range Wide-Area Network (LoRaWAN) .. 29

2.1 Introduction ... 29

2.2 LoRaWAN Protocol .. 30

2.3 LoRa Physical Layer ... 31

2.3.1 Overview of the Physical Layer ... 31

2.3.2 Parameters of the physical Layer ... 32

2.4 End Devices ... 32

2.5 Security .. 34

2.6 Connection to LoRaWAN networks ... 35

2.6.1 Over-the-Air-Activation (OTAA) .. 35

2.6.2 Activation by Personalization (ABP) ... 36

2.6.3 Default Activation for Generic Devices ... 36

Chapter 3 Drones – Hardware Technologies .. 37

3.1 Lehmann Aviation LA300 ... 37

3.2 PhantomX Hexapod Robot .. 39

3.2.1 Hexapod Robots ... 39

3.2.2 PhantomX AX Hexapod Mark II Hardware Structure ... 40

Chapter 4 Case Studies for Aerial and Terrestrial Drones and Optimized Communication –

Considering the Particularities of Both Assembles .. 43

4.1 Introduction ... 43

4.2 Development Bords ... 44

4.2.1 Arduino Uno ... 44

4.2.2 Seeeduino Cloud - Arduino Yun compatible openWRT controller 45

4.3 LoRa Dragino Shield ... 46

4.4 LoRa GPS HAT for Raspberry Pi ... 47

4.5 Raspberry PI 3 ... 48

4.6 Lehmann LA300 UAV Improvements .. 49

4.7 LoRaWAN Communication using an IoT Platform .. 54

4.8 Point to Point Communication using LoRaWAN Protocol ... 58

Conclusion and Future Implementations ... 61

General Conclusions .. 61

Personal Contributions ... 61

Future Work ... 62

REFERENCES 65

ANNEX 1 67

ANNEX 2 71

ANNEX 3 75

ANNEX 4 79

LIST OF FIGURES

Figure 2.1 – Wi-Fi systems principle ... 22
Figure 2.2 – Possible ZigBee Topologies .. 23

Figure 2.3 – The architecture of a typical LoRaWAN network ... 24
Figure 2.4 – NBIoT device ... 25
Figure 2.5 – Standalone Solution ... 25

Figure 2.6 – In-band Solution .. 25
Figure 2.7 – Guard Band Solution ... 26
Figure 3.1 – LoRa physical layer and LoRaWAN [5] ... 30

Figure 3.2 – “Star-of-stars” LoRa Network Topology [11] ... 30
Figure 3.3 – LoRa frequency specter on 868.1 MHz ... 31

Figure 3.4 – Dragino LoRa Shield [16] ... 32
Figure 3.5 – Classes of devices within LoRaWAN [5] .. 32
Figure 3.6 – Class A Receive Windows [10] ... 33

Figure 3.7 – Class C Receive Windows [10] ... 33
Figure 3.8 – Encryption keys in LoRaWAN networks [9] .. 34

Figure 3.9 – Encryption of LoRaWAN packets to prevent interception and attacks [9] 35
Figure 3.10 – LoRaWAN class A network [7] .. 36

Figure 4.1 – Aircraft (wing assembled with the main Electronic part) [12] 38
Figure 4.2 – Aircraft Main Electronic part details [12] ... 38
Figure 4.3 – PhantomX AX Hexapod Mark II [13] ... 40
Figure 4.4 – Dynamixel AX-12A Robot Actuator [13] ... 41
Figure 5.1 – Arduino Uno architecture [14] ... 45
Figure 5.2 – Seeeduino Cloud - Arduino Yun compatible openWRT controller [15] 45

Figure 5.3 – LoRa GPS Shield [16] ... 46

Figure 5.4 – LoRa GPS HAT on top of a Raspberry Pi 3 [20] .. 47
Figure 5.5 – Raspberry PI 3 architecture [17] .. 48

Figure 5.6 – Removing the electrical part of the UAV .. 49
Figure 5.7 – Different solutions that were analyzed for replacing the UAV components 50
Figure 5.8 – Mission Planner – Flight simulator .. 50
Figure 5.9 – Pixracer v1.0 top view [19] ... 51
Figure 5.10 – Assambled components ... 51

Figure 5.11 – Fully equipped UAV with attached video camera and Taranis X9D Transmitter 52
Figure 5.12 – Planned Mission ... 53
Figure 5.13 – Waypoints .. 53
Figure 5.14 – The path that describes the UAV route at Aeropower near Adunații-Copăceni,

Romania ... 54

Figure 5.15 – Network example using TTN [10] ... 54
Figure 5.16 – Example of enrolled end device using ABP .. 55
Figure 5.17 – LoRa Node with GPS .. 57

Figure 5.18 – Data transmission flow using TTN and point to point communication 58
Figure 5.19 – Client side with external GPS antenna .. 59
Figure 5.20 – Server side ... 59
Figure 5.21 – Coordinates stored on a .csv file on the server .. 60

Figure 5.22 – UAV flight path highlighted on a map .. 60
Figure 6.1 – Lehmann Aviation LA300 UAV equipped with GoPro Hero 4 62

LIST OF TABLES

Tabel 2.1 – General characteristics .. 26

LIST OF ABBREVIATIONS

A

ABP = Activation by Personalization

AES = Advanced Encryption Standard

AP = Access Point

AppSKey = Application session key

B

BSS = Basic Service Set

E

EGPRS = Enhanced General Packet Radio

Service

ESS = Extended Service Set

F

FFD = Full-Function Device

G

GPRS = General Packet Radio Service

GSM = Global System for Mobile

Communications

I

IBSS = Independent Basic Service Set

IoT = Internet of Things

IP = Internet Protocol

ISO/OSI = International Organization for

Standardization/Open Systems

Interconnection

J

JSON = JavaScript Object Notation

L

LoRaWAN = Long-Range Wide-Area

Network

LPWAN = Low-Power Wide Area

Networking

LTE = Long-Term Evolution

M

MAC = Medium Access Control

MIC = Message Integrity Code

MQTT = Message Queuing Telemetry

Transport

N

NBIoT = Narrow Band Internet of Things

NwkSKey = Network Session Key

O

OTAA = Over The Air Activation

P

PAN = Personal Area Network

R

RAM = Random Access Memory

S

SPI = Serial Peripheral Interface

T

TCP/IP = Transmission Control

Protocol/Internet Protocol

W

Wi-Fi = Wireless Fidelity

Information Transmission between a Terrestrial Drone and an UAV

17

INTRODUCTION

THESIS MOTIVATION

Nowadays, people are keener to use technology in order to substitute daily tasks, activities that

become repetitive or missions in dangerous areas. And these are just a few examples. Applications

with drones, which are the main objective of this thesis, are widely known, these being used in

many domains such as Agriculture, Networking, Geo Mapping, Filming, Military etc.

Moreover, the necessity of using wireless protocols increased exponentially in the last decade, as

current technologies allow the use of a large number of monitoring and controlling devices on a

relatively small surface. Besides Wi-Fi or ZigBee, which are the most known, many other protocols

are used as an alternative depending on factors such as data requirements, power demands or range

or battery life.

MAIN OBJECTIVE

In this context, the thesis aim is to explore and study wireless protocols that can be used in a

communication between two moving devices – one being on the ground and the other in the air.

More specifically, a protocol that ensures real time transmission between a terrestrial drone and an

Unmanned Aerial Vehicle (UAV).

In order to meet all the requirements to the greatest possible extent, while taking into account other

parameters such as: low implementation cost, high battery lifetime in a charging cycle and

interference resistance, I have studied the use of a wider range of wireless protocols:

Information Transmission between a Terrestrial Drone and an UAV

18

✓ Wireless Fidelity (Wi-Fi)

✓ ZigBee

✓ Long-Range Wide-Area Network (LoRaWAN)

✓ Narrowband Internet of Things (NBIoT)

The latter are two technologies that are still under development and their implementation in

different fields such as military domain, has not yet materialized.

When talking about drones, both terrestrial and UAVs, new wireless communication solutions are

constantly being sought, solutions that need to cope with any challenge, on distances as large as

possible. Currently, the concept of switching from one wireless technology to another within the

same communication process, depending on the operating parameters – distance, altitude, remaining

battery, number of packets lost in a transmission, etc. is also studied.

To accomplish what I have proposed, I will follow the practical performance of the protocols

mentioned above. Even though, in theory, they all fit into military fieldwork, a series of practical

experiments will be needed to determine which is the most adequate protocol, considering all

requirments. Everything needs to be taken into account: the distance from the signal source, where

is the controlling point for the drones, the interferences that may occur, the number and type of

obstacles that can affect the signal, etc.

The UAV that will be used for practical experiments is Lehamann Aviation LA300 – more details

about this will be presented in the following chapters. The main advantage of this drone is that it

offers the possibility of mounting or removing the weight that is transported during the flight (such

as the camera provided or other additional components that are not necessary to be maintained

during take-off and flight) while providing an easy installation of wireless transmission modules, in

addition to those already in place for information transfer and synchronization with an application.

The terrestrial drone, which will host the server on which information will be kept, is a PhantomX

AX Hexapod Mark II robot. This is an open source robot, which means that it completely fits the

purpose of this paper.

SPECIFIC OBJECTIVES

✓ The paper is focused on investigating in comparison four different solutions: two are LAN

centered (Wireless-Fidelity and ZigBee), one is proprietary type (LoRaWAN) – being the

most evolved at the moment and considered generic from the perspective of other

implementations and one is a solution in development, from the area of transition to 5G

(NBIoT).

✓ By analyzing the advantages and disadvantages of different protocols from the Internet of

Things perspective, the practical implementation will be done with the one that best fits the

proposed use case. In this context, LoRaWAN protocol will be studied.

✓ In parallel with the IoT protocol implementation, it will be presented a brief description of

the hardware that will be used: Lehmann Aviation LA300 UAV and PhantomX AX

Hexapod Mark II robot.

✓ Two solutions will be implemented: one using an Internet of Things platform and the other,

point to point communication.

Information Transmission between a Terrestrial Drone and an UAV

19

The thesis is organized in 6 chapters, as follows:

Chapter 1 presents the motivation, the objectives and the outline of this thesis. In Chapter 2 are

exposed four different protocols, with advantages and disadvantages for my use case. Chapter 3

details the one that best fits my desired implementation. Chapter 4 presents hardware technologies

which will be used to accomplish what I have proposed. Chapter 5 mainly illustrates the

contributions of the author of the thesis. It focuses on the actual implantations of the applications of

this paper. Finally, Chapter 6 summarizes the main conclusions of the thesis and underlines the

author’s contributions.

