
University „Politehnica” Bucharest

Faculty of Electronics, Telecommunications and Information

Technology

Real-Time Gesture Recognition System

Master Thesis
Study program: Multimedia Technologies in Biometrics and

Information Security Applications

Author:

Ana-Antonia Neacs, u

Thesis advisors:

Prof. Corneliu Burileanu, PhD

Prof. Jean-Christophe Pesquet, PhD

Bucharest

June 2019

3

5

6

Contents

List of figures 9

List of tables 10

List of abbreviations 12

1 Introduction 15

1.1 Thesis Motivation . 15

1.2 Applicability . 16

1.3 Thesis Objectives and Outline . 18

2 Theoretical Background 19

2.1 Related Work on EMG . 19

2.2 Theoretical Background . 21

2.2.1 Deep Neural Networks – General Aspects 21

2.2.2 Activation functions . 24

2.2.3 Proximity operators . 27

2.2.4 Loss functions . 31

2.2.5 Backpropagation and optimization 33

3 Learning with constraints 35

3.1 Motivation . 35

3.2 Computation of Lipschitz constant 36

3.3 Proposed constraints . 37

3.3.1 Dealing with constraints . 38

3.4 Computing the projection . 39

3.4.1 Formulating the problem . 39

3.4.2 Reformulation . 40

7

3.4.3 Algorithm . 41

4 Experimental setup 45

4.1 Data Acquisition . 45

4.2 Proposed method . 47

4.2.1 Training Data Set . 48

4.2.2 General Overview . 48

4.2.3 Feature Extraction . 49

Time Descriptors . 50

Frequency Descriptors . 53

Time-frequency Descriptors 53

4.2.4 Classification . 55

4.2.5 Experiments . 55

5 Results 57

5.1 Performance metrics . 57

5.2 Results – training without constraints 58

5.3 Results – training with constraints 59

6 Conclusions 63

6.1 General Conclusions . 63

6.2 Personal Contributions . 64

6.3 Future Work . 65

8

List of Figures

2.1 Neural Network Architecture . 23

2.2 Step activation function for th = 0 . 24

2.3 Sigmoid activation function . 25

2.4 Hyperbolic Tangent activation function 26

2.5 ReLu and Leaky ReLu Activation Functions 28

2.6 Evaluation a proximal operator at various points [1] 29

4.1 Elements of Myo armband [2] . 46

4.2 Myo armband disassembled [2] . 46

4.3 The predefined gestures of Myo . 47

4.4 Raw EMG signal captured with Myo 48

4.5 The seven hand gestures considered during the experiment [3] . . . 49

4.6 General overview of the system . 49

4.7 Proposed NN architecture . 56

5.1 Results - PC1∩D . 60

5.2 Lipschitz Constant Bounds - C1 constraint 60

5.3 Results - PC3∩D . 61

9

10

List of Tables

5.1 Per-class accuracy rates (PC), overall accuracy (OA) and Kappa

index (K) of proposed method for hand gesture recognition. 58

5.2 Average running time per gesture (decomposed on feature extrac-

tion and prediction stages). 58

11

12

List of Abbreviations

[AR] Autoregression Coefficient

[CE] Cross Entropy

[CNN] Convolutional Neural Network

[CWT] Continous Wavelet Transform

[DFB] Dual Forward Backward

[DNN] Deep Neural Network

[EEG] Electroencephalography

[EMD] Empirical Mode Decomposition

[EMG] Electromyography

[FISTA] Fast Iterative Shrinkage-Thresholding Algorithm

[HCI] Human Computer Interaction

[HIST] EMG Histogram

[IEMG] Integrated EMG

[KL] Kullback Libler

[MAE] Mean Absolute Error

[MAV] Mean Absolute Value

[MSE] Mean Squared Error

[MSLE] Mean Squared Logarithmic Error

13

[OA] Overall Accuracy

[PA] Per-class Accuracy

[PCA] Principal Component Analysis

[RMS] Root Mean Square

[RNN] Recurent Neural Network

[ReLU] Rectified Linear Unit

[SDK] Software Development Kit

[SGD] Stochastic Gradient Descent

[SLR] Sign Language Recognition

[SSC] Slope Sign Change

[STFT] Short Time Fourier Transform

[SVM] Support Vector Machine

[SampEn] Sample Entropy

[Tanh] Hyperbolic Tangent

[WL] Waveform Length

[ZCR] Zero Crossing rate

[mDWT] margianl Discrete Wavelet Transform

[sEMG] Surface EMG

14

Chapter 1

Introduction

1.1 Thesis Motivation

In recent times, a significant amount of research has been focused on human-

computer interaction (HCI) based on gestures, vision and voice. Hand ges-

ture recognition provides an intelligent, natural, and convenient way of hu-

man–computer interaction (HCI). Its main applications are sign language recog-

nition (SLR) and gesture-based control. Sign language recognition has the goal of

interpreting signs automatically using a computer, in order to help deaf people

communicate easier with the society. Although it is highly structured and based

on an alphabet and symbols, it also serves as a good basic for the development of

general gesture-based HCI [4].

Although most common technologies use cameras and image recording de-

vices, a lot of problems appeared because of the changing light and the color or the

pattern of the background. Accelerometers and electromyography (EMG) sensors

provide another two potential technologies for gesture sensing. The EMG signal

is a biomedical signal that measures electrical currents generated in muscles dur-

ing its contraction, representing neuromuscular activities. While accelerometers

read the acceleration from vibrations and the gravity, EMG signals aim to show

the activity of the muscles while performing a gesture. Though, EMG signals have

the advantage of capturing fine motions such as wrist and finger movements and

can be used to develop a natural and easy to use human-computer interface [5].

Correlating the EMG signals with the gesture performed by the user is a

challenge that captivated researchers for a an extensive period of time. If before

15

Chapter 1. Introduction

mid ‘10s most approaches for SRL were based on HMM (Hidden Markov Models)

[6], [7], [8], [9] lately researchers tried to use Artificial Intelligence techniques for

the classification task.

The results improved consistently in recent years. State of the art classi-

fiers can recognize a gesture a limited number of gestures with a precision of

over 95%. Despite that, almost all these high-performance classifiers are very

resource-consuming, having behind very complex architectures as DNNs (Deep

Neural Networks) or CNNs (Convolutional Neural Networks). Because of this

complexity integrating these classifiers in real-time or embedded applications is

very expensive and requires powerful resources.

Another important issue to be considered when developing stable real-life

application using neural networks is the evaluation of their robustness against

adversarial inputs. Adversarial inputs represent malicious input data that can fool

machine learning models. In particular, NN are highly vulnerable to attacks based

on small modifications of their input at the test time [10]. Recent mathematical

findings [11], [12], [13] show that there is a possibility to assess and control the

robustness of a NN by imposing appropriate spectral norm constraints on the

weights of each of its layers.

