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CHAPTER 1 

INTRODUCTION 
 

 

 

 

 

 

 

 

 

 

1.1 THESIS MOTIVATION 

In the last few decades, more and more people suffer from different conditions that decrease 

drastically their life quality. In a desire to help them integrate in the society, several measures 

should be taken to ease their life, among which are also some techniques developed with the 

purpose of correcting certain unwanted behavior traits.  

The core of this project is represented by the NAO robot, created by Aldebaran Robotics 

especially to be used in therapy. For a child that needs to be attracted by the whole activity 

performed during therapy to learn basic human behavior traits, an appealing method should be 

applied.  In this context, NAO is the ideal candidate, as it can be used to help patients learn 

different words, recognize patterns, make certain movements. Human intervention is essential at 

present, but more and more autonomy for the robot is desired. 

 

1.2 MAIN OBJECTIVE 

In this context, the thesis aims to create an autonomous system that is able to interact with 

people using their voice. The system works in Romanian language and the voice recognition 

software that was developed is essential to increase the autonomy of the robot. In addition to 

similar projects developed already by other students, my thesis comes with the advantage of 

having all functions directly implemented on the robot, thus eliminating the need for an internet 

connection that would have been necessary to send files to and from the server.  

Embedded programming presents a series of disadvantages, the most important being the 

limited amount of resources, that, in this case, are only the ones that are available on the robot 

itself. Another constraint is represented by the number of people it can recognize, because it is 

desired to have real time processing, and the response time to be as short as possible. Despite 

these drawbacks, embedded programming is the optimal solution in this case, as the time 
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required to obtain a result locally on the machine is much smaller than the one needed to send 

information to the server and receive back the processed data.  

The steps required to reach the proposed objective are represented below: 

 

 
Figure 1.1 Implementation Steps 

 

 

 

1.3 SPECIFIC OBJECTIVES 

The objectives this thesis proposes are, as follows: 

 Collecting data corresponding to several users that will be identified by the robot. Data 

is represented by several recordings of the voice of the people that are to be recognized 

and it is gathered by the robot itself. 

 Extracting parameters that define the voice of a single person and map them in a 

database, thus being able to uniquely identify people from the restricted set that was 

imposed. 

 Update the database such that the model corresponding to each user gives minimum 

errors. 

 Giving a message to check if the robot recognized the person or not. 

 Study the effects of noise on the overall results. 

Collect data 

Filter the 
recording 

Apply algorithm 
to extract specific 

parameters 

Make decision 
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 Study the variation of the accuracy with the various adjustable parameters in order to 

make the best complexity – results compromise. 

 

This thesis is organized in six chapters. Chapter 1 presents the motivation along with the 

objectives of the thesis. In Chapter 2 a detailed presentation of the hardware and software 

technologies used in the implementation of the project is being made. Chapter 3 describes the 

filtering method I applied to the information collected by NAO. In Chapter 4, the voice 

recognition algorithm is presented, details regarding each step being given. Chapter 5 presents 

the tests made, along with the results obtained for each of the studied cases. In Chapter 6, the 

main conclusions of the thesis are drawn and the contributions the author brought to the project 

are emphasized, along with some further possible directions.   
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CHAPTER 2 

HUMANOID ROBOTS 
 

 

 

 

 

 

 

 

 

 

2.1 GENERAL ASPECTS 

A humanoid robot is a robot whose appearance is based on that of the human body. The most 

important physical characteristics such a robot has are the head, a torso, two hands and two legs, 

with some exceptions regarding earlier versions, when only the superior part of the body was 

built. Usually, the head resembles that of a person, having two eyes, a mouth and ears that map 

some of its functionalities. [1] 

During the last few years, the existence of such robots became more and more a necessity, since 

many tasks could be easily carried on by them. The goal is to make the robot autonomous, so 

that it can work without any human help. This way, it can complete complex tasks; it can 

communicate, learn from people and interact with them. 

 

2.2 APPLICATIONS OF HUMANOID ROBOTS 

Since their apparition, many applications have been found for humanoid robots. They could be 

successfully used for spatial applications, therapy, quenching flames and other rescue missions, 

help with some chores around the house, and so on. 

Even though many possible functions are still in research stage, promising results are obtained 

in the laboratory. Challenges may occur due to the fact that every ability the robot is expected to 

have needs to be carefully programmed and tested. Also, the desire to have an autonomous 

system imposes some tougher requirements on the software characteristics. 

The term “autonomous” refers to the ability of the robot to perform tasks without being 

controlled by humans. The degree of autonomy is increased by self-learning and safe-

developing. [2] 
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2.3 NAO 

Developed in 2006, NAO is the first humanoid robot from Aldebaran and it reached the fifth 

generation, each adding more functionalities to the existing ones. It was designed as a studying 

tool, to help young students learn to count, tell a story, create a choreography or even learn how 

to program the robot. Regarding specialized education, the ASK program comes with a solution 

that includes the robot NAO in therapy, having some applications especially written to meet the 

needs of autistic children. [3]  

 

 

Figure 2.3.1 NAO Robot [4] 

 

2.3.1 General Features  

The 574 mm height, along with its friendly complexion, make NAO an agreeable presence 

around people. It weighs only 5.4 kilograms, which makes it easy to transport and 

manipulate. The ratio height/weight was chosen such that to ensure motion stability. The 

material is a combination of ABS-PC and PA-66 that offers flexibility without losing 

strength and also good thermic protection.  [5]  
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2.3.2  Resources 

NAO is equipped with a Lithium-Ion battery, having the nominal capacity of 2.25Ah. The 

charging duration is less than three hours and the autonomy is of about 60 minutes. The 

robot can be used while it is plugged in. [5] 

NAO has a single nucleus processor, ATOM Z530 that is usually utilized for mobile 

devices due to its low energy consumption. The CPU has the clock of 1.6 GHz. The 1GB 

RAM memory is one of the limitations presented by the robot for real-time applications. 

The Flash memory is of 2GB. An 8GB Micro SDHC can be used at maximum.  At the 

torso level, another processor is used, with the purpose of controlling the actuators. 

ARM7TDMI is a 32 bit, RISC microcontroller. [5] 

Regarding the connectivity, it can be done via Ethernet or Wi-Fi. The Ethernet port can be 

accessed on the back of the head with a RJ45 jack. The speeds supported are 100Mbps, 

1000Mbps or 1Gbps. To update the system of the robot, an Arduino device, Kinect or 

Asus 3D sensor can be connected through the USB port placed at the back of the head. [5] 

To be able to provide audio interaction, NAO is endowed with two loudspeakers, placed in 

its ears. Four microphones allow the stereo recording of sounds, with a maximum 44.1 

kHz sampling frequency. The frequency range for the microphones is between 300Hz and 

8 kHz and the sensitivity is 20mV/Pa +/- 3dB at 1 kHz. 

 

Figure 2.3.2.1 Microphones’ Location [5] 

To process images coming from the medium, NAO has two cameras on its forehead. They 

are identical and provide a resolution up to 1280x960 at 30 frames per second. The 

cameras are used both to identify objects in the robot’s vision field and to help NAO avoid 

obstacles. 
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Figure 2.3.2.2 Cameras Used for Object Identification [5] 

 

 

 
 

Figure 2.3.2.3 Camera Used to Detect Obstacles [5] 
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The cameras are of type SOC Image Sensor, model MT9M114. The image array is defined 

through the resolution of 1.22 Mp, optical format 1/6 inch and active pixels of 1288x968. 

Regarding the sensitivity, the pixel size is 1.9µm*1.9µm. The dynamic range is of 70dB, 

while the signal-to-noise ratio is  at maximum  37dB. The field of view is 7 .6   DFOV  

having 6 .9   the horizontal field of view and 47.6   the vertical one. The focus is of fixed 

type and its range starts at 30 cm. The cameras output 1280x960 at 30 frames per second. 