Information Transmission between a Terrestrial Drone and an UAV

20

Information Transmission between a Terrestrial Drone and an UAV

21

CHAPTER 1

EVOLUTION AND ANALYSIS OF WIRELESS

PROTOCOLS FROM THE IOT PERSPECTIVE

1.1 INTRODUCTION

There is one major difference between “the Internet” and “the Internet of Things”, this being that

the latter requires less of everything: less processing power, less memory, less bandwidth, etc. It is

estimated that by 2020, 50 billion devices will be connected. This huge number of devices leads to

constraints that limit the applicability. of traditional technologies.

The general tendency of the present is to use wireless protocols for the physical level – for computer

networks, the most commonly used protocol is Wi-Fi, while mobile communications networks use

GSM protocols: 3G, 4G, GPRS, EGRPRS (EDGE), LTE, etc.

In terms of applications, higher levels of protocols stack (TCP/IP or ISO/OSI), there will be no

difference when switching from classical, wired, to wireless (at most delays will occur, but if the

application is done correctly, it should not make a major difference). When talking about

application level, we mean any direct interaction with the user (web browser, games, switches,

bulbs, etc.). These applications are "protected" by interfaces between layers of protocols stacks,

allowing each software or hardware module to modify its operating mode, while maintaining

communication with the other levels in exactly the same way.

Information Transmission between a Terrestrial Drone and an UAV

22

Nowadays, there is a relatively large number of wireless protocols that can be used for various

applications. In this chapter, I will present some of these protocols, the most used and useful of the

existing ones, comparing them with the main protocol of the paper – Long-Range Wide-Area

Network (LoRaWAN).

The protocols that will be analyzed are the following: Wireless-Fidelity, ZigBee, LoRaWAN and

NBIoT. They will then be compared in terms of standards, evaluating the operation metrics,

transmission time, coding efficiency, complexity and average power consumption. The advantages

of each protocol will be highlighted, but we will focus on their utility in sensor networks, such as

those used in this paper.

1.2 WIRELESS FIDELITY (WI-FI)

When talking about Wi-Fi protocol, we have to refer to the following standards: 802.11

a/b/g/n/ac/ad. They permit the user to connect to a network when in proximity of an Access Point

(AP) or through a router.

The architecture defines two infrastructure mode topology building blocks: Basic Service Set (BSS)

and Extended Service Set (ESS). A BSS consists of an AP which interconnects more clients. If one

of the clients that is connected wireless goes outside the Basic Service Area (the coverage area),

communication is interrupted.

ESS, on the other hand, is formed when there is not enough radio frequency coverage and two or

more BSSs must be joined together through a distribution system.

There is also an ad hoc mode where wireless stations can communicate directly with each other. The

building block that stays at the base of this implementation is called Independent Basic Service Set

(IBSS).

Figure 2.1 – Wi-Fi systems principle

What represents the main advantages of this protocol are the data rate which goes up to 1.3 Gbps

and a high resistance to interference caused by transmission environment. However, speed is not a

key factor and other characteristics will be more important.

The distance, which is one of the key factors because in this paper I want to implement long-range

networks, is a drawback when talking about Wi-Fi. The typical maximum range of a standard

equipment that uses this protocol is maximum 100 meters. This is enough for typical homes but

insufficient if we consider larger structures.

Moreover, another major drawback is the need for intermediate equipment whose price may

increase exponentialy when discussing the connection of multiple nodes (over 10-20). Although

they can connect multiple nodes to cheap equipment, their internal components (CPU, RAM, ROM)

do not handle traffic volume.

Information Transmission between a Terrestrial Drone and an UAV

23

1.3 ZIGBEE

ZigBee, as described in IEEE 802.15.4 standard, is a Wireless Personal Area Network (WPAN) low

data rate transmission protocol. It has been designed for a simple connection between devices,

keeping power consumption at a minimum.

The ZigBee network is self-organizing, requiring a minimum intervention of the user or

administrator at the time of the initial setup. Subsequent interventions are required only in situations

with major problems where a large number of nodes are defective or if the running configurations

are deleted and reset. Networks organized by ZigBee can be both multi-hop – star and mesh.

Figure 2.2 – Possible ZigBee Topologies

Within a ZigBee network, devices have two ways of working: full-function device (FFD) or

reduced-function device (RFD). FFDs can perform three roles: Personal Area Network (PAN)

Coordinator, Router or End-device and it can communicate actively with other FFDs or RFDs

whereas a RFD performs only a limited number of tasks and can communicate only with other FFD

devices.

Nodes that play the role of RFD have less important purposes within the network, most of the time

being passive devices (switch, passive infrared sensor). They do not need to transmit large amounts

of data and they can communicate with only one FFD at the time.

Once a fully functional node has been activated for the first time, it is able to form its own network

and become PAN coordinator, forming a star network. Several star networks can work independent

of each other, separated by an unique network identifier. Once a PAN identifier has been chosen,

the coordinator can allow other nodes to connect to the network.

Due to the advantages of the protocol, the possibility of data encryption, of connecting a large

number of nodes within a single network (> 65,000), ZigBee is well suited for a large range of IoT

applications, but also to more complex applications. Some examples are: automation of home and

work processes (starting the coffee machine, washing machine, refrigerator, etc.), medical

monitoring (EEG, EKG), safety monitoring and seismological monitoring. Within these

applications, ZigBee compatible nodes can be battery-powered, the power consumption associated

with the protocol being very low.

1.4 LONG-RANGE WIDE-AREA NETWORK (LORAWAN)

In order to fully understand what Long-Range Wide-Area Network (LoRaWAN) is and what is the

purpose for developing such a protocol, firstly I have to define and explain the concept of Low-

Power Wide-Area Network (LPWAN).

Information Transmission between a Terrestrial Drone and an UAV

24

In a world where connecting many things over long distances became a priority in order to make

smart cities, agriculture, asset monitoring and tracking, metering and so on, LPWAN became a

necessity. In order to achieve multi-kilometers communication range, LPWAN combines robust

modulation and low data rate.

These were meant to fill the gap between cellular networks (GSM, LTE, UMTS) and short-range

high-bandwidth networks (Bluetooth, Wi-Fi, and ZigBee).

Figure 2.3 – The architecture of a typical LoRaWAN network

There are several solutions such as Ultra Narrow Band including SigFox, NBIoT, Ingenu or

Weightless W, N and P.

Taking into account recent analysis, we can affirm that SigFox, together with LoRaWAN are the

most used at the moment. However, the restrictions which are applied on SigFox (such as

frequencies, maximum packet payload and the number of packets per device per day) make

LoRaWAN a more desired solution, being considered more flexible and open.

LoRaWAN protocol was specified by the LoRa Alliance in 2015 and from that moment, has grown

rapidly, being adopted by numerous . telecommunications providers or electronics companies.

The topology used by LoRaWAN is a star-of-stars. Communication is bidirectional and works in the

following manner: gateways gather together data from end-devices which are sent over a single

wireless hop. Next, gateways are connected through a non-LoRaWAN network to the network

server.

Three types of devices are defined within the standard: Class A, B and C, each of them with

different capabilities.

More details concerning this protocol will be found in Chapter 3, where I intend to describe in

detail the characteristics of LoRaWAN.

1.5 NARROWBAND INTERNET OF THINGS (NBIOT)

As stated earlier, Narrowband IoT is a Low Power Wide Area Network radio access technology

developed by 3rd Generation Partnership Project (3GPP) that can enable new IoT services and

devices.

NBIoT provides the folowing features:

- Extended coverage; it has a signal gain higher with 20 dB than LTE so the emitting power

rate increases consistently. This means that also coverage improves;

- Suport of massive number of low throughput devices;

- Low power consumption;

- Optimized network architecture;

Information Transmission between a Terrestrial Drone and an UAV

25

- High allowed latency;

Figure 2.4 – NBIoT device

While coexisting with 2G, 3G and 4G and being considered a solution of transition to 5G mobile

network, it is supported by all major mobile equipment, chipset and module manufacturers. It is a

versatille solution that can be deployed on existent GSM/UMTS/LTE cellular networks.

It offers three deployement scenarios, which are the following:

1. Standalone Solution

The most typical Standalone deployment is to introduce NB-IoT in the GSM band (typically

900MHz) [4].

Figure 2.5 – Standalone Solution

Adding more NB-IoT carriers is possible but impacts GSM capacity and frequency planning.

2. In-band Solution

With In-band deployment, a NB-IoT carrier is introduced within the LTE carrier, the power being

taken from the LTE carrier.

In case in the In-band solution is used the IoT, capacity of the baseband can be used for broadband

services when there is no NBIoT traffic. This means dynamic sharing of broadband resources

between LTE and NBIoT [4].

Figure 2.6 – In-band Solution

Information Transmission between a Terrestrial Drone and an UAV

26

This solution has the advantage that it is easy to scale by adding more NB-IoT carriers.

3. Guard Band Solution

We are talking about Guard Band deployment if we introduce NB-IoT in the guard band of LTE.

However, this means limited possibilities to scale (one or max 2 NB-IoT carriers per guard band)

[4].

Figure 2.7 – Guard Band Solution

1.6 CONCLUSIONS

Each of the protocols presents characteristics and advantages that recommend themselves for usage

in different applications but, at the same time, disadvantages for what I have proposed to implement

along this thesis.

In Table 2.1 I will present general characteristics of presented protocols, together with LoRaWAN.

Protocol

IEEE spec.
802.11

a/b/g/n/ac/ad
802.15.4 802.11 ah No spec.

Bandwidth 2.4 GHz; 5 GHz
868/915 MHz;

2.4 GHz

868/915 MHz;

of 125 kHz

According to

national

regulations

Throughput Up to 1.3 Gbps 250 kbps 27 kbps ~ 200 kbps

Coverage 100 m 10 - 100 m 5 – 15 km Up to 20 km

Topology BSS, ESS
star, peer-to-peer,

mesh
star of stars star

Transmission

Power
15-20 dBm -25 (0 dBm)

−4 dBm to 20

dBm
23 dBm

Channel

Bandwidth
22 MHz

0.3/0.6 MHz; 2

MHz

125 kHz/500 kHz

(Europe)
180 KHz

Maximum

number of

nodes

>20, 25 >65000
thousands of

nodes

thousands of

nodes

Data

Cryptography
RC4 (WEP) AES AES128

LTE data

transmission

encryption: AES

Authentication WPA2 CBC-MAC (CCM) ABP/OTAA LTE based

Data Security CRC 32-bit CRC 16-bit CRC 16-bit LTE based

Tabel 2.1 – General characteristics

Information Transmission between a Terrestrial Drone and an UAV

27

Considering all the characteristics and limitations listed above, in the next chapters I will focus on

LoraWAN and its practical implementation.