The main challenge nowadays consists in developing a system that has high

performance but can work in real time too. This thesis proposes a Deep Neural

Network (DNN) approach, based on features extracted in real time. Additionally,

since the system must perform well on real applications, a scheme of training a

robust network is proposed, by norm constraints on the weights.

1.2 Applicability

Surface Electromyography (sEMG) is the electrical manifestation of the neu-

romuscular activation associated with the contracting muscle. This technology

may be used by physically impaired persons to control rehabilitation and assistive

devices. EMG is also used in many types of research domains, including those

involved in biomechanics, motor control, neuromuscular physiology, movement

disorders, postural control, and physical therapy [14].

Classification of gesture recognition also has a vast applicability in many

domains ranging from medical field to military applications. For the system

16

proposed in this thesis, some possible applications are the following:

• Intelligent prosthetics – the system can be the core of an intelligent pros-

thesis helping people with disabilities live a normal life as the interaction

between the person and the robotic prosthesis would be as organic as pos-

sible. Persons who are missing a limb can be trained via kinetotherapy

to send the nervous stimulus that would have generated the movement.

The EMG signals can be acquired and translated into a gesture that can be

performed by the prosthetic.

• Sign language recognition – as the system is specialized in hand gesture

recognition this application would be a direct implementation. If the system

would be connected to a sign language dictionary it could translate in real

time what an impaired person is communicating. Using a speech synthesis

module, the gestures could be translated directly into words, offering voice

to the voiceless. This will bridge the gap between disabled persons and the

rest of the world, helping them integrate easier into society.

• Military applications – he system could help soldiers who are in dangerous

missions communicate with their peers in a discrete manner. Sign codes can

be transmitted via gestures without visual contact if the person wears the ac-

quisition system. This way, all the messages can be transmitted successfully,

regardless of the environment conditions.

• Games and virtual reality – as the system plays the role of a link between

the human gestures and the machine, it could be used to enhance the gam-

ing experience by adding a more realistic sense to the game. This can be

considered the next step in virtual reality industry, that tries to offer the user

an experience as real as possible.

• Gesture based-control applications – the hand gesture classifier could be

used to communicate with devices that are far away from the user and its

applicability ranges all the way from personal computers to drones.

17

Chapter 1. Introduction

1.3 Thesis Objectives and Outline

This thesis aims at designing and developing a real time automatic gesture

recognition system, based on sEMG signals (electromyographic signals). The

classification will be done with the aid of some advanced artificial intelligence

algorithms.

Data acquisition is done with the Myo armband, which is equipped with 8

circularly arranged EMG sensors, that are placed on the forearm. The signal is

sent to the computer via Bluetooth, where it will be processed. The processing

part consists of the extraction of some relevant features in both time and frequency

domains. These features represent the input for a system based on deep neural

networks (DNN).

The objective is to classify 7 gestures with an accuracy of over 90%. In this re-

gard, several DNN architectures will be implemented and a series of experiments

will be performed, by varying the network parameters (number of layers, number

of neurons, learning rate, etc.). Additionally, different optimization techniques

for performing the training will be explored. This task consists in imposing dif-

ferent norm constraints during training to ensure the robustness of the network

towards adversarial inputs and increase the generalization capabilities of the net-

work. The testing will be done on a public database, which contains data from

over 40 subjects, acquired with Myo armband.

The rest of the paper is organized as follows: State of the art of the domain and

some theoretical background information will be presented in Chapter 2. Chap-

ter 3 will detail the implementation of constrained training. The optimization

techniques used for improving the results will be also discussed. Chapter 4 will

deal with the experimental setup, including data acquisition, feature extraction

and NN architecture used for the experiments. Chapter 5 deals with experiments

and results and the last section, Chapter 6, is dedicated to concluding remarks.

18

Chapter 2

Theoretical Background

2.1 Related Work on EMG

Surface Electromyography (sEMG) is the electrical manifestation of the neu-

romuscular activation associated with the contracting muscle. This technology

may be used by physically impaired persons to control rehabilitation and assist-

ing devices. EMG is also used in many types of research domains, including those

involved in biomechanics, motor control, neuromuscular physiology, movement

disorders, postural control, and physical therapy [15].

The first recording of EMG activity was made by Marey in 1890, who intro-

duced the term electromyography. Clinical use of surface EMG for the treatment

of different disorders began in the 1960s. Hardyck was the first practitioner

who used EMG [16]. Cram and Steger introduced a clinical method for scan-

ning a variety of muscles, in 1980, using an EMG sensing device [17]. Progress

in understanding these signals has been made during the past 15 years. Still,

there are some limitations in characterizing the properties of surface EMG signals

(estimation of the phase, acquiring exact information) due to derivation from

normality. Traditional system reconstruction algorithms have various limitations

and considerable computational complexity and many show high variance [15].

The work carried by researchers focused on sEMG signals had resulted in

developing better algorithms, upgrading existing methodologies, improving de-

tection techniques to reduce noise, and acquiring accurate EMG signals. This

section will further present the performance of various technologies developed

with sEMG signals.

19

Chapter 2. Theoretical Background

In [18], an integrated approach for the identification of daily hand movements

with a view to control prosthetic members is proposed. The EMG signals were

acquired using two electrodes attached on two specific muscles of the hand. Fea-

tures are extracted in the frequency domain, while inserting a dimensionality

reduction stage which is based either on Principal Component Analysis (PCA)

or RELIEF feature selection algorithm, before the application of the classifier.

Results have shown that the information extracted by EMD (Empirical Mode De-

composition) provides features in the frequency domain that can further increase

the classification accuracy. Based on a collected set of raw EMG-recordings, a

pre-processing stage excludes the non-contracting portions at the beginning of

each movement. Following the muscle contraction detection, segmentation of

the rest of the signal takes place using overlapping time-windows. From each

segment several features are extracted using both the signal as well as its Intrinsic

Mode Functions (IMFs) computed after the application of EMD. Due to the high

dimensionality of the produced feature vector, two methods for dimensionality

reduction were tested before the application of a simple linear classifier which

attempts to classify each segment to one of the six basic hand movements.

In [3] two datasets are recorded using Myo Armband (Thalmic Labs), a dry

electrode sEMG armband. While the device also incorporates a 9-axis inertial

measurement unit (IMU), it was deactivated for the recording of the dataset.