The shutter is of type Electronic Rolling Shutter. [5] 

NAO has many LEDs that make it pleasant and also can be used to mark some aspects 

regarding the functionality. For example, when the eyes turn red, it means that the battery 

is low. The LEDs are placed according to the figure: 

 

Figure 2.3.2.4 LED Positions [6] 

The LEDs in the ears are all blue. The eyes, chest and feet LEDs are red, green and blue, 

which properly combined give the whole color spectrum. Also, the light intensity can be 

varied between 0 and 100%. 
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Force sensitive resistances are the sensors that measure the resistance change according to 

the pressure applied. They are placed on the robot’s feet. [5] 

 

Figure 2.3.2.5 FSR Sensors [5] 

The inertial unit is placed in the robot’s torso and has its own processor. It consists of 2 

axis gyrometers and one three-axis accelerometer. The precision of the gyrometers is 5  

and their angular speed of 5      s. For the accelerometer  the precision is 1 . The 

accelerometer gives the angle of the torso in static mode and is considered the reference. 

When motion is detected, the output angle is computed using the gyrometers. [5] 

 

Figure 2.3.2.6 Inertial Unit [5] 
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To facilitate the motion, NAO is equipped with 2 ultrasonic sensors. They allow the 

estimation of distances to reach an obstacle. For distances smaller than 25 cm, the robot 

only senses an object, but cannot give supplementary information about its exact position. 

[5] 

The characteristics of the sonars are given in the following table: 

Frequency 40 kHz 

Sensitivity -86 dB 

Resolution 1 cm 

Detection Range 0.25 m – 2.55 m 

Effective Cone 6    

 

 

 

 
Figure 2.3.2.7 Sonars’ Position [5] 

 

 

The joint position sensors have 12 bit precision, that give a precision of about  .1  . 

The robot also has 3 capacitive sensors on top of the head that can be programmed to 

trigger different actions. A chest button is used to turn on and off NAO. The 3 sensors on 

each hand and the 2 bumpers on the tip of each foot have protection purposes: they 

prevent the robot from hitting its hands and feet on foreign objects. 

NAO has 25 motors, one for each joint. They give the robot all liberty needed to make its 

movements as natural as possible.  The 25 degrees of freedom are divided into 11 for the 

inferior part and 14 for the superior one, including the head. [5] 

Table 2.3.2.1 Sonars’ Characteristics [5] 
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Part of robot’s 

body 

Degrees of 

freedom 

Head 2 

Arm 5 for each 

Torso 1 

Leg 5 for each 

Hand 1 for each 

 

 

 

 

Figure 2.3.2.8 Motors’ Position [5] 

 

The robot has three types of motors, each having different characteristics and advantages. 

The carbon brush actuators have a reduced cost and the speed can be configured by the 

user, which is a major advantage when programming movements. [5] 

 

 

 

Table 2.3.2.2 Degrees of freedom [5] 
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 Motor Type 1 Motor Type 2 Motor Type 3 

Model 22NT82213P 17N88208E 16GT83210E 

No load speed 8 300 rpm ±10% 8 400 rpm ±12% 10 700 rpm ±10% 

Stall torque 68 mNm ±8% 9,4 mNm ±8% 14,3 mNm ±8% 

Nominal torque 16.1 mNm 4.9 mNm 6.2 mNm 

 

Table 2.3.2.3 Motor Types [5] 

 

For the legs, motors of type 1 are used, as they are the most powerful from the three. Type 

2 are used for the hand joints and type 3 motors for the arms and head. 
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CHAPTER 3 

WIENER FILTERING 
 

 

 

 

 

 

 

 

 

 

3.1 GENERAL ASPECTS 

The useful speech signal is usually affected by noise, which compromises the results obtained 

after processing. In order to minimize the effect it has on the useful signal, some filtering 

methods were developed, that help enhance the speech signal. 

The Wiener filtering method is one of the most used techniques for signal enhancement. It is 

used to produce an estimate of the desired signal, by having as inputs the noisy signal and 

assuming that the noise is additive. It minimizes the mean square error between the desired 

result and the estimated one. To determine the filter coefficients, the spectral properties of the 

original, compromised signal and of the noise should be known. Also, the original signal and the 

noise are considered stationary, linear stochastic processes. [7] 

 

3.2 RANDOM SIGNALS AND SPECTRAL DENSITIES [8] 

Let x be a discrete time signal, defined as: 

x = (….., x-1, x 0, x1,…..); 

Its Fourier and Z transforms are 

 (   )   ∑    
            

 

    

    ,     - 

 ( )   ∑    
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The correlation function is defined as follows: 

  (   )   (    
 ) 

A signal is wide-sense stationary (WSS) if the following conditions are met: 

 the mean of the signal is constant, time invariant 

E[  -   ,  - 

 the autocorrelation function does not depend on the absolute time, but only on the time 

difference between the two moments when it is calculated 

  (   )     (   ) 

It can be proven that, for WSS signals, the autocorrelation function is even, that is: 

  (  )     ( )
  

The power spectral density of a WSS signal is: 

  ( 
  )   ∑   ( ) 

                 

 

     

    ,     - 

Two WSS stationary processes are joint-WSS if: 

   (   )   (    
 )     (   ) 

Their power spectral density: 

   ( 
  )      ( 

   )  

 

3.3 LINEAR TIME-INVARIANT SYSTEMS 

 

Figure 3.3.1 Linear Time-Invariant Discrete Filter 

 

Being given the system from Figure 3.3.1, its output is defined as the impulse response of the 

filter: 
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 ( )   ∑  (   ) ( )

 

     

 

A linear time-invariant discrete system is stable if its impulse response function is absolutely 

summable, that is: 

∑ | ( )|   

 

    

 

For stable systems, the output in frequency domain is: 

 (   )   (   ) (   ) 

And, in the z domain, 

 ( )   ( ) ( ) 

The system is stable if all poles of H(z) are inside the unity circle. 

 

3.4 WIENER FILTER’S COEFFICIENTS [9] 

 

 
Figure 3.4.1 Wiener Filter 

 

 

The coefficients of the Wiener filter will be determined with the help of the above diagram, 

where x(n) denotes the input samples of the signal, d(n) is the signal desired to be obtained, y(n) 

is the output of the filter, h(n) the impulse response function and e(n) represents the error signal. 

The Wiener filtering works with stationary random processes with zero mean. 

Considering real, causal signals at the input, the impulse response function can be written as: 

 ( )   ∑    (   )

   

   

 

where    denotes the filter’s coefficients  M is the length of the filter and δ(n) is the Dirac 

distribution, defined as follows: 
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δ(k) = {
         
         

 

 

The output of the filter, y(n), will be: 

 ( )   ∑    (   )

   

   

 

The Wiener filters realize the optimization in the mean-square sense, that is by minimizing the 

mean-square error that appears between the output of the filter and the desired signal. In 

consequence, the cost function is defined: 

 

     *| ( )|
 +  || ( )||   〈   〉     

 

So  the goal is to find the filter’s coefficients for which the cost function is minimal. 

In order to do so, the expression of the error function is written: 

 ( )   ( )   ( )   ( )   ∑    (   )

   

   

 

The cost function thus becomes: 

     * ( )
 +   *, ( )   ∑    (   )

   

   

- +

  * ( ) +   *  ( ) ∑    (   ) +

   

   

  * ∑    (   )

   

   

  ( ) +

  *∑    (   )

   

   

∑   (   )

   

   

 + 

 

The correlation function is: 

   ( )   * (   ) ( )+   * ( ) (   )+ 

The coefficients of the filter are constants and real, so the mean operator does not affect them. 

Taking these into consideration, the cost function becomes: 

     * ( )
 +

 ∑    * ( ) (   )+

   

   

  ∑    * (   ) ( )+   ∑ ∑     

   

   

   

   

   

   

 * (   ) (   )+

  * ( ) +   ∑      ( )   

   

   

 ∑      (  )   ∑ ∑     

   

   

   

   

   

   

   (   ) 
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With    ( ) was denoted the correlation function between the input signal and the desired one 

and with    ( ) the autocorrelation function of the input signal.  