I chose this protocol because it is a relatively new standard which has grown rapidly and it has been

adopted by many companies worldwide.

In fact, there are many reasons that made me believe that LoRaWAN is the best choice, among Wi-

Fi, ZigBee or other proprietary LPWAN technologies that are also hitting a large market, for the

implementation that will be described later in this paper.

IoT vision requires long-range communication while interconnecting more sensor nodes. This

means that energy consumption is an important issue that must be addressed. Wi-Fi clearly remains

behind the trend with high energy consumption and, as it can be seen from the table, a small number

of devices that can be interconnected. Moreover, to allow a point-to-multipoint connection, devices

must run a software that consumes more internal hardware resources, and their consumption

increases as the number of connected devices increases. Even though this would make ZigBee a

good alternative, we also have to take into account the distance covered.

Because we are talking about long-range communication and ZigBee only covers up to 100 meters,

this would be considered a major disadvantage, taking it out of the race. A LoRaWAN gateway can

cover up to 15 kilometers, almost the same distance covered by NBIoT, which unfortunately does

not have any practical implementation in Romania yet. Considering all of these, together with the

ability to serve thousands of end-devices with a low-power consumption, LoRaWAN is considered

the best choice for my implementations, described more detailed in Chapter 2.

Information Transmission between a Terrestrial Drone and an UAV

28

CHAPTER 2

LONG-RANGE WIDE-AREA NETWORK

(LORAWAN)

2.1 INTRODUCTION

There is a difference between LoRa and LoRaWAN, which I want to state from the beginning: the

first one defines the physical layer, while the latter is the protocol which is based on LoRa. Even

though there is no restriction on using this protocol, LoRa Alliance decided that it is better to

specifically. design LoRaWAN for this purpose because many protocols already. existent would lack

security at MAC level or would trigger a high amount of communication to a single gateway.

Taking these into account, LoRaWAN was developed . to allow mobility without handovers.

In Figure 3.1 it is presented LoRa Protocol stack with the two distinct layers: the physical layer

using the Chirp Spread Spectrum (CSS) radio modulation technique and the MAC layer protocol

(LoRaWAN).

Information Transmission between a Terrestrial Drone and an UAV

30

Figure 3.1 – LoRa physical layer and LoRaWAN [5]

In this Chapter, I will provide an independent analysis of LoRaWAN Protocol, LoRa, the physical

layer, types of end devices, LoRaWAN networks and devices’ connection and ways of securing

communication within LoRaWAN networks.

2.2 LORAWAN PROTOCOL

In a LoRaWAN topology, we can distinguish between three types of components: Nodes, Gateways

and Network Servers. Figure 3.2 displays a “star-of-stars” network topology with the elements

mentioned before. A star topology is one the most common models and it consists of a central node

to which other nodes are connected, being simpler to maintain than mesh networks. This means, for

a LoRa network, that multiple Nodes are connected to one Gateway and, multiple Gateways to a

single Network Server.

Figure 3.2 – “Star-of-stars” LoRa Network Topology [11]

Nodes are also known as . end-devices and they are used to measure or control external systems,

being formed by. a microcontroller which manages . a LoRa transceiver. They communicate

wirelessly with gateways and are low powered.

They are divided into three classes as it will be. explained later in this chapter and, depending on

these classes, they will work in a different configuration. Even though they can listen all the times,

the most common and low-power consuming option is to work in a “call then listen” configuration.

This means that after the Node sends data to a Network Server, it will have short. windows to listen

for data coming. back from Network Server.

Gateways transfer data from Nodes to the central Network Server. They are fewer in number

because a single gateway can support thousands of devices. Because the connection between the

Information Transmission between a Terrestrial Drone and an UAV

31

Gateway and the Network Server is done by IP connections, packets need to be converted.

Gateways act as bridges, converting. RF packets to IP packets or vice-versa.

Network Server represents the edge of the presented system and gathers together data sent from

Nodes. It can be represented by an Internet facing web service to which Gateways can connect

through, for example, cellular networks [11].

2.3 LORA PHYSICAL LAYER

As stated before, LoRa represents the physical layer and it is a Semtech proprietary technology.

LoRa was designed such that it allows low-power, low-throughput and long-range communications.

It uses 433 MHz, 868 MHz and 915 MHz Industrial, Scientific and Medical (ISM) unlicensed

frequency bands, depending on the region in which it is deployed, being able to transmit, depending

on the environment, over several kilometers. For Europe, the used band is 868 MHz.

Figure 3.3 – LoRa frequency specter on 868.1 MHz

2.3.1 Overview of the Physical Layer

LoRa uses Chirp Spread Spectrum (CSS) modulation. This technique allows the signal to be

modulated by chirp pulses (sinusoidal pulses . which vary in frequency). Because of this variation,

chirp-modulated signals improve resilience and robustness against multi-path interference and

Doppler effect which is equivalent to frequency offset [6].

LoRa has many advantages such as:

• Thousands of devices can be connected per gateway, enabling high capacity networks;

• Long communication range - it goes up to 2-5 kilometers in urban areas and up to 15

kilometers in suburban areas; coverage is way greater in range than that of existing cellular

networks or other IoT protocols;

• Operates with low power – battery lifetime is around 10 years;

Information Transmission between a Terrestrial Drone and an UAV

32

Figure 3.4 – Dragino LoRa Shield [16]

2.3.2 Parameters of the physical Layer

LoRa modulation have several parameters that can be customized: Bandwidth, Spreading Factor

(SF) and Code Rate. All these parameters have an influence on the resistance to interference noise

of the modulation, its effective bitrate and its ease of decoding.

Bandwidth – this is the most important parameter. A LoRa symbol is composed of 2SF chirps, which

cover the entire frequency band. It starts with a series of upward chirps. When the maximum

frequency of the band is reached, the frequency wraps around, and the increase in frequency starts

again from the minimum frequency.

The chirp rate depends only on bandwidth, being equal to this.

LoRa also includes a forward error correction code.

These parameters also influence decoder sensitivity. Generally speaking, an increase of bandwidth

lowers the receiver sensitivity, whereas an increase of the spreading factor increases the receiver

sensitivity. Decreasing the code rate helps reduce the Packet Error Rate (PER) in the presence of

short bursts of interference.

2.4 END DEVICES

Within LoRaWAN Protocol, based on MAC layer, we can define three classes of operation: Class

A, B and C. They have different modes of functioning and capabilities, but they all refer to bi-

directional communication.

Figure 3.5 – Classes of devices within LoRaWAN [5]

Information Transmission between a Terrestrial Drone and an UAV

33

Class A – It is the basic mode of operation being supported by all devices and also the class with the

lowest power consumption.

They use pure ALOHA access for the uplink. This means that they will send randomly, at any time,

uplink messages [6]. After an uplink message, the device will open two downlink receive windows.

The recommended values for these widows are 1s and 2s, respectively. We have three situations as

described in the figure below:

• 1st situation: server does not respond in any of the receive windows; in this case, the next

opportunity will be after the next uplink.

• 2nd and 3rd situations: server can respond in one of the receive windows. However it should

not use both of them; if the downlink traffic is received in the first window, the second is

disabled.

Figure 3.6 – Class A Receive Windows [10]

Moreover, class A is the only class that must be implemented in all end-devices.

Class B – When additional downlink traffic is needed, class B devices can be used. They come as an

extension of class A devices because they transmit, periodically, beacon frames [6].

Usually, beacon frames are used, in IEEE 802.11, to transmit the presence of a wireless LAN and

they contain all information about the network. In this case, the frames are sent by the gateway and

allow, without the need of a prior successful uplink transmission, the schedule of receive windows

for downlink traffic. Only class B and class C devices can receive them.

However, power consumption is higher than in the case of class A devices.

Class C – These types of devices are defined by the fact that they can receive frames continuously

because they are always listening to the channel [6]. This means that, as shown in the figure below,

the receive window is open, unless they transmit.

Because of this, within this class we have low-latency but they consume more energy.

Figure 3.7 – Class C Receive Windows [10]

Information Transmission between a Terrestrial Drone and an UAV

34

The devices can switch from one class to another because all the three classes can coexist in the

same network. However, the gateways are not informed about the class that a device is part of

because there is no specific message defined by LoRaWAN and this is up to the application.

2.5 SECURITY

From the beginning of IoT, threats of cyber-attacks have become a high concern. This is why, the

issue of security is a topic more and more debated lately. Due to the fact that IoT connects more

people and devices, attackers could take over data, cause malfunction or gain access to intellectual

property, causing harm to larger groups in a relatively short time. So, in order to prevent system

disruption, networks require high level of security. LoRaWAN offers, like many other protocols,

signing and encryption for parts of LoRaWAN packets and ways of securing data when talking

about connecting devices to LoRaWAN networks.

Security strategies to protect connections and data transfers should have two important

characteristics: they should not be complex in order to be supported in IoT endpoints with a

minimum additional demand on device power and, also, they should be inexpensive.

LoRaWAN provides security mechanisms that protect communications by mutual authentication.

This is a way of ensuring that the device that connects to the network is registered and of the

authenticity of the network that the device is joining. This implies that, both the device and the

network have knowledge of AppKey which allow encryption and decryption of messages.

When talking about LoRaWAN security, we can also define two session keys, each of them with a

length of 128 bits: network session key – NwkSKey and application session key – AppSKey, an

extension of the security developed for IEEE 802.15.4 radio communication which is used [11].

Figure 3.8 – Encryption keys in LoRaWAN networks [9]

Information Transmission between a Terrestrial Drone and an UAV

35

As stated earlier, we can use them in the following way:

• Network session key (NwkSKey) – used between Node and Network, guaranteeing the

message integrity;

• Application session key (AppSKey) – used between Node and Application Server for

payload encryption and decryption.

Before communicating on a LoRaWAN network, devices must be activated. There are two ways of

doing this: Over The Air Activation (OTAA) or Activation By Personalization (ABP). However, in

both cases, before connecting, not only the device, but also the network must demonstrate they have

the security keys.

Packets that are exchanged in LoRaWAN networks contain a MAC header, frame header or

counter, the payload and a message integrity code (MIC) which is generated using NwkSKey.