These datasets split into pre-training and evaluation dataset, are comprised of 19

and 17 able-bodied participants respectively. A convolutional network (ConvNet)

is augmented with transfer learning techniques to leverage inter-user data from

the first dataset, alleviating the burden imposed on a single individual to generate

a vast quantity of training data for sEMG-based gesture recognition. This transfer

learning scheme is shown to outperform the current state-of-the-art in gesture

recognition achieving an average accuracy of 96.31% for 7 hand/wrist gestures.

The dataset contains two distinct sub-datasets with the first one serving as the

pre-training dataset and the second as the evaluation dataset. The first one, which

is comprised of 19 able-bodied subjects, should be employed to build, validate

and optimize classification techniques. The second, comprised of 17 able-bodied

subjects, is utilized only for the final testing and comparisons between different

methods.

Another paper that focuses on EMG signals is [19]. It proposes an EMG-based

20

pattern recognition algorithm for classification of joint wrist angular position

during flexion extension movements from EMG signals. The algorithm uses

a feature extraction stage based on a joint time-frequency representation. The

pattern recognition stage uses a recurrent neural network (RNN) as classifier.

Also, using an auto-encoder, a deep neural network (DNN) architecture was

tested. It was carried out by relying on a set of experiment with 10 subjects.

Experiments included five recorded sEMG channels from forearm executing wrist

flexion and extension movements, as well as the use of a commercial electro-

goniometer to acquire joint angle. Results show that shallow NN had better

performance than architectures with more layers based on auto-encoders.

It has been shown that neural networks and generally machine learning sys-

tems may be affected by adversial modification of their input[10] [11]. This kind

of manipulation often lead to incorrect classification which will affect the per-

formance of the system in real life applications. The Lipschitz constant of the

network can be used to asses the robustness of neural network to such adversar-

ial inputs, if accurately computed [12]. Lately, there are several methods proposed

to train Lipschitz networks, which fall into two main categories. Regularization

approaches include double backpropagation [20] or applying penalization on net-

work Jacobian [21], which impose Lipschitz constant locally, but do not enforce

the constraint globally on the network. Another approach consist of imposing

some constraints on the architecture of the network, such as constraining the

spectral norm of each layer [22] [13]. At the expense of computation complexity,

these methods ensure a Lipschitzian network.

2.2 Theoretical Background

2.2.1 Deep Neural Networks – General Aspects

In recent years, the most performant systems that use AI are based on deep

learning algorithms. Deep learning represents a particularization of machine

learning, and it generally refers to a system based on neural networks that is

characterized by a high number of parameters.

Neural Networks are not a new concept, they have been around from more

than half a decade, starting in the early 1940s [23]. Only after more than 10 years,

in 1958 the first attempt of classification based on machine learning is proposed

21

Chapter 2. Theoretical Background

and used in the task of image recognition [24]. The neural networks have had

moments of stagnation over time, due to their high computational complexity

and they were not very used during the late 20th century. They started regaining

popularity in the early ‘00s and are now considered state of the art technology in

many domains including image processing, signal processing, and even speech

processing, etc.

The model for NN is of biological inspiration and refers to how human nervous

system perceives, processes, and transmits information: a network of cells, called

neurons that are interconnected in different ways, like synapses do in the human

brain.

Another analogy to humans is the learning process: naturally, us humans

learn from experience and examples and we have the capability to extrapolate

and apply the things we know in similar situations. Similarly, the NN goal is

to give a device the power of generalization, starting from the analysis of some

examples that are used to train a system.

Train examples representing the input data are usually labeled, meaning that

the output for them is known. Thus, the task of the NN is to find a generally

valid function that is capable to establish the correspondence between input and

output. Firstly, the parameters of the function will be chosen randomly. Then,

through a process called back propagation, the optimal values of the parameters

will be optimally computed, by minimizing an error function and propagating

the gradients backwards through the network.

The NN is organized in layers, each layer containing a variable number of

neurons. The first layer is called the input layer and its purpose is to collect

the input data. So, the dimension of this layer is equal to the input data vector.

Each neuron represents an attribute that describes the input data. Then, all

the neurons from the input layer are connected to the next layer, called hidden

layer. Here, the actual processing takes place. In DNN there are several hidden

layers. The number of layers and the number of neurons of each layer are called

hyper-parameters and do not have a standard value. Most of the times, these

hyper-parameters are determined empirically, through lots of experiments. The

process of determining the optimal architecture is called hyperparameter tuning.

The last layer is called the output layer and provides the data resulting from the

processing. In the case of a classification task, such as the one presented in this

22

paper, the size of this layer is equal to the number of distinct classes. Figure 2.1

details the general architecture of a NN.

Figure 2.1: Neural Network Architecture

The output of each neuron from a layer influences with a certain weight the

entry of the neurons on the next layer. The simplest way of propagating the

information through the network is by using a linear function. The output of

each layer will be a linear combination between the input and the weight of each

neuron, as in equation 3.1. The values of z can theoretically vary up to infinity.

Therefore, for the sake of numerical stability this result must be translated into

the range [0, 1]. A linear relation is not enough to model the relation between

input and output, as the correspondence function may be non-linear. Thus, all

neurons are characterized by the activation function, which has the role of adding

a non-linearity to the output, and possibly to keep the value of the output in the

interval [0, 1].

ξ =

N∑
i=1

xi · wi + b, (2.1)

whereξ is the output of the neuron, as the weighted sum of all inputs xi, multiplied

by the weights wi, plus the bias factor b. Then, the activation function is applied

23

Chapter 2. Theoretical Background

to ξ. The activation function is denoted with g.

y = g(ξ) (2.2)

The activation function also decides if the value produced by the neuron further

propagates and the amount of influence it will have on the next layers.

2.2.2 Activation functions

Step function

One of the earliest activation functions is the step function, which compares

the input, with a threshold value. This is mostly used in binary classification

tasks, because it has only two possible states: the neuron is whether active or

inactive, as Equation 3.3 shows. The plot is presented in Figure 2.2.

g : R→ R : ξ 7→

 1, ξ > th

0, ξ ≤ th
(2.3)

Figure 2.2: Step activation function for th = 0

Sigmoid function

24

If the classification task is not binary, then it is desirable to have different

values of the output, depending on the importance of the information carried by

this neuron. A very popular function used as activation is the sigmoid. The main

advantage of this non-linear function is that is smooth, as shown in Figure 2.3 and

for values of ξ around 0: even small changes of the input will affect the output

significantly. Another advantage is that the derivative of this function is easily

calculated, thus speeding the computation process.

g : R→ R : ξ 7→
1

1 + e−ξ
(2.4)

∂g(ξ)
∂ξ

= g(ξ)
(
g(ξ) − 1

)
(2.5)

Figure 2.3: Sigmoid activation function

Hyperbolic Tangent (Tanh)

Though the sigmoid offers good results, it can have some problems finding

the optimal solution. This is due to the fact that if a strongly negative input is

provided, the output value will be very close to zero. Since the principle of NN

25

Chapter 2. Theoretical Background

use the activation to later compute parameter gradients in the backpropagation

process, the consequence of this fact is that the parameters won’t be updated

as they should, and the network will not converge to the optimal value. An

alternative solution to sigmoid is the Hyperbolic tangent. This function has a shape

similar to sigmoid, but instead outputs values in the interval [−1, 1], as it can

be observed in Figure 2.4. This solves the problem mentioned before, because

the strongly negative inputs will provide negative outputs. Additionally, only

for inputs very close to zero will be mapped to near-zero outputs. Also, the

derivative of this function is easy to compute too.