For real valued processes,  

   ( )      (  ) 

 

      * ( )
 +   ∑      (  )    ∑ ∑     

   

   

   

   

   (   )

   

   

 

 

 

To write in a matrix form, the following vectors are defined: 

 

w = ,             -
  

x(n) = , ( )    (   )        (     -  

p = ,   ( )      (  )        (    )-
  

 

R = E{ ( ) ( ) +   [
   ( )     (    )
   

   (   )     ( )
] 

 

The cost function in matrix form is: 

      * ( )
 +              

The minimum is reached when the gradient is zero. The gradient of a scalar function 

f(  ,       ) is defined as: 

  ( )   [
  

   
 
  

   
   

  

   
]
 

 

By applying this expression to the cost function, and observing that d(n) does not depend on any 

w coefficient, it results that: 

 

  *   +    * * ( )
 +            +      *  

  +    * 
   + 

 

    ,             - [
   ( )
 

   (    )
]

        ( )       (  )            (    ) 

 

    

    
     (  ) 
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      ,             - [
   ( )     (    )
   

   (   )     ( )
] [

   
 

     
]

     ,      ( )        ( )            (   )-   

      ,      (    )        (    )            ( )- 

 

 

So, 

  *   +          

To minimize the function, 

  *   +    

It implies that 

     

The optimal coefficients for the Wiener filter are denoted   obtained as: 

         

For optimal coefficients of the filter, an observation regarding the orthogonality of the input 

signal with the error can be made. 

 * ( ) ( )+   * ( ), ( )   ( )-+   * ( ), ( )    ( )   -+

  * ( ) ( )+   * ( ) ( )   +            

This infers that the input signal and the error signal are uncorrelated. 

 

3.5 WIENER FILTER USED IN NOISE REDUCTION 

The noise reduction is a particular case of Wiener filtering, where the input is the signal affected 

by noise and the desired signal is the noise. The schematics below describes the principle: 

 

 

 
Figure 3.5.1 Noise Reduction Using Wiener Filter [10] 
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With s(n) was denoted the useful signal and with v(n) the additive noise;  ̂( ) is the noise at the 

output of the filter, that is subtracted  from the noisy signal. The Wiener filter tries to make its 

output as close as possible to the sum of the desired signal and noise. The correlation between 

the noise and the useful signal will be zero, while the noise that is added over the signal will be 

strongly correlated with the noise at the output of the filter. So, when subtracting the two 

signals, the error signal will be, in fact, the useful signal, without noise. 
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CHAPTER 4 

GMM-UBM  
 

 

 

 

 

 

 

 

 

 

4.1 MARKOV CHAINS 

The most important machine learning model in speech processing is the hidden Markov model. 

In order to be defined, a proper definition for the Markov chain should be given. Markov chains, 

as well as the hidden Markov models, are extensions of the finite automata, which are defined 

by states and transitions between them. For a weighted finite-state automaton, each arc that 

represents a transition between two states is associated with the probability for that transition to 

occur. So, the probability of a Markov chain to be in a particular state at a given time depends 

only on the state in which the Markov chain previously was. It can be observed that the 

probabilities on all arcs leaving a node must be 1. [11] 

A Markov chain is a weighted automaton in which the input sequence uniquely determines 

which states the automaton will go through. It models a class of random processes that 

incorporate a minimum amount of memory. 

Considering                 a sequence of random variables from a discrete alphabet, 

  *          +, by applying the Bayes rule,  

 (             )   (   )∏ (   |  
   )

 

   

 

       where    
                    . 

The random variables X form a first-order Markov chain if  (   |  
   )    (   |    ), which 

means that, for a first-order Markov chain, 

 (             )   (   )∏  (   |    )
 
   . 
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This equation is known as the Markov assumption and it uses very little memory to model 

dynamic data sequences, as the probability of a random variable at a given time depends only on 

the value at the preceding time, regardless of all other previous values. So, the Markov chain 

can be used to model stationary signals. [12] 

For a Markov chain with N distinct states, having the state at time t in the Markov chain denoted 

as   , the parameters of the Markov chain are: 

     (     |       )              

    (    )            

With     was denoted the transition probability from state i to state j, while    represents the 

initial probability for the Markov chain to start from state i. As it is well known, both 

transitions’ probabilities and initial probabilities are bounded by constraints  that is: 

∑               

 

   

 

∑    

 

   

 

As an example, consider the three-state Markov chain for the Dow Jones Industrial average. At 

the end of each day, the Dow Jones Industrial average may correspond to one of the states: [12] 

 state 1 – up 

 state 2 – down 

 state 3 – unchanged 
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Figure 4.1.1 Markov Chain for Dow Jones Industrial Average [12] 

 

 

The state-transition probability matrix is: 

   [
         
         
         

] 

The initial state probability matrix is: 

   [
   
   
   
] 

As it can be seen, both probabilities matrices are defined in accordance with the imposed 

conditions.  

 

4.2 THE HIDDEN MARKOV MODEL (HMM) 

The Markov chain can be used to compute a probability for a sequence of observable events. 

Sometimes, the events may not be observable. For example, in speech recognition, acoustic 

events are observable and the presence of hidden words that are the underlying causal source of 

the acoustics is inferred. A hidden Markov model allows the study of both observed and hidden 

events that are thought of as the causal factors in the probabilistic model. [11] 
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A HMM is specified by the following components: 

Component Description 

             a set of N states 

                    

a transition probability matrix A, each     
representing the probability for the transition 

from state i to state j to occur 

             
a sequence of T observations, each one drawn 

from a vocabulary               

     (  ) 
a sequence of observation likelihoods, each 

expressing the probability of an observation    
being generated by the state i  

      
a special start state and final state that are not 

associated with observations 

 

Table 4.2.1 HMM Components [11] 

 

As an example, the task proposed by Jason Eisner will be further treated. A climatologist from 

the year 2799 has to study global warming. He cannot find any records concerning the weather 

in Baltimore, so he uses the diary of Jason Eisner, where the number of ice creams Jason ate 

each day is written down. Using these observations, the temperature for each day needs to be 

estimated. As a simplification, only two kinds of days are considered: cold and hot. So, being 

given a sequence of observations O (the number of ice creams eaten on a given day), the hidden 

sequence Q of weather states should be found. [11] 

 

 
Figure 4.2.1 HMM for the Ice Cream Task [13] 

 

 

The two hidden states  “hot” and “cold” correspond to hot and cold weather and the 

observations correspond to the number of ice creams eaten on a given day. 
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A HMM having non-zero probability of transitioning between any two states is an ergodic 

HMM (fully connected). [11] 

 

4.3 HMM TRAINING: BAUM-WELCH ALGORITHM 

Being given a set of observations O and the set of possible states in the HMM, the task is to 

determine the HMM parameters, that is the A (transition probability matrix) and B (observation 

likelihood) matrices. 

The algorithm most commonly used to train the HMM is the Baum-Welch algorithm, which is a 

special case of Expectation Maximization. The advantage of this algorithm is that it allows the 

training of both the transition probabilities and the emission probabilities of the HMM. 

If the simpler case of training a Markov chain is considered, since the states are observed, the 

model can be run on the observation sequence. As a result, the path taken through the model can 

be directly observed and so is the state which generated each observation symbol. A Markov 

chain can be in fact considered a hidden Markov model having all the b probabilities equal to 1 

for the observed symbol and 0 for all other symbols. So, in this case, only the transmission 

probabilities A should be trained. 

To obtain the maximum likelihood estimate of the probability     of a transition from state i to 

state j, the number of times this transition was taken is counted, denoted by  (   ). Then, the 

normalization to the number of all transitions from state i is performed, and thus      is obtained. 

This can be done only because the states are already known.  