As it can be seen in Figure 3.8, application payload is encrypted using Advanced Encryption

Standard in counter mode (AES-CTR). The frame header is included as part of the LoRaWAN

packet. This prevents attackers from gaining access by replaying messages. The counter needs to be

managed correctly so no sequences are repeated or the counter is not reset by forcing the node to

reconnect to the network [11].

Figure 3.9 – Encryption of LoRaWAN packets to prevent interception and attacks [9]

2.6 CONNECTION TO LORAWAN NETWORKS

LoRaWAN is usually used for communication between devices and gateways. All other

communication is done by IP networks.

Devices can connect to a network in the following ways:

2.6.1 Over-the-Air-Activation (OTAA)

This is the preferred and frequently used way to connect devices with a network because it is also

the most secure. In this case, devices perform a join-procedure with the network. During this,

DevAddr is assigned dynamically and security keys are negotiated.

The only disadvantage is that it adds a layer of complexity to the process. In order to connect

OTAA, devices need a DevEUI (it is a 64-bit end-device identifier, assigned by chip manufacturer,

globally unique), an AppEUI (it is a 64-bit unique application key and it identifies the application to

which the device will connect) and an AppKey (128-bit key that is shared between the end-device

and the network) [7].

During OTAA, after an authorized device connects to the network and the encryption keys are

exchanged with the network core, network server sends the following information to the end-device:

• Device address (DevAddr) – this is the logical address used for communication;

• Application Session Key (AppSKey) – it is an encryption key between the device and the

operator via application;

Information Transmission between a Terrestrial Drone and an UAV

36

• Network session key (NwkSKey) – it is an encryption key between the device and the

operator.

2.6.2 Activation by Personalization (ABP)

There are cases when OTAA can be skipped. This is done when devices are manually registered and

keys are directly obtained. However, this procedure weakens security because keys are practically

preconfigured and so they can be easily stolen.

2.6.3 Default Activation for Generic Devices

This is a special case in which devices use default keys which are supported by all network

operators. This is what we call a generic device. They mainly use ABP. Packets sent from these

devices are usually not encrypted so they lack security.

They use globally-known NwkSKey and AppSKey and, for data encryption, AppSKey. Moreover,

many attributes such as DevAddr, length and time at which the packet was sent, signal strength and

other gateway information are accessible to public [7].

Figure 3.10 – LoRaWAN class A network [7]

CHAPTER 3

DRONES – HARDWARE TECHNOLOGIES

3.1 LEHMANN AVIATION LA300

LA300 is an UAV fully automatic, produced by Lehmann Aviation, with application in agriculture,

high precision mapping and constructions or mining. It is a small dimension drone, which can take

photos at low altitudes of 50-100 meters using an additional camera such as GoPro (Hero 3 or latest

models), Canon or MicaSense.

Information Transmission between a Terrestrial Drone and an UAV

38

Figure 4.1 – Aircraft (wing assembled with the main Electronic part) [12]

The drone was designed by its manufacturers in order to be used for agricultural lands real-time

surveillance, based on the analysis of the images taken with the camera provided. However, the

purpose can be easily extended and images can also be taken from different locations that need to be

supervised to analyze possible dangers or threats.

Figure 4.2 – Aircraft Main Electronic part details [12]

As presented in Figure 4.2, the electronic components of LA300 drone are the following:

- GPS antenna

- Engine controller

- LiPo battery

- Electrically powered engine

- Wi-Fi SNIC SN8200 interface

Information Transmission between a Terrestrial Drone and an UAV

39

The built-in GPS antenna gives the drone a radionavigation system to find the geolocation of the

points they need through the satellites.

Battery is Lithium Polymer (LiPo) with a total capacity of 2600 mAh and a nominal voltage of

11.1V. This is enough to assure a 30 minutes flight or to cover a distance around 15km.

The SN8200 wireless interface is a Murata controller that is specifically designed to support

wireless communications. Through this controller, the ground control station can communicate with

the UAV and send it the coordinates of the trajectory. The configuration is done in the initial phase

of the setup and then, after the UAV lands, we can read the actual GPS coordinates of the flight.

The engine controller reads the settings received on the wireless interface and operates the electric

engine so that the drones will fly over the desired trajectory.

It also has the advantage of being easily maneuvered, being launched without a special frame or

training. The route can be scheduled with the application with which the drones are delivered, but

we also have the possibility to develop an application.

Drone settings are transmitted to the UART interface of the SN8200 wireless module in the format

of a JavaScript Object Notation (JSON), the received and interpreted settings being then transmitted

by the wireless interface on the output ports to the controller operating the UAV’s engine.

All of the features presented above are advantages that recommends Lehmann Aviation L300 UAV

for use in military applications: high battery capacity (in relation to other UAVs), fast charging

time, the possibility of using a larger number of wireless protocols (by replacing the SNIC SN8200

controller or adding independent modules), global satellite coordination, security transmissions, etc.

Also, the fact that the drone has the ability to acquire images gives us the possibility to synchronize

with the terrestrial one, or to provide a complete overview of the overlay surfaces, all of these being

practical implementations of the following phases of the project.

3.2 PHANTOMX HEXAPOD ROBOT

3.2.1 Hexapod Robots

Firstly, I have to define what the term Hexapod Robot refers to. This kind of robot is mechanical

device which motion is based on its six legs. The main advantage is that the robot has more

flexibility and stability than other types with two, three or four legs. Furthermore, its behavior is

more complex. Because not all the legs needed for movement or stability, the others can be used to

lift objects, to manipulate payloads or to target the robot to certain areas.

In figure 4.1, it is present PhantomX AX Hexapod Mark II robot.

Information Transmission between a Terrestrial Drone and an UAV

40

Figure 4.3 – PhantomX AX Hexapod Mark II [13]

This types of robots make a good target for the use case defined within this paper. Their primary

target was to be used for testing biological theories related to the movement of insects, engine

control and neurobiology. However, such robots can be successfully used in discovery or research

missions in places hard to reach people (e.g. in areas devastated by earthquakes or other natural

disasters or in military missions).

There are different types of Hexapod robots. The design may vary from the point of view of the

arrangement of their legs. Most of them, being inspired by the anatomy of insects, have their feet

symmetrically distributed. Moreover, their feet have two to six points of freedom.

The movements of a hexapod robot are controlled by the types of steps it can make:

- Crawl – Single-leg movement

- Alternating tripod – three legs on the ground at a time

- Quadruped

In addition to these standard hexapod control steps, motion is also influenced by the environment

and depends on the type of surface that the robot walks on.

Other important factor for hexapod robots is the man-robot interaction. Human control over the

hexapod varies between different levels of autonomy.

Man can have absolute control over the movements of the robot by programming it; however, the

robot can be programmed to take more complex decisions based on the commands it receives, in

order to meet the requirements. There are also autonomous robots that can work for a long time

without interacting with humans, reacting on the basis of well-defined models.

3.2.2 PhantomX AX Hexapod Mark II Hardware Structure

PhantomX hexapod is fairly complex robot, developed by Vanadium Labs. It is open source, which

means that it completely fits the purpose of this paper.

The heart of the PhantomX robot is the Arbotix Robocontroller, which works on a kinematics and

reverse motion system, commanding the Dynamixel AX-12 network for leg positioning. Arbotix

accepts navigation commands via the Control Protocol, a simple serial protocol that allows for a

proportional control of the robot movement. The robot controller can communicate wireless with a

manual command system via this protocol and with a pair of XBee Wireless Modules. The same

protocol can also be used for communication between a PC and the hexapod, using the XBee USB

Information Transmission between a Terrestrial Drone and an UAV

41

interface. PhantomX hexapod control can be done using any programming language that is capable

of transmitting data through a serial port.

Dynamixel AX-12A Robot Actuator

The AX 12-A actuator is one of the most advanced and it has become a standard actuator for the

next generation of robotics. Among its features, the most important are the ability to track its speed,

temperature, position, voltage and load. Moreover, the control algorithm used to maintain the

correct position of the actuator can be adjusted individually for each motor, allowing the control of

the speed and strength of the motor's response.

The Dynamixel AX-12A Robot Actuator is presented in Figure 4.4.

Figure 4.4 – Dynamixel AX-12A Robot Actuator [13]

Hardware specifications of the actuator are [13]:

✓ Weight: 53.5g

✓ Size: 32 mm x 50 mm x 40 mm

✓ Operating temperature: -5° C ~ +70° C

✓ Supply voltage: 9 ~ 12V (recommended voltage is 11.1V)

✓ Resolution: 0.29°

✓ Protocol type: half-duplex, serial asyncron

✓ Physical connection: TTL

✓ Communication speed: 7343bps ~ 1Mpbs

Information Transmission between a Terrestrial Drone and an UAV

42

Information Transmission between a Terrestrial Drone and an UAV

43

CHAPTER 4

CASE STUDIES FOR AERIAL AND TERRESTRIAL

DRONES AND OPTIMIZED COMMUNICATION –

CONSIDERING THE PARTICULARITIES OF BOTH

ASSEMBLES

4.1 INTRODUCTION

This study aims to be a viable use case which analyze and demonstrates the advantages and

limitations of using LoRa and LoRaWAN protocol within an application which proposes to transmit

real time GPS coordinates between an UAV and a server placed on the ground.

In order to develope what I have proposed, the following components will be used:

✓ Arduino Uno

✓ Seeduino Cloud – Arduino Yun compatible openWRT controller

✓ Raspberry PI 3

✓ LoRa Dragino shield

✓ LoRa GPS HAT

Information Transmission between a Terrestrial Drone and an UAV

44

✓ Lehmann Aviation LA300

✓ Terrestrial Drone

4.2 DEVELOPMENT BORDS

4.2.1 Arduino Uno

Arduino Uno is one of the most popular development boards used in the development of electronic

projects because it is simple to configure, has a fairly large number of pins and it is compatible with

a large number of shields that allow the addition of various functionalities.

Technical specification [14]:

✓ Microcontroller: ATmega328P

✓ Flash memory: 32 KB

✓ SRAM: 2 KB

✓ EEPROM: 1 KB

✓ Clock speed: 16 MHz

✓ 14 digital pins: they can be used both as input or output. In addition, some of them have

specialized functions:

- Pins 0 (RX), 1 (TX). These pins are used to receive (RX) and transmit (TX) TTL

serial data.

- Pins 2, 3: External Interrupts. These pins can be configured to trigger an interrupt on

a low value, a rising or falling edge, or a change in value.