Figure 2.4: Hyperbolic Tangent activation function

g : R→ R : ξ 7→
eξ − e−ξ

eξ + e−ξ
(2.6)

∂g(ξ)
∂ξ

= 1 − g(ξ)2 (2.7)

Rectified Linear Unit (ReLu) function

ReLu is another popular activation function. It is very easy to compute because

it involves very basic mathematical operations. Even if the function is not differ-

entiable at 0, it is differentiable everywhere else. To deal with this inconvenient,

26

the simplest solution is to randomly assign a value for the derivative when ξ = 0.

Most common values are: 0, 0.5 and 1. The ReLu function is displayed in Figure

2.5a.

g : R→ R : ξ 7→

 0, ξ ≤ 0

ξ, ξ > 0
(2.8)

∂g(ξ)
∂ξ

=

 0, ξ < 0

1, ξ > 0
(2.9)

The main disadvantage of RelU is the so-called “dying” problem. If ξ < 0,

then g(ξ) will be 0. If for any reason the output of a ReLU is consistently 0, the

gradient used in back propagation mechanism will also be 0. The error signal

backpropagated from later layers gets multiplied by this 0, so no error signal ever

passes to earlier layers. Thus, ReLu died.

To overcome this possible problem a variation of ReLu, called leakyReLu, has

been proposed which solves the problem of vanishing gradient. As it can be

observed in Figure 2.5b, the gradient is never 0 and this problem is avoided.

g : R→ R : ξ 7→

 αξ ξ ≤ 0

ξ, ξ > 0
(2.10)

∂g(ξ)
∂ξ

=

 α, ξ < 0

ξ, ξ > 0
(2.11)

2.2.3 Proximity operators

Definition

Let f : Rn
→ R ∪ {+∞} be a closed convex function, i.e. its epigraph

epi f = {(x, t) ∈ Rn
×R | f (x) ≤ t}

is a nonempty closed convex set. The proximal operator prox f : Rn
→ Rn of f is

defined at v ∈ Rn as

prox f (v) = argmin
x

(f (x) +
1
2
|| x − v ||22) (2.12)

27

Chapter 2. Theoretical Background

(a) Relu Activation (b) Leaky Relu

Figure 2.5: ReLu and Leaky ReLu Activation Functions

where || · ||2 is the Euclidean norm. The function minimized on the right hand

side is strongly convex, so it has a unique minimizer for every v ∈ Rn [1].

The effect of the prox operator can be visualized in Figure 2.6.

The thick black line represents the domain boundary, as the thin ones are

the level curves of function f . Evaluating prox f in various points (blue) results

in a mapping to the corresponding red points. Note that all points will move

towards the global minima of the function. The points that are inside the domain

will remain inside, where the outside points will move towards the limit of the

domain.

The proximal operator f can be viewed as a kind of a implicit gradient step

for the function f . It is clear that there exists a close connection between proximal

operators and gradient methods, which leads to the conclusion that this operators

plays an important role in optimization.

Fixed points

One of the most important property of proximal operators is its fixed point

property, which states that the point x∗ minimizes f if and only if

x∗ = prox f (x
∗)

In other words, x∗ is a minimizer of f if x∗ is a fixed point of prox f . This funda-

mental property offers a connection between proximal operators and fixed point

theory. Proximal algorithms for optimization can be interpreted as methods for

finding fixed points of appropriate operators. We can minimize f by finding a

28

Figure 2.6: Evaluation a proximal operator at various points [1]

fixed point of its porximal operator. If prox f is continuous in Lipschitz sense with

a constant less than 1, applying the operator multiple times would obviously find

a fixed point. One may wonder what happens under less restrictive assumptions.

Actually, prox f has another very important property: it is firmly nonexpen-

sive, which is very useful for fixed point iteration:

|| prox f (x) − prox f (y) ||22≤ (x − y)T(prox f (x) − prox f (y)) (2.13)

for every x, y ∈ Rn

Firmly nonexpansive operators represent instances of nonexpansive operators

that have Lipschitz constant 1. Usually, iterating a nonexpansive operator is not

sufficient to converge to a fixed point. However, if we consider Q - nonexpansive,

then the operator T = (1−α)Id +αQ with α ∈ (0, 1) has the same fixed points as Q

and an iteration of T will converge to a fixed point of T, and consequently of Q.

29

Chapter 2. Theoretical Background

This kind of operators are called α - averaged operators. Firmly nonexpansive

operators are special cases of averaged operators, for which α = 1
2 . In this

particular case, operator T has the following form:

T =
1
2

(Id + Q) (2.14)

Because of this property, iterating prox f is guaranteed to yield asymptotically a

minimizer of f provided that it exists. Such kind of iteration is known as the

proximal point algorithm.

Proximal activation in neural networks

In [25] it is mathematically proven that a wide range of activation operators

that are currently used in neural networks applications are actually proximity

operators of convex functions. In a Hilbertian setting, a neural network having n

layers can be viewed as a composition of operators:

Rn ◦ (Wn · +bn) ◦ · · · ◦ R1 ◦ (W1 · +b1),

where Ri : Hi →Hi is the non-linear activation operator,Hi is some Hilbert space,

Wi : Hi−1 →Hi is a linear operator, called weight and bi ∈ Hi is the bias term.

1. Sigmoid activation function

The unimodal Sigmoid activation function

g : R→ R : ξ 7→
1

1 + e−ξ
−

1
2

(2.15)

can be written as g = proxφ, where

φ : R→] −∞,+∞]

ξ 7→

(ξ + 1/2) ln(ξ + 1/2) + (1/2 − ξ) ln(1/2 − ξ) − 1/2(ξ2 + 1/4), | ξ |< 1/2;

−1, | ξ |= 1/2;

+∞, | ξ |> 1/2.

(2.16)

2. Hyperbolic tangent activation function

The Hyperbolic tangent activation function is the proximity operator of

φ : R→] −∞,+∞] : ξ 7→

(1+ξ) ln(1+ξ)+(1−ξ) ln(1−ξ)−ξ2

2 , | ξ |< 1;

ln(2) − 1/2, | ξ |= 1;

+∞, | ξ |> 1.