     
 (   )

∑  (   )   
 

For a HMM, the counts cannot be computed directly from the observation sequence, since the 

path taken through the machine for a specified input is not known. The Baum-Welch algorithm 

solves this problem. First of all, the counts are iteratively estimated, that is, starting from an 

estimate of the transition and observation probabilities, better and better probabilities are 

obtained. Secondly, the estimated probabilities are obtained by computing the forward 

probability for an observation and then dividing the probability mass among all the different 

paths that contributed to this forward probability. [11] 

The backward probability β is the probability of seeing the observations from time t+1 to the 

end, given that the current state is i at time t and the given automation is λ  so: 

  ( )   (               |        )   

 

It can be computed inductively, as it follows: 

 initialization: 

  ( )                    
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 recursion: 

  ( )   ∑     (    )    ( )

 

   

                         

 finish: 

 ( | )     (  )     ( )   ∑     (  )  ( )

 

   

 

 

Now, the estimate transition probability is defined as follows: 

 ̂    
                                                      

                                           
 

Being given the observation sequence and the model, the probability of being in state i at time t 

and at state j at time t+1 is defined: 

  (   )   (            |    ) 

To be able to compute   , another probability should be first computed, similar to this one but 

with a different conditioning for O: 

            (   )   (              |   )      ( )     (    )    ( )      ,  - 

Knowing that: 

 ( |   )   
 (   | )

 ( | )
 

 ( | )     ( )     ( )   ∑  ( )

 

   

  ( ) 

And by introducing these in   : 

  (   )  
  ( )     (    )    ( )

  ( )
 

The expected number of transitions from state i to state j is the sum of   over the whole t 

domain. The total expected number of transitions from state i is the sum of all transitions 

coming out of state i. Thus, the final expression is: 

 ̂    
∑   (   )
 
   

∑ ∑   (   )
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The probability of a given symbol    from the vocabulary V, being given a state j can be 

computed using: 

 ̂ (  )   
                                                            

                                   
  

The probability of being in state j at time t,   ( ), is: 

  ( )   (     |   ) 

By including the observation sequence in the probability: 

  ( )   
 (       |  )

 ( | )
  
  ( )  ( )

 ( | )
                

    where by   ( ) was denoted the forward probability and by   ( ) the 

backward probability. 

So, knowing that for the numerator the sum of   ( ) for all time steps when the observation    

was the symbol   , and for the denominator the sum of   ( ) for all time steps t should be 

computed, the expression for  ̂ (  ) becomes: 

 ̂ (  )   
∑   ( )
 
               

∑   ( )
 
   

 

 

Now, the transition A and observation B probabilities from an observation sequence O can be re-

estimated, assuming that at the beginning there are already some previous estimates for A and B, 

which represent the initial estimate of the HMM parameters for the forward-backward 

algorithm. Then, the steps are run iteratively. There are two major steps: 

 expectation step  where the expected state occupancy count γ and the expected state 

transition count ξ are computed from the old A and B probabilities 

 maximization step, where the new A and B probabilities are computed from γ and ξ 

 

4.4 HMM APPLIED TO SPEECH 

The principles when using HMM for speech recognition are the same as the ones from the 

examples given before, but for the observation sequence, which in this case is a sequence of 

acoustic feature vectors. Each one of these acoustic feature vectors gives information about the 

amount of energy in different frequency bands at each point in the time domain. Each 

observation contains, in fact, a vector of 39 real-valued features that give information about the 

spectrum of the signal. [11] 

When choosing the hidden states of the hidden Markov model, the number of words used for the 

database creation is extremely important. For small tasks, that is, a small number of words, the 
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hidden states correspond to entire words. If the number of words increases, the hidden states in 

the HMM correspond to smaller units, that are called phones. The phone is defined as “the 

smallest identifiable unit found in a stream of speech that is able to be transcribed” [14]. This 

way, for larger tasks, the words are considered a sequence of phones, so a word HMM consists 

of a stream of HMM states. [11] 

A major aspect that differentiates the HMM models for speech recognition from other HMM 

models is the forbiddance of arbitrary transitions. Strong constraints on transitions are imposed, 

based on the sequential nature of speech. So, states can transition to themselves or to the next 

state only. This special HMM structure is named Bakis network and is the most common model 

used for speech. 

 

Figure 4.4.1 Bakis Model [15] 

 

The phone durations vary, so self-loops are used in order to allow the repetition of a single 

phone such that it covers a variable amount of the acoustic input. More than that, the spectral 

characteristics of a phone and the amount of energy vary across the phone. This is the reason 

why, in general, a phone is modeled using more than one HMM state. The most common 

configuration is using three HMM states: beginning, middle and end state. 

 

Figure 4.4.2 Standard five-state HMM model for a phone [11] 

 

So, to construct the HMM for a whole word, each phone is replaced by this more complex 

representation, as represented in the following figure: 
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Figure 4.4.3 Composite Model for Word “six” [16] 

 
 

4.5 MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) VECTORS 

The most common feature extracted from the input waveform in speech processing applications 

is the MFCC. The first step in processing speech is represented by the analog-to-digital 

conversion, which in turn has two steps itself: sampling and quantization. Sampling means 

taking the amplitude at certain intervals of time. The sampling rate is the number of samples 

taken in a second. To be able to accurately measure a waveform, two samples per cycle should 

be taken, one for the positive part and one for the negative part of the wave. The more samples 

per cycle taken, the better accuracy. So, the maximum frequency that can be measured is half of 

the sampling rate and it is called the Nyquist frequency. Most information in human speech is 

contained in frequencies below 10 kHz, but, for example in telephony, only frequencies below 4 

kHz are transmitted, the speech being filtered by the switching network. [11] 

Quantization is the process of representing real-valued numbers as integers. All the values that 

are smaller than the quantum size are represented identically, which means some granular noise 

appears. 

 

The following diagram represents the steps taken in order to compute the feature vectors:  
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Figure 4.5.1 Extracting MFCC 
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4.5.1 Pre-emphasis 

Pre-emphasis is the first step in MFCC feature extraction. It is done due to the fact that it 

can be observed that the energy for vowels is concentrated on low frequencies and at high 

frequencies it drops. So, by boosting the high frequency energy, the phone detection 

accuracy is increased. [11] 

 

4.5.2 Windowing 

Because the spectral characteristics of the voice signal are not constant in time, it is said 

that the speech is a non-stationary signal. To be able to extract spectral features, a 

stationary signal is required. A stationary portion of speech is extracted by using a window 

which is non-zero inside some region and zero elsewhere. 

A windowing process is characterized by: 

 the width of the window, in milliseconds 

 the offset between successive windows 

 the shape of the window 

The speech extracted from each window is called a frame, the frame size is represented by 

the number of milliseconds in a frame and the frame shift is the number of milliseconds 

between the left edges of two successive frames. [11] 

 

Figure 4.5.2.1 Windowing Process for Frame Shift of 10ms and Frame Size of 25ms 

[11] 
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To extract the signal y[n], the value of the input signal, s[n], is multiplied by the value of 

the window, w[n]: 

 , -   , - , - 

The simplest window is the rectangular window, defined as: 

 , -   {
             
                       

 

However, problems occur when using the rectangular window due to the abrupt slope that 

causes discontinuities, thus creating problems when computing the Fourier transform. This 

inconvenience led to the usage of the Hamming window when extracting the MFCC. It 

diminishes the values of the signal towards zero at the window boundaries, and at the 

same time avoids the appearance of discontinuities. The Hamming window is defined: 

 , -   {            (
   

 
)             

                                                               
 

The following figure best underlies the differences when applying the two window shapes 

to a sinusoidal input signal: 

 
Figure 4.5.2.2 Windowing of sine Wave using Rectangular and Hamming [17] 
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4.5.3 Discrete Fourier Transform (DFT) 

The discrete Fourier transformed is used to extract spectral information for discrete 

frequency bands for sampled signals. At the input, the windowed signal is applied and at 

the output, for each discrete frequency band, is a complex number, X[k], that represents 

the magnitude and phase of the frequency component in the original signal. When plotting 

the magnitude against the frequency, the spectrum of the signal is represented. 