- Pins 3, 5, 6, 9, 10, 11: 8-bit PWM

- SPI: Pins 10(SS), 11(MOSI), 12(MISO), 13(SCK)

- Pin 13: LED; there is a built-in LED connected to the digital Pin 13. When the pin is

set on HIGH value, the LED is on, when the pin is LOW, the LED is off.

✓ 6 analog pins: they are used as analog inputs

Information Transmission between a Terrestrial Drone and an UAV

45

Figure 5.1 – Arduino Uno architecture [14]

From the list of advantages of using Arduino in my project I’m underlying the fact that its

development environment comes with multiple predefined functions included in the basic library.

All that has to be done in order to use those functions is including the appropriate files in the

project. Conveniently, this allowed me to test several shields and external components in order to

select the most appropriate ones for my project and my requirements, without having to write

additional code for each and every one of them.

Also, this development board, unless other of its kind, offers the possibly to load and save a

sequence of instructions in the flash memory, without having to re-upload it after every reboot or

lack of power.

There are only a few disadvantages that can be named when talking about the Arduino Uno

development board – the relatively low frequency of its microprocessor and its limited flash and

EEPROM memory are the most important ones. Another technical detail that doesn’t comply very

well with the concept of Internet of Things is the fact that the board doesn’t come with an Ethernet

adapter included, meaning that a separate shield must be acquired and installed, with the appropriate

libraries having to be included in any developed application. However, neither one of those can be

classified as a critical issue as they can be resolved without too much trouble and without interfering

with the application that is being developed.

4.2.2 Seeeduino Cloud - Arduino Yun compatible openWRT controller

Seeeduino Cloud is a microcontroller board based on both Atmega24u4 and Atheros AR9331.

It is very similar with Arduino Yun, the only difference being the operating system which is

OpenWRT, a Linux operating system which target embedded systems.

It has a normal Arduino interface, but also a built-in Ethernet interface, Wi-Fi and an USB-A port

which makes it very suitable for those prototype design that needs network connection and mass

storage.

Figure 5.2 – Seeeduino Cloud - Arduino Yun compatible openWRT controller [15]

Technical specifications [15]:

✓ AVR Arduino microcontroller:

✓ Microcontroller: ATmega32u4

✓ Flash memory: 32 kB (of which 4 kB used by bootloader)

✓ SRAM: 2.5 kB

Information Transmission between a Terrestrial Drone and an UAV

46

✓ EEPROM: 1 kB

✓ Clock speed: 16 MHz

✓ 20 digital pins: they can be used both as input or output. In addition, some of them have

specialized functions:

- 7 pins can be used as PWN

- 12 pins can also be used as analog 6 analog pins: they are used as analog inputs

Microprocessor:

✓ Processor: Atheros AR9331

✓ Ethernet: 802.3 10/100Mbit/s

✓ Wi-Fi: 802.11b/g/n 2.4 GHz

✓ RAM: 64 MB

✓ Flash memory: 16 MB

✓ SRAM: 2.5 KB

✓ EEPROM: 1 KB

✓ Clock speed: 400 MHz

✓ OS: Open SourceWrt

4.3 LORA DRAGINO SHIELD

LoRa GPS Shield presented in Figure 5.3 and used within my application is an expansion board of

LoRa/GPS which can be used with Arduino.

Figure 5.3 – LoRa GPS Shield [16]

The LoRa part of the LoRa GPS Shield is based on the SX1276/SX1278 transceiver. The

transceivers of the shield feature the LoRa long range modem that provides ultra-long range spread

spectrum communication and high interference immunity whilst minimising current consumption.

In the GPS part, the add on L80 GPS is designed for applications that use a GPS connected via the

serial ports to the Arduino, such as timing applications or general applications that require GPS

information. This GPS module can calculate and predict orbits automatically using the ephemeris

Information Transmission between a Terrestrial Drone and an UAV

47

data (up to 3 days) stored in internal flash memory, so the shield can fix position quickly even at

indoor signal levels with low power consumption.

Some of its features are listed below [16]:

✓ Frequency Band: 868 MHz/433 MHz/915 MHz

✓ Low power consumption

✓ Compatible with Arduino Leonardo, Uno, Mega,Due etc.

✓ FSK, GFSK, MSK, GMSK, LoRa and OOK modulation

✓ Preamble detection

✓ Baud rate configurable

✓ Built-in temperature sensor and low battery indicator

✓ GPS automatic switching between internal patch antenna and external active antenna

✓ Support SDK command

✓ Built-in LNA for better sensitivity

✓ EASY, advanced AGPS technology without external memory

✓ AlwaysLocate, an intelligent controller of periodic mode

✓ GPS FLP mode, about 50% power consumption of normal mode

✓ GPS support short circuit protection and antenna detection

4.4 LORA GPS HAT FOR RASPBERRY PI

LoRa GPS HAT is based on SX1276/SX1278 transceiver, being similar to LoRa Dragino shield

used for end devices. The difference is that it is specifically designed to work with Raspberry Pi.

The L80 GPS is designed, this time, to connect via serial ports to Raspberry Pi.

Figure 5.4 – LoRa GPS HAT on top of a Raspberry Pi 3 [20]

Some of its features are listed below [20]:

✓ Frequency Band: 868 MHz/433 MHz/915 MHz

✓ Low power consumption

✓ Compatible with Raspberry Pi 2 Model B/Raspberry Pi 3

Information Transmission between a Terrestrial Drone and an UAV

48

✓ FSK, GFSK, MSK, GMSK, LoRa and OOK modulation

✓ Preamble detection

✓ Baud rate configurable

✓ Built-in temperature sensor and low battery indicator

4.5 RASPBERRY PI 3

As a family, the Raspberry PI mini-computers come with an integrated set of CPU, GPU and RAM

memory, alongside a large number of interfaces and connectors which allow for many external

components and sensors to be connected. Some of those components are essentials for any kind of

application that is developed – as Raspberry PI 3 is basically a computer it needs (at least for

initialization) a mouse, a keyboard and an external monitor. After the basic configuration is

uploaded on the computer, a SSH connection can be configured in order to have remote access.

Raspberry PI 3 is the third generation of computers from this family and can be very efficiently used

for a large number of application, surpassing by far the previous two models available on the

market. While keeping the same form-factor as the previous released boards, this generation has a

CPU that is ten times more faster the Raspberry PI 2, a bigger RAM memory and an integrated

connection for both Wireless LAN and Bluetooth.

As general specifications, I must mention [17]:

✓ 1.2 GHz Quad-Core ARM-Cortex-A53 CPU

✓ Dual Core VideoCore IV GPU

✓ 1GB LPDDR2 RAM memory

✓ The operating system is loaded from an SD card – the OS can be represented by either a

Linux distribution or Windows 10 IoT

✓ Board size: 85 x 56 x 17 mm

✓ Power requirements: micro USB providing at least 1A (max 2.5A) and 5V

Figure 5.5 – Raspberry PI 3 architecture [17]

Information Transmission between a Terrestrial Drone and an UAV

49

4.6 LEHMANN LA300 UAV IMPROVEMENTS

The Lehmann LA300 UAV used within this application is described in Chapter 4 in its initial

configuration.

During multiple tests inside and outside the laboratory, I encountered problems with drone

stabilization during the initial setup and multiple attempts of take-off.

After an analysis of the possible causes of this behavior, I realized that the issue was the right

elevon, which was not functioning correctly.

The elevon is a control surface of the aircraft. Elevons are mainly used on tailless aircraft such as

flying wings (as in the case of our UAV) and they combine the functions of the aileron, which is

used for roll control, and the elevator, used for pitch control.

Both servomechanisms were tested separately, to eliminate the possibility of a mechanical failure,

and proved working fine. The only possible cause that remained was the autopilot.

Because the autopilot of the UAV was difficult to be eliminated and tested piece by piece, the best

way seemed to replace everything, including the controller and the software.

Figure 5.6 – Removing the electrical part of the UAV

After checking the space available for the components that will replace original ones and calculating

the weight, in order not to exceed maximum weight of 950 grams, fully equipped, I analyzed the

options and came with what I thought was the best implantation, replacing all control and command

components of the original UAV.

The parts that were kept were: the electrical motor, the servos and the battery. Besides this, the

UAV has been equipped with a Pixracer v1.0, a X8R radio receiver, an Ublox GPS, a pair of 433

MHz radio modems for telemetry, a MC5983 3-Axis IIC/SPI Digital Compass magnetometer, a

buzzer and a safety switch.

Information Transmission between a Terrestrial Drone and an UAV

50

Figure 5.7 – Different solutions that were analyzed for replacing the UAV components

The software that is used is called Ardupilot. This is an open source autopilot software which can

control many vehicle systems, from airplanes, multirotors, to boats and helicopters.

Mission Planner is a ground station application for Ardupilot. To plan missions, this tool is a

necessity. This allows multiple actions such as:

✓ Loading the software into the autopilot

✓ Setup, configuration and tuning of the UAV for optimum performance

✓ Planning, saving and loading autonomous missions into autopilot using waypoints on

Google or other maps

✓ Downloading logs created by autopilot

✓ Interfacing with a PC flight simulator to create an UAV simulator

Figure 5.8 – Mission Planner – Flight simulator

After fixing the flight controller, inside the UAV, I started connecting the rest of the components,

placing them such that the center of gravity of the vehicle remains unchanged. This is important for

a flying wing as it should not be heavier neither in front, nor in the back.

Information Transmission between a Terrestrial Drone and an UAV

51

Figure 5.9 – Pixracer v1.0 top view [19]

Connections with other components were done as in the above schematic.

The telemetry radio allows the UAV, using MAVLink protocol, to communicate with the ground

station from the air. Several actions can be done: monitor the status of the UAV while in operation,

record telemetry logs, or view and analyze the previously recorded logs.

The telemetry chosen for this application works on 433 MHz, being the perfect choice for this,

because there is no interference with LoRa, which works on 868 MHz.

Telemetry is formed by two interchangeable air and ground modules, one being placed on the UAV

and the other, connected to a laptop.

Figure 5.10 – Assambled components

To have the possibility to control the UAV also with a Taranis X9D Transmitter, I connected to the

controller a X8R receiver.

A component that was not present in the initial configuration of the UAV, but it is useful for

signaling different events is the buzzer. It is used to play sounds such as Arming/Disarming buzz or

Lost Copter Alarm.

A safety switch is used to enable or disable the outputs to motors and servos.