(2.17)

30

3. ReLu activation function

The rectified linear unit activation can be written as the prox of the indicator

function of [0,+∞[.

4. Parametric rectified linear unit activation function

The Parametric ReLu – LeakyRelu satisfies g = proxφ when

φ : R→] −∞,+∞] : ξ 7→

 0, ξ > 0

(1/α − 1)ξ2/2, ξ ≤ 0.
(2.18)

2.2.4 Loss functions

The actual training of the network is performed by minimizing a loss function.

The loss function is the difference between the current output of the network ŷ

and the desired output (reference), denoted by y. It is an error metric, indicating

the network precision when using the current output. The accuracy of the model

increases as the value of the loss function decreases.

Mean Squared Error (MSE) MSE, also called quadratic loss function, is mostly

used in linear regression tasks, since by minimizing MSE, one can then find the

line which minimizes the distance (as a sum) of each point to the separation line.

The most popular form of MSE is defined as follows:

L =
1
n

n∑
i=1

(y(i)
− ŷ(i))2 (2.19)

The difference y(i)
− ˆ(y(i)) is called residual and the goal is to have this value

as small as possible. However, if it is used in combination with sigmoid as the

activation function, MSE may encounter some slow convergence problem. For

other activation functions, this problem is alleviated.

Mean Squared Logarithmic Error (MSLE) MSLE is loss function derived

from MSE, defined as follows:

L =
1
n

n∑
i=1

(log(y(i) + 1) − log(ŷ(i) + 1))2 (2.20)

This loss function computes the difference beetwen the log of the predictions

and the references. It is mostly used in the cases when is not desired to penalize

31

Chapter 2. Theoretical Background

huge differences between the two values, in particular when working with large

numbers. MLSE penalizes under-estimates more than over-estimates.

Mean Absolute Error (MAE)

MAE is defined as

L =
1
n

n∑
i=1

| y(i)
− ŷ(i)

|
2 (2.21)

where | · | represents the absolute value. MAE is very similar to MSE but is more

robust to outliers than MSE since it does not use squares. Although MAE is

easily differentiable when none of the components of the residual vanishes, thus

making training algorithm less resource-consuming, it is non differentiable when

this condition is not satisfied.

L2

L2 loss function is computed as the square of the L2 norm of the difference

between the reference and the predicted value. Mathematically is similar to MSE,

the only difference is that L2 is not divided by the number of examples.

L =

N∑
i=1

(y(i)
− ŷ(i))2 (2.22)

L1

L1 loss function is the sum of absolute errors between the predicted and the

reference value. Mathematically is similar to MAE, the only difference is that L1

is not divided by the number of examples.

L =

n∑
i=1

| y(i)
− ŷ(i)

|
2 (2.23)

Kullback Leibler (KL) Divergence

KL divergence represents a metric for the difference between one probability

distribution and another probability distribution, called reference. The KL loss

function is computed as follows:

L =
1
n

n∑
i=1

(y(i) log y(i))︸ ︷︷ ︸
entropy

−
1
n

n∑
i=1

(y(i) log ŷ(i))︸ ︷︷ ︸
cross−entropy

(2.24)

32

KL is not a distribution-wise symmetric metric. If KL is close to 0, it means

that the two distributions have a quite similar behavior.

Cross Entropy (CE)

Cross Entropy is a very popular loss function that is mostly used in binary

classification, but there is an extension of it, called Multi-class Cross Entropy, used

for multi classification. The expression is given by

L = −
1
n

n∑
i=1

(y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))) (2.25)

Negative Logarithmic Likelihood (NCL)

This loss function is also very commonly used, since it measures the accuracy

of the classifier. It is used when a “soft” measurement is wanted, more precisely

when it is desired that the model outputs the probability of each class. It can be

viewed as a confidence score. Mathematically, it is expressed as

L =
1
n

n∑
i=1

log(ŷ(i)) (2.26)

Hinge

Hinge loss is also called max-margin objective or multiclass SVM loss because

it is mostly used with SVMs (Support Vector Machine). The value of the loss is

proportional with the error. Hinge loss will output zero if the classifier prediction

ŷ is correct. It is given by

L =
1
n

n∑
i=1

max(0,m − y(i) ŷ(i)) (2.27)

2.2.5 Backpropagation and optimization

After the loss function is computed, the next step is to find the values that

minimize thiss function. This is done with the help of the backpropagation

algorithm. This was originally introduced in the 1970s, but it was first use in the

context of NN in the late 1980s. [26] demonstrated that using backpropagation

algorithm in NN works far faster than all the earlier approaches. Nowadays

backpropagation is commonly used in all NN architectures.

33

Chapter 2. Theoretical Background

Backpropagation of errors is an iterative algorithm that uses the chain rule to

compute the gradients (partial derivatives) ∂L∂w , ∂L∂b of the loss function with respect

to all the weights w (and bias b) in the network. This algorithm is used only for

computing the gradients though the network. Finding the global minimum and

updating the parameters to obtain the optimal model in the shortest time is a

different task, done by optimization algorithms.

Optimization algorithms can be split in 2 major categories:

• First Order Optimization Algorithms: These methods exploit the mono-

tonicity of the function (if it is increasing or decreasing) in a certain point,

basically returning a line which is tangent to a point on the loss surface.

The most commonly used algorithm is the Gradient Descent, which finds the

minimum of the loss function based on the gradients with respect to the

parameters.

• Second Order Optimization Algorithms: These algorithms use the second

order derivative, also known as Hessian matrix to minimize the loss func-

tion. The Hessian represents a matrix containing all the second order partial

derivatives. This introduces new information, about the curvature of the

surface which can be a valuable information in finding the global minimum

of the loss function, often accelerating the convergence of the algorithm

around a local minimum.

34

Chapter 3

Learning with constraints

3.1 Motivation

Neural network are vulnerable to adversarial manipulation of their input

that can cause incorrect classification. To formulate the problem, suppose T

a learning system and x a clean input data that is correctly classified by the

system: T(x) = ytrue. It is possible to construct an adversarial sample x̃, which

may be perceptually indistinguishable from x, by adding a small perturbation

z: x̃ = x + z. this new sample, though very similar to the original one, will be

classified incorrectly: T(x̃) , ytrue.

In neural networks, Lipschitz constant can be used to assess the robustness

against adversarial inputs. The Lipschitz constant upper bounds the relationship

between input perturbation and output variation for a given distance [27]. In

other words, for the system T described above, we can majorize the effect of the

perturbation z using the following inequality[3]:

|| T(x + z) − T(x) ||≤ θ ‖z‖, (3.1)

where θ represents the Lipschitz constant of the system.