The DFT is defined as: 

 , -   ∑  , -   
  
 
  

   

   

 

           where N is the number of discrete frequency bands and 

x[n] are the samples of the input signal. 

 

Figure 4.5.3.1 Voice Signal for a 1s Window and its DFT [18] 
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4.5.4 Mel Filter Bank and Log 

Since human ear is less sensitive to higher frequency and thus the hearing can be roughly 

considered logarithmic, a translation of the DFT is needed, such that to increase the 

accuracy of the results. The translation considered was the wrapping of the frequencies 

output by DFT onto the mel scale, which is the unit for pitch. An important property is that 

the sounds that are perceived as equidistant in pitch are separated by an equal number of 

mels. The mapping between frequency and mel is linear below 1000 Hz and logarithmic 

above 1000 Hz, as suggested by the transform: 

   ( )          (  
 

   
) 

This mapping is implemented using some triangular filters that collect the energy from 

each frequency band. Below the frequency of 1000 Hz there are typically 10 filters spread 

linearly and all other filters above 1000 Hz are spread logarithmically. [11] 

 

Figure 4.5.4.1 Mel Filter Bank [19] 

Then, the log of the mel spectrum values is taken. This is a result of the human response to 

the signal level being logarithmic, that is, the differences in amplitude at high frequencies 

bother less than those at low frequencies. More than that, feature estimation thus becomes 

less sensitive to variations in input, which leads to a better accuracy of results. 

 

4.5.5 The Inverse Discrete Fourier Transform 

To significantly improve the phone recognition, the cepstrum should be computed. The 

cepstrum can be thought of as the spectrum of the log of the spectrum. To obtain it, first 

the standard magnitude spectrum is computed and the log of each amplitude value is 

taken. Then, this log spectrum is seen as if itself were a waveform. By taking the spectrum 

of the log spectrum, the representation will be in time domain, so the correct unit for the 

cepstrum is the sample. When analyzing the cepstrum, it can be observed that a notable 

component is on a frequency corresponding to the fundamental frequency of the speaker. 

More than that, at low frequencies, non-zero components appear due to the position of the 
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tongue and other articulators. So, to detect phones only the low frequency components are 

needed and to detect the pitch the higher cepstral values are required. 

It was observed that the cepstral coefficients have the property that the variance of 

different coefficients is uncorrelated in general. This is the main reason for working with 

cepstral coefficients instead directly on the spectrum, where the spectral coefficients at 

different frequency bands are correlated. 

Formally, the cepstrum is defined as the inverse discrete Fourier transform of the log 

magnitude of the discrete Fourier transform of the signal, so, for a windowed signal x[n], 

the following expression is employed: 

 

 , -   ∑    (|∑  , -   
  
 
   

   

   

|)

   

   

  
  
 
  

 

 

4.5.6 Deltas and Energy 

The cepstral coefficients are obtained for each frame and typically only the first 12 of 

them are kept. Next, some other features are added. The energy from the frame correlates 

with the phone identity so it is an useful feature in phone detection. The energy in a frame 

is computed as the sum over time of the power of the samples in the frame. So, for a signal 

x, in a window starting from sample    and ending at sample   , the energy is computed 

as: [11] 

        ∑   , -

  

     

 

The speech signal differs from frame to frame, so the nature of the change from a stop 

closure to a stop burst may provide some supplementary information regarding the pitch 

identity. In order to obtain this new information, for each feature previously discussed 

(cepstral coefficients and energy) a delta and a double delta feature is added. Delta or 

velocity features represent the change between frames in the corresponding cepstral or 

energy feature. Double delta or acceleration features represent the change between frames 

in the corresponding delta features. [11] 

 

So, after adding all new features, the MFCC features are obtained. The most useful 

characteristic of the MFCC features is that the cepstral coefficients tend to be uncorrelated, so a 

simplification of the acoustic model occurs. 
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4.6 GAUSSIAN MIXTURE MODEL (GMM) 

Modern speech recognition algorithms are based on computing observation probabilities 

directly on the real-valued, continuous input vector. These models are based on the computation 

of the probability density function (PDF) over a continuous space, the most common model 

being GMM PDFs. [11] 

 

4.6.1 Univariate Gaussians  

The Gaussian distribution, also known as the normal distribution, is bell-curved and it is a 

function parameterized by a mean and a variance. The mean represents the average value 

and the variance shows the average spread from the mean. The mean is denoted by µ and 

the variance by   . So, the Gaussian function is: 

 (  |    )   
 

√    
   ( 

(   ) 

   
) 

The mean of a random variable X is the expected value of X. If X is a discrete variable: 

   ( )   ∑ (  )

 

   

    

The variance of a discrete random variable X is the weighted squared average deviation 

from the mean value:  

    (    ( ))
   ∑ (  )(    ( ))

 

 

   

 

 

Figure 4.6.1.1 Gaussian Functions with Different Means and Variances [20] 
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To consider the Gaussian function a PDF, the area under the curve should be 1, so 

normalization is needed. The probability that a random variable takes values in any 

interval is the area under the curve between the interval’s limits.  

 

Figure 4.6.1.2 Gaussian PDF [20] 

The univariate Gaussian PDF can be used to estimate the probability that a particular 

HMM state generates the value of a single dimension of a feature vector if the possible 

values of the observation vector    are normally distributed [11]. The observation 

likelihood function is represented as a Gaussian for one dimension of the acoustic vector. 

Considering a single cepstral feature and that the state j has a mean value and a variance 

associated to it, the likelihood is computed using the expression for the Gaussian PDF: 

   (  )   
 

√    
 

   ( 
(      )

 

   
 ) 

First, the mean and variance for each HMM state,   , should be computed. In the simpler 

case, when each acoustic observation was labeled with the HMM state that produced it, 

the mean of each state is computed as the average of the values for each observation 

vector that correspond to state i. The variance is computed using the mean; it is the sum-

squared error between the observation and the mean. [11] 

 ̂   
 

 
 ∑                              

 

   

 

 ̂ 
   

 

 
 ∑(     ) 
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In reality, because the states are hidden in HMM, it is impossible to know exactly which 

observation vector was produced by which state. So, each observation vector is assigned to 

every possible state, given that the HMM was in state i at time t. The probability of being 

in state i at time t was already presented as part of the Baum-Welch algorithm and it was 

denoted by   ( ).  As previously discussed, Baum-Welch is an iterative algorithm, so   ( ) 

is computed also iteratively because, by getting a better observation probability b, a better 

probability of   being in a state i at a given time is obtained. Taking all these into account, 

the expressions for the mean and variance become: 

 

 ̂   
∑   ( )   
 
   

∑   ( ) 
 
   

 

 ̂ 
   

∑   ( ) (      )
  

   

∑   ( ) 
 
   

 

 

These two expressions are used in the Baum-Welch algorithm, to train the HMM. Initially, 

the values for    and    are set to some estimates and then recomputed at each step. [11] 

 

 
4.6.2 Multivariate Gaussians 

The use of a multivariate Gaussian is necessary, due to the fact that the acoustic 

observation is a vector of 39 features. The multivariate Gaussian allows the assignment of 

a probability to a vector. The multivariate Gaussian is defined by a mean vector  ⃗ of D 

elements, D being the number of features, and a covariance matrix ∑: 

 (  ⃗⃗⃗ ⃗ | ⃗ ∑)   
 

(  )
 
  |∑|

 
 

     ( 
 

 
 (   )   ∑  (   ))       

The covariance matrix ∑ contains the variance of all dimensions and the covariance 

between any two dimensions. 