Information Transmission between a Terrestrial Drone and an UAV

52

Figure 5.11 – Fully equipped UAV with attached video camera and Taranis X9D Transmitter

After the setup was ready, to plan a flight, several steps must be fulfilled [18]:

✓ Mission Planner must be connected to the autopilot to have the possibility to control the

UAV and receive telemetry

✓ Hardware configuration must be done:

- Choose frame type

- Calibrate the compass; to do this, the vehicle must be hold in the air and rotated in

such way that each side points down towards the earth

- Calibrate the Radio Control Transmitter; this is done by moving each switch or stick

through its full range

- Calibrate the Accelerometer; this can be accomplished by placing the vehicle in each

of the indicated positions: level, on right side, left side, nose down, nose up and on

its back

- Configuration of the Flight Modes; there is a mapping between switch position and

flight mode which is set in Mission Planner Flight Mode screen

- Calibrate the Electronic Speed Controller; Electronic speed controllers are

responsible for spinning the engines at the speed requested by the autopilot

✓ Mission must be planned. This is done using waypoints. For my experimental flights I used a

Take off point, a Return To Launch point and some Waypoints in between.

Information Transmission between a Terrestrial Drone and an UAV

53

Figure 5.12 – Planned Mission

The presented route contains the take off point marked on the map with H (Home), 8 waypoints that

the UAV has to follow during the flight marked on the map in order of 1 to 8, and the landing point

marked with 9. If we set the UAV to land at the same place it has taken off, the two points, take off

and land may be overlapped. To exemplify, the points were chosen differently but rather close

enough so that the UAV can be recovered by the operator without the need to move between the

take-off and landing.

The waypoints’ type and parameters can be visualisez in a table like the one presented below, I

Figure 5.13.

Figure 5.13 – Waypoints

The flight path described by the UAV, taken from logs, can be seen in Figure 5.14. The preliminary

tests and flights took place at Aeropower near Adunații-Copăceni, Romania.

Information Transmission between a Terrestrial Drone and an UAV

54

Figure 5.14 – The path that describes the UAV route at Aeropower near Adunații-Copăceni,

Romania

4.7 LORAWAN COMMUNICATION USING AN IOT PLATFORM

The initial setup was thought using The Things Network in the idea that we take the data directly

from there using Message Queuing Telemetry Transport (MQTT) protocol.

The Things Network is a platform for IoT. It uses LoRaWAN, allowing end-devices to connect to

the internet without using 3G, 4G or Wi-Fi.

TTN uses MQTT to publish device. activations and messages and it also allows the user to publish a

message for a specific device in response.

MQTT is a messaging protocol. It fits perfectly all . the requirements of IoT because of its design

which ensure reliability, assurance of delivery and tries to minimize device resource requirements

and network bandwidth.

In order to send data over to TTN, it is necessary to have an end device (also known as LoRa node)

and a gatway to which the device connects and forward data to the IoT platform as presented below.

Figure 5.15 – Network example using TTN [10]

Information Transmission between a Terrestrial Drone and an UAV

55

For all the above to be implemented, in the absence of a LoRaWAN network in the area where the

study took place (Bucharest), I built a LoRaWAN gateway using a Raspberry PI 3 and a LoRa HAT

shield for Raspberry PI.

For functional reasons, this chipset only allows the use of a single frequency from the standard. I

chose for this 868.1 MHz.

The resulted gateway listens to on this frequency and sends to the TTN server the received

information encrypted in a double way: at application level and at network level.

To deploy the gateway, I used a template from GitHub where I customized the IP address of the

server, the coordinates where the LoRaWAN gateway is placed and the initialization of the chipset

placed on the Dragino shield, LoRa SX1276.

This represented a documentation work to understand the program and adapt it to the manufacturer's

specifications, the library having only a previous edition (SX1272) from the same manufacturer, but

with slight differences from the chipset used by me.

Next, the gateway device must be enrolled on TTN, using the specifications of the cloud

application.

Also, the nodes created for communication and reading GPS coordinates must be enrolled. The

process of enrollment in the application area is similar. Below, in Figure 5.16, it is presented one of

the nodes after enrollement using ABP with all the associated keys.

Figure 5.16 – Example of enrolled end device using ABP

The enrollment was done using ABP, also having the possibility to use the alternative mechanism,

OTAA (they were both described in Chapter 3). However, even though OTAA is a more secure and

the preferred way to enroll devices, this chipset supports only the legacy mechanism, ABP.

An important study in the evolution of the solution was the LoRa Dragino pins configuration and

their use within the program. The pins must be used/reserved in the application and synchronized

with lmic.h library as it follows:

Information Transmission between a Terrestrial Drone and an UAV

56

 const lmic_pinmap lmic_pins = {

 .nss = 10,

 .rxtx = LMIC_UNUSED_PIN,

 .rst = 9,

 .dio = {2, 6, 7},

 };

Firstly, I created a Hello World program to verify connection with The Things Network platform via

LoRaWAN and I noticed the constrains which apply on this cloud solution. The most important is

that the information is transmitted at about two minutes, which, taking into consideration the speed

of the UAV, I can say that it does not fit my purpose.

To communicate with TTN, I used the libraries listed below:

✓ Lmic.h

✓ Hal/hal.h

✓ SPI.h

These libraries can be found on GitHub.

Lmic.h is a LoRaWAN C-library developed my IBM. This allows the portable implementations of

the specifications of LoRa MAC, supporting EU-868 and US-915, class A and B devices.

Hal/hal.h allows the implementation of the hardware abstraction layer functions which means that it

simplies the use of additional hardware and portability to new platforms.

SPI.h allows communication with Serial Peripheral Interface (SPI) devices, using Arduino as the

master device.

In the same time, I have been studying reading the GPS via Software.Serial. This was possible using

the following libraries:

✓ TinyGPS.h

✓ Software.Serial.h

✓ SPI.h

TinyGPS.h provides National Marine Electronics Association GPS data such as position, altitude,

time, date, etc. The library ignores all but a few key GPS fields and avoids floating point to keep

resource consumption at a low level.

Software.Serial.h allows serial communication on other digital pins of the Arduino board (not only

pins 0 and 1 that are specifically designed for this), replicating the functionality.

When integrating the GPS reading and the coordinates, the reading, stack organization and

verification of the status of the two implied chipsets (GPS and LoRa which are functionally

independent even though they coexist on the same shield), it results a program whose compilation

exceeded the 32 kB workload limitations of Arduino Uno.

Information Transmission between a Terrestrial Drone and an UAV

57

Figure 5.17 – LoRa Node with GPS

Considering all these, I replaced the Uno platform with an Arduino Mega 2560 which has 256 kB

program memory.

This action produced results as the communication and data transmission to TTN became possible.

However, the platform constraints lead to obtaining results at approximately two minutes which is

unacceptable from the perspective of the UAV speed (this can finish a mission in two minutes so, in

this case, receiving the coordinates at this interval would be useless).

All the above outline an IoT solution with a limited recurrence with respect to our purpose due to

repeatability. Getting information about two minutes can be an use case for humidity sensor

networks (smart agriculture), measuring temperature during some processes, sampled energy

consumption (smart grid), but not necessary for our study because the UAV travels with a fairly

high speed.

In the same time, I studied the coverage offered by the gateway that I deployed and, I concluded

that it is about 2.1 kilometers. However, when talking about coverage, several things should be kept

in mind: the environment (in this case studies were conducted in an urban context), the placement of

the gateway, which was outdoor, the geometric shading, and the height (the site was not at a

reasonable height).

Instead, in open field, the gateway had a coverage of 5.7 kilometers, showing that LoRaWAN is a

great solution of communication for an UAV.

Obviously, LoRa, as a standard, promises much more, but the measurements done by me were made

on normal devices with antennas not necessarily optimized.

During the study, I used a Hameg HM5010 specter analyzer (frequency range: 0.15 – 1050 MHz) to

analyze LoRa Europe band loading (868 MHz) in the context of the test conducted in Bucharest.

There was not any traffic/interference in this band. Furthermore, I tested other available antennas, in

adjacent bands, the results being sensitive to frequency centering (the antennas that were used: Wi-

Fi, GSM 900/1800/2100).

From all that were described above, I decided that a client – server solution, independent of the

constraints of an IoT platform, would be better for my implementation. This will be described in the

next part.

Information Transmission between a Terrestrial Drone and an UAV

58

4.8 POINT TO POINT COMMUNICATION USING LORAWAN PROTOCOL

Am rethought the approach, using the previous experience with the gateway and LoRa node with

GPS. I kept the LoRa node already developed, but, this time with changes to report the coordinates

over LoRa protocol at two seconds. This is good enough from the perspective of the speed of the

UAV.

In Figure 5.18 it can be seen the transmission data flow both using the IoT platform and the

alternative point to point solution.

Figure 5.18 – Data transmission flow using TTN and point to point communication

For client side I used an Arduino Uno and a LoRa/GPS Shield and for server side, an Arduino Uno,

a LoRa Sheild, a Yun Shield and a USB flash.

The flow of the implementation is the following: GPS data captured by client will be sent out via

LoRa to the server. In the meantime, the server-side listens on the LoRa specific frequency; once it

receives data from client, a LED will be turned on and GPS data will be logged to a USB flash.

Information Transmission between a Terrestrial Drone and an UAV

59

Figure 5.19 – Client side with external GPS antenna

Using a Seeduino Cloud, I created a server for GPS coordinates acquisition through sequential

writing in a .csv file.

Figure 5.20 – Server side

Seeeduino is a device that incorporates an Arduino Uno device type and a Linux device (more

exactly an OpenWRT edition), connected in bridge. The Linux device has both Ethernet and Wi-Fi

interfaces, being accessed easy.

It resulted a mobile server which can be placed anywhere (such as UAV testing area) with the

possibility of offline data acquisition or through mobile hotspot connection.

Data stored in .csv file can be converted in .kml file using KMLCSV Converter, this way obtaining

the UAV coordinates during the flight.

Information Transmission between a Terrestrial Drone and an UAV

60

Figure 5.21 – Coordinates stored on a .csv file on the server

Figure 5.22 – UAV flight path highlighted on a map

Depending on the purpose of communication with the UAV, the terrestrial station may need system

portability and/or large hardware resources – processing power, memory. As the UAV is a mobile

system, the wireless control system needs to adapt to this requirement.

On the other hand, if we assume that this system must simultaneously control or store the

information received from multiple UAVs, the control station needs to have large hardware

resources.

Information Transmission between a Terrestrial Drone and an UAV

61

CONCLUSION AND FUTURE IMPLEMENTATIONS

GENERAL CONCLUSIONS

As I have already presented from the introduction of the paper, my purpose was to investigate as

many as possible wireless protocols that might be compatible for ground-to-air communication with

an UAV in motion.