35

Chapter 3. Learning with constraints

3.2 Computation of Lipschitz constant

Consider f : Rn
→ Rm. The function f is called Lipschitz continuous if there

exists a constant θ such that

|| f (x) − f (y) ||2≤ θ || x − y ||2, ∀x, y ∈ Rn (3.2)

Any θ for which (3.2) holds is called a Lipschitz constant of f . The smallest

Lischitz constant is called the Lipschitz modulus of f . If f is a continuously dif-

ferentiable function, then its Lipschitz modulus is the maximum spectral norm

(maximum singular value) of its Jacobian over its domain, that is

θ = sup
x
‖∇ f (x)‖S. (3.3)

In the context of NN, accurately computing Lipschitz constant is a NP hard

problem, even for a shallow network [27]. Methods for accurately computing the

Lipschitz constant of a NN has been proposed in [27], [12].

If we come back to the scenario presented in Chapter 2, in which we have

non-zero Hilbert spaces (Hi)0≤i≤m with m ≥ 1. Consider ∀i ∈ {1, . . . ,m} the linear

weight operator Wi : Hi−1 → Hi , the bias parameter bi ∈ Hi and the nonlinear

activation operator Ri : Hi → Hi, an αi-averaged operator with αi ∈ [0, 1]. A NN

T can be defined as a composition of operators defined as follows:

T = Tm◦· · ·◦T1, where Ti : Hi−1 →Hi : x 7→ Ri(Wix+bi) ∀i ∈ {1, . . . ,m}. (3.4)

Since all the nonlinear activation operators are nonexpansive, a rough ap-

proximation of the Lipschitz constant of the system T is given by the following

formula:

θm =

m∏
i=1

‖Wi‖S. (3.5)

This approximation is valid in the context of this thesis, since it was shown in

Chapter 2 that most used activation functions are actually proximity operators,

hence they are nonexpansive. Hence, the robustness of the network can be

controlled by imposing spectral norm constraints on the weights of each layer.

36

Furthermore, a fundamental result shown in [12] states that if the activation

functions are firmly nonexpansive (which is a property satisfied by proximity

operators), then the Lipschitz constant of the NN is lower bounded by

θ̃m =
∥∥∥∥ m∏

i=1

Wi

∥∥∥∥
S
. (3.6)

In addition, if, for every i ∈ {1, . . . ,m}, all the weights Wi are nonnegative, then

θ̃m is the Lipschitz modulus of the NN. This result is remarkable since it shows

that a NN with nonnegative weights has the same Lipschitz continuity properties

than the equivalent fully linear network where the nonlinear activation functions

are removed.

In this thesis, several methods of ensuring a 1-Lipschitzian system were imple-

mented and later tested in the context of automatic gesture recognition. Also, it

evaluates the effect that training with spectral norm constraints has on the overall

performance of the system.

3.3 Proposed constraints

Several convex constraints have been considered as follows:

1. Positivity – constraining all weights to be positive is very important since is

a compulsory condition for ensuring that we indeed compute the smallest

Lipschitz constant of the network. This corresponds to the constraint set:

D = {W |W ≥ 0}. (3.7)

2. Norm of layer – the simplest way to impose a constraint on the product of

the norms of the weights of all the layers in the network is to constrain each

weight individually, as in Equation (3.8), leading the constraint set:

C1 = {W | ||Wi ||≤ α, ∀i ∈ {1, . . . ,m}}. (3.8)

3. Product of norms – imposing the constraint on the product of all the norms

is a weaker constraint, since it gives the network more freedom to learn its

37

Chapter 3. Learning with constraints

parameters. This yields

C2 = {W |
m∏

i=1

||Wi ||≤ α}. (3.9)

4. Norm of product – constraining the norm of the product of the weights of

each layer will lead to the control of the real Lipschitz modulus of the net-

work, provided that the conditions aforementioned (firm nonexpansiveness

and positivity) are respected. The associated constraint set is

C3 =
{
W |

∥∥∥∥ m∏
i=1

Wi

∥∥∥∥ ≤ α}. (3.10)

3.3.1 Dealing with constraints

Implementing the aforementioned constraints will be done in the optimization

part of the training process, where the weights are updated with respect to the

gradient of a loss function. This can be done by using classical methods as Gradient

descent or some of its variants (Stochastic Gradient Decent (SGD), Vanilla Gradient

Descent, etc.) or by using more complex optimizers like Adam.

All optimizers, regardless their complexity, are updating the weights after

each iteration based on the following principle:

Wn+1 = Wn − γn∇L(Wn), (3.11)

where ∇L(Wn) is the gradient of the loss function L at the previous iteration,

and γn is the learning rate of the system. The gradient is computed using a

backprobagation algorithm [28], transferring the loss layer by layer upwards.

So, to introduce some non-empty constraint set C it it necessary to replace the

previous iteration by a projected gradient, given by the following relation:

Wn+1 = PC(Wn − γn∇L(Wn)), (3.12)

where PC is the projection onto C. Such projection is guaranteed to be defined if

C is a closed convex set.

38

However, in this thesis we assume all the proposed constraints (C1−C3) under

the additional non-negativity condition (D) in order to satisfy the conditions for

Equation (3.6) to be valid. Hence, the problem becomes more complex since the

task now is to calculate the projection onto the intersection of two convex sets,

which is usually difficult to solve. Mathematically, Equation (4.12) becomes:

Wn+1 = PC∩D(Wn − γn∇L(Wn)), (3.13)

where PC∩D represents the projection onto the intersection of the two sets. A final

difficulty is that C1 is a convex set, but C2 and C3 are not.

3.4 Computing the projection

Computing the projection PC∩D is a complex task, but there are some iterative

algorithms [29] that can compute the intersection of the two sets.

Approximate projection – The first approached that was considered in this

work, was to compute an approximate projection by projecting first onto D, then

onto C:

PC1∩D ≈ PC1 ◦ PD ≈ P̂C1 ◦ PD

This approach, although not the true projection is easy to implement and efficient

from the computational cost view point. We went one step further, and computed

the true approximate projection P̂C1◦PD using the DFB algorithm described bellow,

by assuming A = B = Id.

True Projection – For computing the true projection, the Dual Forward-

Backward algorithm formulated bellow was implemented.