∑    [(   ( ))(   ( ))]    ∑ (    )(    ( ))(

 

   

     ( )) 

So, the multivariate Gaussian probability estimate for a given HMM, characterized by    

and ∑ , is: 

  (  )   
 

(  )
 
  |∑|

 
 

     ( 
 

 
 (     )

 
  ∑  (     )) 

The covariance matrix shows the variance between each pair of feature dimensions. If the 

features in different dimensions are uncorrelated, ∑  becomes a diagonal matrix, so non-

zero elements are placed along the main diagonal. [11] 
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The following graphical representation best expresses the role of the full covariance 

matrix, as compared to the one of the diagonal covariance matrix. To simplify the results, 

the representation was done for a multivariate Gaussian with only two dimensions. The 

figure from the left depicts the Gaussian with a diagonal covariance matrix, having the 

variances of the two dimensions equal. The projection of the tridimensional representation 

is below it and, as it can be seen, the slice is circular. [11] 

The figure from the right shows a Gaussian with a non-diagonal covariance matrix. The 

contour is not lined up with the two axis, so, if the value in one direction is known, the 

value in the other direction can be predicted. This results in the fact that, having a non-

diagonal covariance matrix is equivalent with having correlations between the values of 

the features in multiple dimensions. 

 

 

Figure 4.6.2.1 Multivariate Gaussians in Two Dimensions [21] 

 

As previously proven, a Gaussian with a full covariance matrix is a more powerful tool 

than the diagonal one. But, due to the fact that the full covariance matrix is slow to 

compute (a full covariance matrix has    parameters) and it has more parameters and thus 

requires more data to train, the diagonal covariance matrix is generally used for Automatic 

Speech Recognition (ASR) systems. [11] 
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So, with this assumption, the covariance matrix becomes: 

∑  [
  
   
   
    

 
] 

And, introducing in the expression for the likelihood, the following simplification is 

obtained: 

  (  )   ∏
 

√     
 

 

   

    ( 
 

 
 
(      )

 

   
 ) 

To train such a multivariate Gaussian, the same steps as for the univariate Gaussian are 

taken. Again, the Baum-Welch algorithm is used, having in mind that   ( ) is the 

likelihood of being in state i at time t. The same equations are employed, except that now 

the observation    is a vector of cepstral features, the mean vector   ⃗⃗⃗ ⃗is a vector of cepstral 

means and the variance vector  ⃗ 
 is a vector of cepstral variances: 

 ̂   
∑   ( )   
 
   

∑   ( )
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∑   ( )(     ) (     )
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4.6.3 Gaussian Mixture Models - Motivation 

As it was previously shown, a multivariate Gaussian can be used to model each dimension 

of the feature vector as a normal distribution. Generally, a cepstral feature is not normally 

distributed; for this reason, the observation likelihood is modeled with a weighted mixture 

of multivariate Gaussians. Such a model is called a Gaussian mixture model. [11] GMM 

has become the standard classifier for text-independent speaker recognition due to its 

ability to form smooth approximations to arbitrary shaped distributions. Another 

advantage is that the training is fast as compared to other methods. [22] 

Since HMM is hard to be applied to text-independent speaker recognition, and even so the 

improvement is not significant, GMM became the most used model. [23] 

In GMM, the speaker model consists of a finite mixture of multivariate Gaussian 

components. A mixture density is the weighted sum of M component densities. [24] 

 ( ⃗ |  )   ∑    ( ⃗)

 

   

                        

     where   ⃗ is a D dimensional random vector,    are the 

mixture weights and   ( ⃗) are the component densities. 
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Each component density is: 

  ( ⃗)   
 

(  )
 
  |∑ |

 
 

    ( 
 

 
 ( ⃗   ⃗ )

  ∑ 
  ( ⃗   ⃗ ) )          

      where  ⃗  is the mean vector and ∑  is the covariance matrix. 

The constraint imposed on the mixture weights is: 

∑    

 

   

 

The figure below shows how the approximation of an arbitrary function is done, using a 

mixture of three Gaussians. 

 

 

Figure 4.6.3.1 Function Approximation using a Mixture of Three Gaussians [25] 

 

The mixture density is characterized by the parameter λ  which contains the mean vector, 

covariance matrices and mixture weights: 

  *    ⃗  ∑ +             

Each speaker is represented by his own GMM and is referred to by his model λ. [24] 

To train the GMM, Baum-Welch is used to determine the probability of a certain mixture 

of Gaussians, being given the observation. This probability will be iteratively updated. The 

probability of being in state j at time t with the     mixture component accounting for the 

observation    is denoted by    ( ) and is defined as: [11] 
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Using the values from the previous iteration, the mean, mixture weight and covariance are 

recomputed: 

 ̂    
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There are two main reasons why GMM is used in speaker recognition applications. The 

first one is that GMM may model some underlying set of acoustic classes, which represent 

some phonetic events, such as vowels, nasals or fricatives. They represent some speaker-

dependent features that are useful in speaker identification. The second reason was 

obtained through repeated observations and as it was concluded, a linear combination of 

Gaussian basis functions offers the possibility to represent a large class of sampled 

distributions. Any arbitrarily-shaped function can be well approximated through GMM. 

[24] 

Another important characteristic is that, even though there might be some correlation 

between the features, full covariance matrices are not needed. Correlations between 

feature vector elements can be modeled using a linear combination of diagonal covariance 

Gaussians. 

 

4.6.4 Maximum Likelihood Parameter Estimation 

The goal of speaker recognition model is to estimate the GMM parameters that best match 

the distribution of training feature vectors. The most used method to reach this imposed 

target is the maximum likelihood estimation. Maximum likelihood estimation aims to 

determine the model parameters that maximize the likelihood of the GMM, when the 

training data is already given. 

Considering T training vectors, X = { ⃗     ⃗ + , the GMM likelihood is: 

 (  | )   ∏ ( ⃗ | )

 

   

 

Seeing that this expression cannot be maximized directly, as it is a nonlinear function of 

the parameters λ, the maximum likelihood estimation is obtained iteratively, using the 

particular case of expectation-maximization (EM) algorithm. 
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EM algorithm starts with an initial model λ and estimates a new model  ̅ such that the 

following condition is fulfilled: 

 (  | ̅)    ( | ) 

After this step, the newly obtained model becomes the initial one for the next iteration and 

the process repeats until some threshold is reached. As it can be observed, the principles 

are the same as in the case of Baum-Welch algorithm, used to estimate HMM parameters. 

[24] 

At each iteration, the weight, mean and variance are updated using: 

 ̅   
 

 
 ∑ ( | ⃗   )

 

   

 

 ⃗̅   
∑  ( | ⃗   ) ⃗ 
 
   

∑  ( | ⃗   )
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∑  ( | ⃗   )
 
      

 

∑  ( | ⃗   )
 
   

   ̅ 
  

With    
  ,    and    are denoted the elements from the vectors  ⃗ 

 ,  ⃗  and  ⃗ . 

The a posteriori probability for a class i is determined using: 

 ( | ⃗   )    
    ( ⃗ )

∑     ( ⃗ )
 
   

 

Two important steps that are taken when training the Gaussian mixture model are the 

selection of the order M of the mixture and the initialization of parameters for the 

estimation maximization algorithm. Since there is no theoretical background to impose 

when choosing these parameters, they are application dependent and the values are 

selected through repeated experiments. [24] 

Usually, the X feature vectors are assumed independent, so the logarithm of the 

conditional probability is computed: 

   ( ( ⃗ | ))   ∑    ( (  ⃗⃗⃗⃗ | ))

 

   

 

 (   ⃗⃗⃗⃗⃗| ) is computed as previously stated, 

 ( ⃗ | )   ∑    ( ⃗)

 

   

 

Sometimes, a normalization through the division by T is necessary; this can be considered 

a rough compensation factor to the likelihood value. [26] 
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4.7 UNIVERSAL BACKGROUND MODEL (UBM) 

The UBM is “a model in speaker verification system to represent general  person-independent, 

channel independent feature characteristics to be compared against a model of speaker specific 

feature characteristics when making an accept or reject decision”. [23] 

The UBM acts as a prior model in maximum a posteriori (MAP) parameter estimation and it is 

trained using samples from many speakers, in order to have some general speech characteristics.  

Since there is no possibility to determine the optimal number of speakers or speech samples to 

be used when training the UBM, the simplest method is to pool all data using EM algorithm. 

This is done in order to avoid the dominance of one subpopulation over the others. 