The drone used for test flights and the study of wireless protocols communication was the Lehmann

Aviation LA300. In the materials that were part of the research phase of the paper, the drone was

used for agriculture related purposes (monitoring the harvest), mentioning the possibility of use

within military applications.

The UAV required to have the original electronic part replaced, as elevons were no longer effective

during flight maneuvers. For take-off, this is initially propelled manually by a human operator, the

motor starting when it reaches a certain acceleration.

For the moment, the UAV, equipped with a LoRa module has to transmit the GPS coordinates of its

location in a manner as close to real-time as possible. The data is transmitted using the LoRaWAN

protocol that has proven to be the most appropriate of the studied protocols for this case study.

PERSONAL CONTRIBUTIONS

My personal contributions in this paper are the following:

✓ After I found and analyzed the causes of the malfunctions of the UAV (the right elevon, was

not functioning correctly), I replaced some components with the following: a Pixracer v1.0,

Information Transmission between a Terrestrial Drone and an UAV

62

a X8R radio receiver, an Ublox GPS, a pair of 433 MHz radio modems for telemetry, a

MC5983 3-Axis IIC/SPI Digital Compass magnetometer, a buzzer and a safety switch,

connecting them with the original parts that were kept: the electrical motor, the servos and

the battery.

✓ I deployed a LoRaWAN gateway because there was no LoRaWAN network in this region.

✓ I implemented two ways of information transmission between the UAV and a server: one

using TTN platform, the LoRaWAN gateway and a LoRa node and the other using point to

point communication

✓ I developed the code for GPS coordinates transmission

Figure 6.1 – Lehmann Aviation LA300 UAV equipped with GoPro Hero 4

FUTURE WORK

A domain as large and wide as the one represented by the wireless protocols is in a continuous

development. For the time being, I’ve succeeded in determining the most appropriate protocol that

can be used for a communication process between an UAV and a terrestrial drone. However, since

new advantages are added periodically to most of the protocols that were studied in the context of

this paper, part of the future works will be represented by a monitoring process of the wireless

standards and their implementations, to see if another one can be used for my applications, with

even better results.

Also, while talking about the applications that can be implemented with the help of the UAVs and

the drones, numerous examples can be named in various domains: starting from delivery of

packages (partially already implemented by Amazon), to medical urgent delivery of drugs and

instruments and finishing with military surveillance and interventions missions. Personally, I can

consider the last one as being the most important and relevant, since a successful implementation

can protect millions of human lives in cities that are threatened by war while also backing up brave

soldiers that are putting their life on the line each time they have a major intervention.

Considering those factors and areas that need urgent support from the telecommunications field, I

will focus my future works on a coordinate set of actions between the Lehman LA 300 UAV and

the PhantomX AX Hexapod Mark II. Precisely, after gathering GPS coordinates from the aerial

drone and synchronizing them with a series of images taken with the GoPro 4 camera, that

information can be send to the terrestrial drone, where it will make decisions on its own regarding

Information Transmission between a Terrestrial Drone and an UAV

63

where it should move, what tools will it need (e.g. for bomb defusing) while also calculating the risk

factor regarding an intervention (both human and non-human, using only drones).

All of this will be possible thanks to a mini-computer that will be mounted on the back of the

hexapod and the client-server application that was described in Chapter 4. The same logic will be

used here, while also better solutions will be sought for the mini-computer and the way the GPS

coordinates are being stored.

This is just one example of the applications that can be developed using the technologies described

in the presented paper, but it is perhaps the most urgent and significant one since it will be able to

save lives. Thousands of others can be implemented, because the solutions that I presented are

“open-door”, giving the engineers only one limit: their imagination.

Information Transmission between a Terrestrial Drone and an UAV

64

Information Transmission between a Terrestrial Drone and an UAV

65

REFERENCES

[1] http://www.zigbee.org – accessed on June 5, 2018

[2] Lee, J., Suu Y., Shen, C., "A Comparative Study of Wireless Protocols: Bluetooth, UWB,

ZigBee, and Wi-Fi", The 33rd Annual Conference of the IEEE Industrial Electronics Society

(IECON), Taiwan, 2007

[3] Faludi, R., Building Wireless Sensor Networks, Published by O’Reilly, Sebastopol, 2011

[4] NB-IoT DEPLOYMENT GUIDE to Basic Feature set Requirements,

https://www.gsma.com/iot/wp-content/uploads/2018/04/NB-

IoT_Deployment_Guide_v2_5Apr2018.pdf – accessed on June 23, 2018

[5] https://www.leverege.com/research-papers/lora-lorawan-primer – accessed on June 7, 2018

[6] Ferran, A., Xavier, V., Pere T.P., Borja M., Joan, M.S., Thomas, W., "Understanding the Limits

of LoRaWAN", IEEE Communications Magazine, Volume 55, Issue 9, 2017

[7] Norbert, B., Fernando K., "LoRaWAN in the Wild: Measurements from The Things Network"

[8] https://lora-alliance.org/about-lorawan – accessed on June 25, 2018

[9] https://www.resiot.io/en/what-is-lorawan/ – accessed on June 20, 2018

[10] https://www.thethingsnetwork.org/docs/lorawan/ – accessed on June 14, 2018

http://www.zigbee.org/
https://www.gsma.com/iot/wp-content/uploads/2018/04/NB-IoT_Deployment_Guide_v2_5Apr2018.pdf
https://www.gsma.com/iot/wp-content/uploads/2018/04/NB-IoT_Deployment_Guide_v2_5Apr2018.pdf
https://www.leverege.com/research-papers/lora-lorawan-primer
https://lora-alliance.org/about-lorawan
https://www.resiot.io/en/what-is-lorawan/
https://www.thethingsnetwork.org/docs/lorawan/

Information Transmission between a Terrestrial Drone and an UAV

66

[11] LoRa Security Building a Secure LoRa Solution,

https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-LoRa-security-guide-1.2-2016-03-22.pdf –

accessed on June 8, 2018

[12] "L-A Series Drones User Guide", Lehmann Aviation, 2015

[13] http://www.trossenrobotics.com/hex-mk2 – accessed on June 5, 2018

[14] https://store.arduino.cc/usa/arduino-uno-rev3 – accessed on June 10, 2018

[15] https://www.seeedstudio.com/Seeeduino-Cloud-Arduino-Yun-compatible-openWRT-

controller-p-2123.html – accessed on June 10, 2018

[16] http://www.dragino.com/products/module/item/102-lora-shield.html – accessed on June 10,

2018

[17] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ – accessed on June 12, 2018

[18] http://ardupilot.org/planner/ – accessed on June 12, 2018

[19] https://docs.px4.io/en/flight_controller/pixracer.html – accessed on June 12, 2018

[20] http://www.dragino.com/products/lora/item/106-lora-gps-hat.html – accessed on June 10, 2018

https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-LoRa-security-guide-1.2-2016-03-22.pdf
http://www.trossenrobotics.com/hex-mk2
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.seeedstudio.com/Seeeduino-Cloud-Arduino-Yun-compatible-openWRT-controller-p-2123.html
https://www.seeedstudio.com/Seeeduino-Cloud-Arduino-Yun-compatible-openWRT-controller-p-2123.html
http://www.dragino.com/products/module/item/102-lora-shield.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://ardupilot.org/planner/
https://docs.px4.io/en/flight_controller/pixracer.html
http://www.dragino.com/products/lora/item/106-lora-gps-hat.html

Information Transmission between a Terrestrial Drone and an UAV

67

ANNEX 1

#include <lmic.h>

#include <hal/hal.h>

#include <SPI.h>

static const PROG_MEM u1_t NWKSKEY[16] = { 0x01, 0xC9, 0x75, 0x6B,

0xFC, 0x55, 0xA7, 0xB2, 0x42, 0x85, 0x73, 0xDC, 0x30, 0xC2, 0x8E,

0x5B };

static const u1_t PROG_MEM APPSKEY[16] = { 0x93, 0xB6, 0xD0, 0x3A,

0x3A, 0x8A, 0x9C, 0x72, 0x5D, 0xC7, 0x49, 0x53, 0x83, 0x42, 0x6D,

0x39 };

static const u4_t DEV_ADDR = 0x260112D9 ;

void os_getArtEui (u1_t* buf) { }

void os_getDevEui (u1_t* buf) { }

void os_getDevKey (u1_t* buf) { }

static uint8_t mydata[] = "Hello Ioana";

static osjob_t sendjob;

const unsigned TX_INTERVAL = 20; //transmission interval

const lmic_pinmap lmic_pins = {

 .nss = 10,

Information Transmission between a Terrestrial Drone and an UAV

68

 .rxtx = LMIC_UNUSED_PIN,

 .rst = 9,

 .dio = {2, 6, 7},

};

void onEvent (ev_t ev) {

 Serial.print(os_getTime());

 Serial.print(": ");

 switch(ev) {

 case EV_SCAN_TIMEOUT:

 Serial.println(F("EV_SCAN_TIMEOUT"));

 break;

 case EV_BEACON_FOUND:

 Serial.println(F("EV_BEACON_FOUND"));

 break;

 case EV_BEACON_MISSED:

 Serial.println(F("EV_BEACON_MISSED"));

 break;

 case EV_BEACON_TRACKED:

 Serial.println(F("EV_BEACON_TRACKED"));

 break;

 case EV_JOINING:

 Serial.println(F("EV_JOINING"));

 break;

 case EV_JOINED:

 Serial.println(F("EV_JOINED"));

 break;

 case EV_RFU1:

 Serial.println(F("EV_RFU1"));

 break;

 case EV_JOIN_FAILED:

 Serial.println(F("EV_JOIN_FAILED"));

 break;

 case EV_REJOIN_FAILED:

 Serial.println(F("EV_REJOIN_FAILED"));

 break;

 case EV_TXCOMPLETE:

 Serial.println(F("EV_TXCOMPLETE (includes waiting for

RX windows)"));

 if (LMIC.txrxFlags & TXRX_ACK)

 Serial.println(F("Received ack"));

 if (LMIC.dataLen) {

 Serial.println(F("Received "));

 Serial.println(LMIC.dataLen);

 Serial.println(F(" bytes of payload"));

 }

 os_setTimedCallback(&sendjob,

os_getTime()+sec2osticks(TX_INTERVAL), do_send);

 break;

 case EV_LOST_TSYNC:

 Serial.println(F("EV_LOST_TSYNC"));

 break;

Information Transmission between a Terrestrial Drone and an UAV

69

 case EV_RESET:

 Serial.println(F("EV_RESET"));

 break;

 case EV_RXCOMPLETE:

 Serial.println(F("EV_RXCOMPLETE"));

 break;

 case EV_LINK_DEAD:

 Serial.println(F("EV_LINK_DEAD"));

 break;

 case EV_LINK_ALIVE:

 Serial.println(F("EV_LINK_ALIVE"));

 break;

 default:

 Serial.println(F("Unknown event"));

 break;

 }

}

void do_send(osjob_t* j){

 if (LMIC.opmode & OP_TXRXPEND) {

 Serial.println(F("OP_TXRXPEND, not sending"));

 } else {

 LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);

 Serial.println(F("Packet queued"));

 }

}

void setup() {

 Serial.begin(9600);

 Serial.println(F("Starting"));

 os_init();

 LMIC_reset();

 #ifdef PROG_MEM

 uint8_t appskey[sizeof(APPSKEY)];

 uint8_t nwkskey[sizeof(NWKSKEY)];

 memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));

 memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));

 LMIC_setSession (0x1, DEV_ADDR, nwkskey, appskey);

 #else

 LMIC_setSession (0x1, DEV_ADDR, NWKSKEY, APPSKEY); // prepare

data

 #endif

 LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),

BAND_CENTI); // set the channel

 LMIC_setLinkCheckMode(0);

 LMIC.dn2Dr = DR_SF9;

 LMIC_setDrTxpow(DR_SF7,14);

Information Transmission between a Terrestrial Drone and an UAV

70

 do_send(&sendjob);

}

void loop() {

 os_runloop_once();

}

Information Transmission between a Terrestrial Drone and an UAV

71

ANNEX 2

#include <SoftwareSerial.h>

#include <TinyGPS.h>

TinyGPS gps_data;

SoftwareSerial ss(3, 4);

static void smart_delay(unsigned long ms);

static void printfloat(float val, float invalid, int len, int

prec);

static void printint(unsigned long val, unsigned long invalid, int

len);

static void printdate(TinyGPS &gps_data);

static void printstr(const char *str, int len);

void setup()

{

Serial.begin(9600);

 ss.begin(9600);

 while (!Serial) {

 ;

 };

 Serial.println("Minitor Dragino LoRa GPS Shield Status");

 Serial.print("Testing TinyGPS library v. ");

 Serial.println(TinyGPS::library_version());

Information Transmission between a Terrestrial Drone and an UAV

72

 Serial.println();

 Serial.println("Sats Latitude Longitude Fix Date Time

Date Alt");

 Serial.println(" (deg) (deg) Age

Age (m)");

 Serial.println("---

----------");

}

void loop()

{

 float flat, flon;

 unsigned long age, date, time, chars = 0;

 unsigned short sentences = 0, failed = 0;

 printint(gps_data.satellites(), TinyGPS::GPS_INVALID_SATELLITES,

5);

 gps_data.f_get_position(&flat, &flon, &age);

 printdate(gps_data);

 printfloat(gps_data.f_altitude(),

TinyGPS::GPS_INVALID_F_ALTITUDE, 7, 2);

 gps_data.stats(&chars, &sentences, &failed);

 printint(chars, 0xFFFFFFFF, 6);

 printint(sentences, 0xFFFFFFFF, 10);

 printint(failed, 0xFFFFFFFF, 9);

 Serial.println();

 smart_delay(1000);

 }

static void smart_delay(unsigned long ms)

{

 unsigned long start = millis();

 do

 {

 while (ss.available())

 {

 gps_data.encode(ss.read());

 }

 } while (millis() - start < ms);

}

static void printfloat(float val, float invalid, int len, int prec)

{

 if (val == invalid)

 {

 while (len-- > 1)

 Serial.print('*');

 Serial.print(' ');

 }

 else

 {

Information Transmission between a Terrestrial Drone and an UAV

73

 Serial.print(val, prec);

 int vi = abs((int)val);

 int flen = prec + (val < 0.0 ? 2 : 1);

 flen += vi >= 1000 ? 4 : vi >= 100 ? 3 : vi >= 10 ? 2 : 1;

 for (int i=flen; i<len; ++i)

 Serial.print(' ');

 }

 smart_delay(0);

}

static void printint(unsigned long val, unsigned long invalid, int

len)

{

 char sz[32];

 if (val == invalid)

 strcpy(sz, "*******");

 else

 sprintf(sz, "%ld", val);

 sz[len] = 0;

 for (int i=strlen(sz); i<len; ++i)

 sz[i] = ' ';

 if (len > 0)

 sz[len-1] = ' ';

 Serial.print(sz);

 smart_delay(0);

}

static void printdate(TinyGPS &gps_data)

{

 int year;

 byte month, day, hour, minute, second, hundredths;

 unsigned long age;

 gps_data.crack_datetime(&year, &month, &day, &hour, &minute,

&second, &hundredths, &age);

 if (age == TinyGPS::GPS_INVALID_AGE)

 Serial.print("********** ******** ");

 else

 {

 char sz[32];

 sprintf(sz, "%02d/%02d/%02d %02d:%02d:%02d ",

 month, day, year, hour, minute, second);

 Serial.print(sz);

 }

 printint(age, TinyGPS::GPS_INVALID_AGE, 5);

 smart_delay(0);

}

static void printstr(const char *str, int len)

{

 int slen = strlen(str);

 for (int i=0; i<len; ++i)

 Serial.print(i<slen ? str[i] : ' ');

 smart_delay(0);

Information Transmission between a Terrestrial Drone and an UAV

74

}

Information Transmission between a Terrestrial Drone and an UAV

75

ANNEX 3

#include <SoftwareSerial.h>

#include <TinyGPS.h>

#include <SPI.h>

#include <RH_RF95.h>

RH_RF95 rf95;

TinyGPS gps_data;

SoftwareSerial ss(3, 4);

String string_a="";

String string_b="";

char databuf[100];

uint8_t string_out[100];

char lon[20]={"\0"};

char lat[20]={"\0"};

void setup()

{

 Serial.begin(9600);

 ss.begin(9600);

 if (!rf95.init())

 Serial.println("init failed");

 ss.print("Simple TinyGPS library v. ");

 ss.println(TinyGPS::library_version());

 Serial.println();

}

Information Transmission between a Terrestrial Drone and an UAV

76

void loop()

{

 ss.println("Sending to rf95_server");

 bool newData = false;

 unsigned long chars;

 unsigned short sentences, failed;

 for (unsigned long start = millis(); millis() - start < 1000;)

 {

 while (Serial.available())

 {

 char c = Serial.read();

 if (gps_data.encode(c))

 newData = true;

 }

 }

 if (newData)

 {

 float f_lat, f_lon;

 unsigned long _age;

 gps_data.f_get_position(&f_lat, &f_lon, &_age);

 ss.print("LAT =");

 ss.print(f_lat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : f_lat,

6);

 ss.print(" LON =");

 ss.print(f_lon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : f_lon,

6);

 ss.print(" SAT =");

 ss.print(gps_data.satellites() ==

TinyGPS::GPS_INVALID_SATELLITES ? 0 : gps_data.satellites());

 ss.print(" PREC =");

 ss.print(gps_data.hdop() == TinyGPS::GPS_INVALID_HDOP ? 0 :

gps_data.hdop());

 f_lat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : f_lat, 6;

 f_lon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : f_lon, 6;

 string_a +=dtostrf(f_lat, 0, 6, lat);

 string_b +=dtostrf(f_lon, 0, 6, lon);

 ss.println(strcat(strcat(lon,","),lat));

 strcpy(lat,lon);

 ss.println(lat);

 strcpy((char *)string_out,lat);

 rf95.send(string_out, sizeof(string_out));

 uint8_t indatabuf[RH_RF95_MAX_MESSAGE_LEN];

 uint8_t len = sizeof(indatabuf);

 if (rf95.waitAvailableTimeout(3000))

 {

 if (rf95.recv(indatabuf, &len))

 {

 ss.print("got reply: ");

 ss.println((char*)indatabuf);

 }

 else

Information Transmission between a Terrestrial Drone and an UAV

77

 {

 ss.println("recv failed");

 }

 }

 else

 {

 ss.println("No reply, is rf95_server running?");

 }

 delay(400);

 }

 gps_data.stats(&chars, &sentences, &failed);

 ss.print(" CHARS=");

 ss.print(chars);

 ss.print(" SENTENCES=");

 ss.print(sentences);

 ss.print(" CSUM ERR=");

 ss.println(failed);

 if (chars == 0)

 ss.println("No characters received");

}

Information Transmission between a Terrestrial Drone and an UAV

78

Information Transmission between a Terrestrial Drone and an UAV

79

ANNEX 4

#include <SPI.h>

#include <RH_RF95.h>

#include <FileIO.h>

#include <Console.h>

RH_RF95 rf95;

int led = 4;

int reset_lora = 9;

String data_string = "";

void setup()

{

 pinMode(led, OUTPUT);

 pinMode(reset_lora, OUTPUT);

 Bridge.begin();

 Console.begin();

 FileSystem.begin();

 digitalWrite(reset_lora, LOW);

 delay(1000);

 digitalWrite(reset_lora, HIGH);

 if (!rf95.init())

 Console.println("init failed");

Information Transmission between a Terrestrial Drone and an UAV

80

}

void loop()

{

 data_string="";

 if (rf95.available())

 {

 Console.println("Get new message");

 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];

 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))

 {

 digitalWrite(led, HIGH);

 Console.print("got message: ");

 Console.println((char*)buf);

 Console.print("RSSI: ");

 Console.println(rf95.lastRssi(), DEC);

 data_string += String((char*)buf);

 data_string += ",";

 data_string += getTimeStamp();

 uint8_t data[] = "200 OK";

 rf95.send(data, sizeof(data));

 rf95.waitPacketSent();

 Console.println("Sent a reply");

 File dataFile = FileSystem.open("/mnt/data/datalog.csv",

FILE_APPEND);

 if (dataFile) {

 dataFile.println(data_string);

 dataFile.close();

 Console.println(data_string);

 Console.println("");

 }

 else

 {

 Console.println("error opening datalog.csv");

 }

 digitalWrite(led, LOW);

 }

 else

 {

 Console.println("recv failed");

 }

 }

}

String getTimeStamp() {

 String result;

 Process time;

 time.begin("date");

Information Transmission between a Terrestrial Drone and an UAV

81

 time.addParameter("+%D-%T");

 time.run();

 while(time.available()>0) {

 char c = time.read();

 if(c != '\n')

 result += c;

 }

 return result;

}