3.4.1 Formulating the problem

We want to compute the projection onto C ∩D where

C =
{
X ∈ Rn×m

∣∣∣ ‖AXB‖S ≤ ρ
}

(3.14)

where A ∈ Rp×n
\ {0} and B ∈ Rm×q

\ {0}, and D = [0,+∞[n×m. Here-above ‖ · ‖S
designates the spectral norm, but we will also use the Frobenius norm

(∀X ∈ Rn×m) ‖X‖ =
√

tr(XX>) (3.15)

39

Chapter 3. Learning with constraints

and the associated inner product

(∀(X,Y) ∈ (Rn×m)2) 〈X | Y〉 = tr(XY>). (3.16)

More precisely, the projection will be performed in the Hilbert space of real-

valued matrices of size n×m endowed with the latter norm. In this Hilbert space,

C and D are closed convex sets with a nonempty intersection. For a given matrix

X ∈ Rn×, we will thus be interested in computing X̂ = PC∩D(X), which is defined

as:

X̂ = argmin
X∈C∩D

‖X − X‖. (3.17)

3.4.2 Reformulation

Let us first note that

L : Rn×m
→ Rp×q

X 7→ AXB (3.18)

is a linear operator. The norm of this operator is:

‖L‖ = sup
X∈Rn×m\{0}

‖AXB‖
‖X‖

. (3.19)

Let vec be the column stacking operator. For every X ∈ Rn×m,

AXB = (B> ⊗ A) vec(X) (3.20)

where ⊗ is the Kronecker product. This allows us to deduce that

‖L‖ = ‖B> ⊗ A‖S. (3.21)

Since

‖B> ⊗ A‖2S = ‖(B> ⊗ A)(B> ⊗ A)>‖S

= ‖(B> ⊗ A)(B ⊗ A>)‖S

= ‖(B>B) ⊗ (AA>)‖S

= ‖AA>‖S‖B>B‖S

= ‖A‖2S‖B‖
2
S, (3.22)

40

we have

‖L‖ = ‖A‖S‖B‖S. (3.23)

In addition, the adjoint of this operator is L∗ : Rp×q
→ Rn×m, which according

to its definition is given by such that

(∀X ∈ Rn×m)(∀Y ∈ Rp×q) 〈L(X) | Y〉 = 〈X | L∗(Y)〉

⇔ tr(L(X)Y>) = tr(X(L∗(Y))>)

⇔ tr(XBY>A) = tr(X(L∗(Y))>), (3.24)

which allows us to deduce that

(∀Y ∈ Rp×q) L
∗(Y) = A>YB>. (3.25)

Using the operator L, Equation 3.17 can be recast as:

X̂ = argmin
X∈Rn×m

1
2
‖X − X‖2 + ιB(0,ρ)(L(X)) + ιD(X) (3.26)

where B(0, ρ) is the closed ball defined as

B(0, ρ) =
{
X ∈ Rn×m

∣∣∣ ‖X‖S ≤ ρ} (3.27)

and ιE denotes the indicator function of a set E (equal to 0 on this set and +∞

otherwise).

3.4.3 Algorithm

Problem stated by Equation 3.26 has no explicit solution and has thus to be

solved by an iterative method. A possible solution is the dual Forward-Backward

algorithm [29]:

Let Y0 ∈ R
p×q.

Set ε ∈]0, 1/‖L‖2[.

For n = 0, 1, . . .

41

Chapter 3. Learning with constraints

Set γn ∈ [ε, 2/‖L‖2 − ε]

Xn = PD(X − L∗(Yn))

Ỹn = Yn + γnL(Xn)

Yn+1 = Ỹn − γnPB(0,ρ)(γ−1
n Ỹn).

(3.28a)

(3.28b)

(3.28c)

(3.28d)

It can be shown that the sequence (Xn)n∈N generated by Algorithm (3.28)

converges to X̂. In view of the properties established in Section 3.4.2, the algorithm

can be rewritten in a more tractable form:

Let Y0 ∈ R
p×q.

Set ε ∈]0, 1/(‖A‖S‖B‖S)2[.

For n = 0, 1, . . .

Set γn ∈ [ε, 2/(‖A‖S‖B‖S)2
− ε]

Xn = PD(X − A>YnB>)

Ỹn = Yn + γnAXnB

Yn+1 = Ỹn − γnPB(0,ρ)(γ−1
n Ỹn).

(3.29a)

(3.29b)

(3.29c)

(3.29d)

In addition, the expression of the required projections are provided below.

For every X = (Xi, j)1≤i≤n,1≤ j≤m ∈ Rn×m,

PD(X) = (X̃i, j)1≤i≤n,1≤ j≤m, (3.30)

where

(∀i ∈ {1, . . . ,n})(∀ j ∈ {1, . . . ,m}) X̃i, j =

Xi, j if Xi, j ≥ 0

0 otherwise.
(3.31)

For every Y = (Yi, j)1≤i≤p,1≤ j≤q ∈ Rp×q, let Y = UΛV> be the singular value

decomposition of Y, where U ∈ Rp×r and V ∈ Rq×r are matrices such that U>U =

Id and V>V = Id , r = min{p, q}, and Λ = Diag(λ1, . . . , λr) ∈ [0,+∞[ror. Then

PB(0,ρ)(Y) = UΛ̃V> where Λ̃ = Diag(λ̃1, . . . , λ̃r) and

(∀i ∈ {1, . . . , r}) λ̃i =

λi if λi ≤ ρ

ρ otherwise.
(3.32)

42

Note also that a FISTA-like accelerated version of the algorithm can be pro-

vided:

Let Y0 ∈ R
p×q.

Set γ = 1/(‖A‖S‖B‖S)2.

Set α ∈]2,+∞[.

For n = 0, 1, . . .

ηn =
n − 1
n + α

Zn = Yn + ηn(Yn − Yn−1)

Xn = PD(X − A>ZnB>)

Ỹn = Zn + γAXnB

Yn+1 = Ỹn − γPB(0,ρ)(γ−1Ỹn).

(3.33a)

(3.33b)

(3.33c)

(3.33d)

(3.33e)

In this thesis only algorithm 3.28 was implemented.

43

Chapter 3. Learning with constraints

44

Chapter 4

Experimental setup

4.1 Data Acquisition

The hardware component is represented by Myo armband, a gesture recog-

nition device worn on the forearm and manufactured by Thalmic Labs. Myo

enables the user to control technology wireless using various hand motions. It

uses a set of electromyographic (EMG) sensors that sense electrical activity in the

forearm muscles, combined with a gyroscope, accelerometer and magnetometer

to recognize gestures. Myo can be used to control video games, presentations,

music and visual entertainment. It differs from the Leap Motion device as it is

worn rather than a 3D array of cameras that sense motion in the environment [2].

Myo is made up of a set of eight segments containing muscular sensors used

for signal processing, a port of loading USB, a LED which indicates the state and

an extensible casing. The signal is transmitted to a central unit using Bluetooth

technology. In Figure 4.1 it can be observed the outer structure and the layout of

the items presented.