 

4.7.1 Adaptation of Speaker Model 

Unlike the standard approach of maximum likelihood training of a model independently 

on the UBM, the adaptation procedure is used to continuously update the parameters in the 

UBM. This method drastically increases the performances  since the speaker’s model and 

the UBM are tightly connected. 

The adaptation is performed in two steps. In the first step, for each mixture in the UBM, 

the estimates of the sufficient statistics of the speaker’s training data are computed. The 

sufficient statistics are the basic statistics needed in order to compute the desired 

parameters. In the second step, the new results are combined with the old ones using a 

data-dependent mixing coefficient. This coefficient is chosen such that, when there is 

enough data the new sufficient statistics are more reliable for final parameter estimation, 

and when the data count is low, the final result relies more on the a priori information. [26] 

Being given an UBM and the training vectors   *       +, the probabilistic alignment 

of the training vectors in the UBM mixture is first determined. For mixture i, the 

probabilistic alignment is: 

  ( | ⃗ )   
    ( ⃗ )

∑     ( ⃗ )
 
   

 

Then, this probabilistic alignment is used to compute the sufficient statistics for weight, 

mean and variance: 

    ∑  ( | ⃗ )
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Figure 4.7.1.1 Adaptation for a Speaker Model [25] 

 

Figure a) shows how the training vectors are mapped into the UBM mixture. Figure b) 

represents the adapted mixture parameters that are derived using the UBM mixture 

parameters and the statistics of the new data. [25] 

After this step, the sufficient statistics from the training data are used to update the old 

sufficient statistics form de UBM for mixture i, thus resulting the adapted parameters for 

that specific mixture: 

 ̂   *
  
   
 

 (    
 )  +   

 ̂     
   ( ⃗)  (    

 )   

 ̂ 
     

    (  )⃗⃗ ⃗⃗ ⃗⃗⃗  (    
 )(  

    
 )    ̂ 

  

{  
 
,   

 ,   
 } are the adaptation parameters for the weight, mean and variance and   is the 

scale factor, computed over all adaptation mixture weights, such that to impose the 

condition that their sum is 1. [26] 

The adaptation parameter coefficient that is computed for each parameter and each 

mixture, is defined as follows: 

  
 
  

  
     

 

         where   *     + and   is a fixed relevance factor 

for parameter  . 
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If the probabilistic count,   , is low for a specific mixture component, it will make   
 
 

 . This, in turn, leads to a de-emphasis of the new parameters, thus giving the old 

parameters more weight. For mixture components with high probabilistic count,   
 
  , 

so the new speaker-parameters are prioritized over the a priori parameters. Through the 

relevance factor the amount of new data to be observed in a mixture before the replacing 

of old parameters with the new ones is controlled. 

The experiments carried out by Vuuren in his Ph.D. thesis  “Speaker Verification in a 

Time-Feature Space” proved that the gain when using parameter-dependent adaptation 

coefficients is insignificant. [27] So, in most GMM-UBM system, a single adaptation 

coefficient for all parameters is used, having the relevance factor 16. Vuuren’s 

experiments show similar performances for relevance factors in the range [8-20]. 

The adaptation approach provides by far better results as compared to the method in which 

the speaker model is trained independently on the UBM. If the UBM is considered the 

covering space of speaker-independent acoustic classes  the adaptation is “the speaker-

dependent tuning of those acoustic classes observed in the speaker’s training speech”. [26] 

During the recognition stage, the classes unseen in the speaker training produce zero log-

likelihood ratio values, that are this way not taken into account in the decision making 

process. 

 

4.7.2 Log-Likelihood Ratio Computation 

For a sequence of feature vectors X, the log-likelihood ratio is computed as: 

 ( )      ( ⃗|    )      ( ⃗|    ) 

Since the hypothesized speaker model was adapted from the UBM, the method works 

faster than evaluating separately two GMMs. This is due to the fact that, when evaluating 

a large GMM for a feature vector, only a few of the mixtures yield significantly to the 

likelihood value. The GMM is represented over a large space, but only few components 

are near a single vector. [26] 

Another observation that was made is that the vectors that are close to a particular mixture 

in the UBM are also close to the corresponding mixture in the speaker model. So, having 

these two properties in mind, an improvement in the latency of the response is obtained. 

[26] 

 

Following all the steps described in this chapter, the diagram below represents the method 

implemented in order to obtain the desired result: 
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Figure 4.1 Implemented Method  
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CHAPTER 5 

TESTING THE METHOD 
 

 

 

 

 

 

 

 

 

 

5.1 DATABASE 

To create the database used to test the algorithm, a set of 5 speakers was used. For each speaker, 

20 voice commands were recorded 10 times each, from different distances and positions relative 

to the robot’s microphones  in order to have a more accurate model of the speech for the users. 

The algorithm developed is text dependent, meaning that the same commands that were used for 

training the model should be used in the testing phase. 

The 5 speakers chosen were two males and three females, such that to have some diversity. The 

recordings were done in a nosy environment, in order to study the effect of noise on the overall 

accuracy. The 10 recordings for each command were further divided as follows: 

 5 recordings for distances below 1 meter 

 5 recordings for distances greater  than 1 meter 

Each of these recordings was done from a different position relative to the robot. 

The channel is stereo, the recording being done on 2 of the 4 microphones available on the 

robot, the ones placed on the right and left side of its head. This decision was made after 

studying the quality of some test recordings from each microphone. 

 

5.2 EXPERIMENTAL SETUP 

The database thus obtained was divided into: 

 75% of the recordings were used for training 

 25% of the recordings were used for testing 
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To make the choice of optimal parameters, it was studied the effect of the sampling rate and 

number of Gaussian components variation on the overall results. For the sampling frequency, 

the values for which the study was made are: 

 8 kHz 

 16 kHz 

 32 kHz 

 44.1 kHz 

The number of Gaussian components was varied as follows: 

 1 Gaussian component 

 2 Gaussian components 

 4 Gaussian components 

 8 Gaussian components 

 16 Gaussian components 

 32 Gaussian components 

 64 Gaussian components 

 128 Gaussian components 

 256 Gaussian components 

 

5.3 RESULTS 

The results of the testing for each variant are given below. First, the results obtained for the 

noisy environment are presented as follows: 

 

Fs = 8kHz Original 

1 Gaussian Component Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 98 0 0 2 

Speaker 3 0 0 100 0 0 

Speaker 4 1 0 0 88 11 

Speaker 5 0 10 0 17 73 

Table 5.3.1 Results for 1 Gaussian component and 8 kHz sampling frequency – noisy 

environment 
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Fs = 8kHz Original 

2 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 99 0 1 0 

Speaker 3 0 0 100 0 0 

Speaker 4 2 0 0 90 8 

Speaker 5 0 9 0 13 78 

Table 5.3.2 Results for 2 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

Fs = 8kHz Original 

4 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 97 0 0 3 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 4 0 94 2 

Speaker 5 0 11 0 3 86 

Table 5.3.3 Results for 4 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

Fs = 8kHz Original 

8 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 98 2 

Speaker 5 0 5 0 2 93 

Table 5.3.4 Results for 8 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

Fs = 8kHz Original 

16 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 1 0 1 98 

Table 5.3.5 Results for 16 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

 

 



68 

 

Fs = 8kHz Original 

32 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 1 0 2 97 

Table 5.3.6 Results for 32 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

Fs = 8kHz Original 

64 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.7 Results for 64 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

Fs = 8kHz Original 

128 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 2 0 0 98 

Table 5.3.8 Results for 128 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

 

Fs = 8kHz Original 

256 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.9 Results for 256 Gaussian components and 8 kHz sampling frequency – noisy 

environment 

 

Acceptable results are obtained starting with 16 Gaussian components for this sampling 

frequency. It can be observed that, if 256 components are used, the accuracy is 100%. 
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Fs = 16kHz Original 

1 Gaussian Component Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 93 7 

Speaker 5 0 5 0 14 81 

Table 5.3.10 Results for 1 Gaussian component and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

2 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 93 7 

Speaker 5 0 1 0 7 92 

Table 5.3.11 Results for 2 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

4 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 96 4 

Speaker 5 0 1 0 7 92 

Table 5.3.12 Results for 4 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

8 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 4 0 1 95 

Table 5.3.13 Results for 8 Gaussian components and 16 kHz sampling frequency – noisy 

environment 
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Fs = 16kHz Original 

16 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 99 1 

Speaker 5 0 1 0 0 99 

Table 5.3.14 Results for 16 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

32 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 2 0 0 98 

Table 5.3.15 Results for 32 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

64 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.16 Results for 64 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

Fs = 16kHz Original 

128 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.17 Results for 128 Gaussian components and 16 kHz sampling frequency – noisy 

environment 
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Fs = 16kHz Original 

256 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.18 Results for 256 Gaussian components and 16 kHz sampling frequency – noisy 

environment 

 

When employing a 16 kHz sampling frequency, the quality of results increases faster. The 8 

Gaussian components approximation gives reliable results. 

 

Fs = 32kHz Original 

1 Gaussian Component Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 87 13 

Speaker 5 0 7 0 8 85 

Table 5.3.19 Results for 1 Gaussian component and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

2 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 90 10 

Speaker 5 0 1 0 7 92 

Table 5.3.20 Results for 2 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

4 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 98 2 

Speaker 5 0 2 0 5 93 

Table 5.3.21 Results for 4 Gaussian components and 32 kHz sampling frequency – noisy 

environment 
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Fs = 32kHz Original 

8 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 1 99 

Table 5.3.22 Results for 8 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

16 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 1 0 0 99 

Table 5.3.23 Results for 16 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

32 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.24 Results for 32 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

64 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.25 Results for 64 Gaussian components and 32 kHz sampling frequency – noisy 

environment 
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Fs = 32kHz Original 

128 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.26 Results for 128 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

Fs = 32kHz Original 

256 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.27 Results for 256 Gaussian components and 32 kHz sampling frequency – noisy 

environment 

 

For the 32 kHz sampling frequency and 8 Gaussian components, the overall accuracy is 99.8%. 

If more components are used, it increases to 100%. 

 

Fs = 44.1kHz Original 

1 Gaussian Component Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 92 8 

Speaker 5 0 0 0 12 88 

Table 5.3.28 Results for 1 Gaussian component and 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

2 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 96 4 

Speaker 5 0 1 0 9 90 

Table 5.3.29 Results for 2 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 
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Fs = 44.1kHz Original 

4 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 94 6 

Speaker 5 0 1 0 4 95 

Table 5.3.30 Results for 4 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

8 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 99 1 

Speaker 5 0 1 0 0 99 

Table 5.3.31 Results for 8 Gaussian component sand 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

16 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 99 1 

Speaker 5 0 2 0 0 98 

Table 5.3.32 Results for 16 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

32 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 99 1 

Speaker 5 0 0 0 1 99 

Table 5.3.33 Results for 32 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 
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Fs = 44.1kHz Original 

64 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 98 2 

Speaker 5 0 0 0 0 100 

Table 5.3.34 Results for 64 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

128 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 98 2 

Speaker 5 0 0 0 0 100 

Table 5.3.35 Results for 128 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 

 

Fs = 44.1kHz Original 

256 Gaussian 
Components Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 

Predicted 

Speaker 1 100 0 0 0 0 

Speaker 2 0 100 0 0 0 

Speaker 3 0 0 100 0 0 

Speaker 4 0 0 0 100 0 

Speaker 5 0 0 0 0 100 

Table 5.3.36 Results for 265 Gaussian components and 44.1 kHz sampling frequency – noisy 

environment 

 
 

The overall accuracy is defined as: 

                  
                             

                       
 

In the following figure the overall accuracy is presented. On the x axis, number of Gaussians 

was considered and on the y axis the overall accuracy. This graphical representation was done 

for each of the four sampling frequencies used in this study.   
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Figure 5.3.1 Overall Accuracy for Noisy Recordings  

 

As suggested by this graphical representation, the accuracy increases with the increase of the 

sampling frequency and number of Gaussian components used to approximate the model. It can 

be observed that, starting from 16 Gaussian components, the results are similar, regardless of 

the sampling frequency. More than that, the worst case is represented by the 8 kHz sampling 

rate and only 1 Gaussian component; still, the overall accuracy is of 92%. 

The recordings were then filtered using Wiener filtering and the model was trained again, using 

this time the filtered recordings. Similar confusion matrices were obtained, and the overall 

accuracy graphical representation is: 
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Figure 5.3.2 Overall Accuracy after Filtering 

For each sampling frequency, the overall accuracy was presented for filtered and noisy 

recordings on the same graph: 

 

Figure 5.3.3 Overall Accuracy for 8 kHz Sampling Frequency 
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Figure 5.3.4 Overall Accuracy for 16 kHz Sampling Frequency 

 

Figure 5.3.5 Overall Accuracy for 32 kHz Sampling Frequency 
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Figure 5.3.6 Overall Accuracy for 44.1 kHz Sampling Frequency 

 

As it can be observed, no improvement is introduced after filtering, so, in order to decrease the 

latency of the response, this step was eliminated.  
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CHAPTER 6 

CONCLUSION 
 

 

 

 

 

 

 

 

 

 

The main objective of this thesis was to develop a system that recognizes the speaker from a small 

speaker’s set. The project could be divided into three major sections: data acquisition, training and 

testing.  

As stated in the introduction, the purpose of such an approach is to help increase the autonomy of 

the NAO robot, such that it can interact easily with children. The thesis is desired to be part of a 

much ampler project that has as goal the introduction in therapy of the robot. This idea is sustained 

by intensive studies that seem to indicate an increased efficiency in children’s therapy when using 

such a robot.  The voice recognition project was developed as it is desired to have a mean of 

identifying the patients, in order to keep track of their performance. Since the number of children 

that are part of the study is limited  the speaker’s set is initially of only 5 speakers; more will be 

added if and when necessary. More than that, most of the responses to tasks employed in therapy 

sessions are based on a given script, so the method used is text dependent.  

Some of the most important conclusions that could be drawn from this study are: 

 The method is noise robust. Indeed, as it was previously proven, the results are similar for 

noisy and filtered recordings.  

 A compromise between the complexity of the algorithm and the results should be made. The 

best results are obtained for the highest sampling frequency and the largest number of 

Gaussian components. But these values (44.1 kHz sampling frequency and 256 Gaussian 

components) increase not only the memory occupied, but also the response time. Still, very 

good results are obtained for some lower values for these two parameters. 

 The worst case scenario is obtained for a sampling frequency of 8 kHz and only 1 Gaussian 

component, as it was expected. As observed from the graphical representation previously 

given, the overall accuracy is still greater than 92%. An explanation for this good result is 

the low number of speakers, together with the low number of voice commands. 
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 Another important conclusion that can be drawn is that, for 16 Gaussian components or 

more, the results in terms of the overall accuracy are similar, regardless of the sampling 

frequency. Based on this observation, the number of Gaussian components could be 

decreased, which in turn will lead to a decrease in the response time. 

 As it was proven by the values from the confusion matrices presented in the previous 

chapter, the most mix-ups appear between speaker 4 and speaker 5. Both speakers were 

female and the most probable explanation for this phenomenon is represented by the 

similitudes in their voice characteristics.  

 

The personal contributions to this project are: 

 The recording of voice commands 

 The database creation  

 The model training 

 The study of the effect of varying sampling frequency and number of Gaussian components 

 The study of the effect of filtering on the overall accuracy 

 The implementation of the program on the robot 

 

With the technology rapidly evolving, such a project needs to keep up. Some future improvements 

could be made, especially in the latency decrease direction. Also, if needed, the database could be 

increased by increasing the number of speakers. 

Another aspect that would be an important step towards the autonomy of the robot is the voice 

activity detection that, if implemented on NAO, would allow it to start acquiring data without any 

external interference.   
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