45

Chapter 4. Experimental setup

Figure 4.1: Elements of Myo armband [2]

Each segment contains electromyographic electrode units (EMG), and inside

each segment is composed of an operational precision amplifier. Two of the

segments are provided with batteries. On the main segment plate there is a

processor MK22FN1MO – Freescale Kinetics Cortex M4 120MHz, a transmitter-

receiver Bluetooth and a vibration engine. Here we can also find a motion sensor

Invensense MPU-9150 9-dof with applications of gyroscope, accelerometer and

magnetometer. The actual armband can be visualized in Figure 4.2.

Figure 4.2: Myo armband disassembled [2]

Myo armband is built to transmit two types of data: spatial and gestural.

Spatial data informs the user about the orientation and movement of the hand and

gestural data represent the actions of the user’s hand. The Software Development

Kit (SDK) puts at user’s disposal some predefined gestures that can be recognized

46

Figure 4.3: The predefined gestures of Myo

regardless of the user, after the bracelet is properly calibrated. The predefined

gestures are represented by the movement of the hand to the right („Wave Right”),

the movement of the hand to the left ("Wave Left"), tightening the fist ("Fist"),

stretching the fingers ("Fingers Spread") and double tapping the fingers ("Double

Tap"), as shown in Figure 4.3. The system works with an overall accuracy of

≈ 80%, given it is properly calibrated [30].

For this project, the gesture recognition system provided by the manufacturer

was replaced by a trained neural network that classifies seven hand gestures to

simulate all four spatial directions (right, left, up, down) along with grab and

release movements. The main advantage the proposed method is that it does not

need to synchronize with the bracelet to correctly recognize the movements (the

original system requires to synchronize for proper functioning). The predefined

hand gesture used (neutral, ulnar deviation, radial deviation, hand open, hand

close, wrist extension and wrist flexion) will be described later in the thesis.

An example of a normalized 8-channels raw signal is depicted in Figure 4.4.

This is a plot of the EMG activity over a period of 3s, when the user was doing a

wrist flexion. The main advantage of the Myo armband is the fact that it is non-

invasive and it can be used without any preparations. However, these benefits

come with severe limitations since dry electrodes are not as accurate in capturing

the EMG activity compared to gel-based ones.

4.2 Proposed method

This thesis proposes a real-time automatic gesture recognition system, for

seven basic gestures, based on sEMG signals. The classification is performed

using a fully connected Neural Network, whose training involves a free-source

data set 1, also acquired with Myo armband, detailed in [3].

1https://github.com/Giguelingueling/MyoArmbandDataset

47

https://github.com/Giguelingueling/MyoArmbandDataset

Chapter 4. Experimental setup

Figure 4.4: Raw EMG signal captured with Myo

4.2.1 Training Data Set

This data set consists in two sub-datasets: the first one serving as pretrain-

ing dataset,has signals acquired from 19able-bodied subjects.The second is the

evaluation datasetand it is comprised of 17 subjects. For both sub-datasets, the

labeled data was created by requiring the user to hold each gesture for 5 s. The

recording of the full seven gestures for 5 s is referred to as a cycle, with four cycles

forming a round. In the case of the pretraining dataset, a single round is available

per subject. For the evaluation dataset three rounds are available with the first

round utilized for training and the last two for testing. For each participant, the

armband was systematically tightened to its maximum and slid up the user’s

forearm until the circumference of the armband matched that of the forearm.

Seven hand/wrist gestures are considered in this work. The first one referred

to as neutral is the natural posture of the hand of the subject when no significant

muscle activity is detected. The six other gestures are: ulnar deviation, radial

deviation, hand open, hand close, wrist extension and wrist flexion. Figure 4.5

depicts all the gestures.

4.2.2 General Overview

A general overview of the proposed method is shown in Figure 4.6. The

signals captured by the armband are transmitted to a computer via Bluetooth.

The sampling frequency of the device is Fs = 200Hz, whilst for the analysis, we

48

Figure 4.5: The seven hand gestures considered during the experiment [3]

Myo
armband

Windowing Feature
Extraction

Classification Optimization Application

Neural Network

Figure 4.6: General overview of the system

considered a rectangle sliding window of 250 ms (50 samples) length, with an

overlap between consecutive windows of 200 ms (40 samples). The window size

is chosen to allow lower statistical variance in the feature sets and a continuous

classification of the EMG signals.

4.2.3 Feature Extraction

Signal processing must be used to efficiently train the EMG data from all

datasets. Recent advances in technologies of signal processing and mathematical

models have made it possible to develop advanced EMG detection and analysis

techniques. So far, research and extensive efforts have been made in the area,

developing better algorithms, upgrading existing methodologies, improving de-

tection techniques to reduce noise, to acquire accurate EMG signals.

Traditionally, one of the most researched aspects of sEMG based gesture recog-

nition comes from feature engineering. In other words, manually finding a rep-

resentation for sEMG signals that allows easy differentiation between gestures

49

Chapter 4. Experimental setup

while reducing the variance of examples within the same gestures. Over the

years, several efficient combinations of features both in the time and frequency

domain have been proposed [30], [31], [32], [33]. Features can be regrouped into

different types, mainly: time, frequency and time-frequency domains. A short

description of the most used features for gesture classification is presented below:

Time Descriptors

1. Mean Absolute Value (MAV) [31] – a feature returning the mean of a fully-

rectified signal

MAV(x) =
1
L

L−1∑
k=0

|xk| (4.1)

2. Zero Crossing Rate (ZCR) [15] – a feature that counts the frequency at which

the signal passes through zero. A threshold α geq0 is used in order to lessen

the impact of the noise. The value of this feature is incremented whenever

the following condition is satisfied:

ZC(x) = |
{
k : (|xk − xk−1| ≥ α) ∧ (sgn(xi) , sgn(xi−1))

}
| (4.2)

where sgn(a, b) return true if a and b (two real numbers) have the same sign

and false otherwise. Note that depending on the slope of the signal and the

selected, the zero-crossing point might not be detected.

3. Slope Sign Changes (SSC) [31] – a feature that measures the frequency at

which the sign of the signal slope changes. Given three consecutive samples

xi, xi−1, xi+1, the SSC value will be incremented if:

SSC(x) = |k : (xk − xk−1) · (xk − xk+1) ≥ α| (4.3)

where α > 0 is employed as a threshold to reduce the mpact of the noise on

this feature.

4. Waveform Length (WL) [15] – a feature that offers a simple characterization

of the signal’s waveform. It is computed as follows:

WL(x) =

L−1∑
k=1

|xk − xk−1| (4.4)

50

5. Skewness – is the third central movement of a distribution that measures

the overall asymmetry of a distribution. It is computed as follows:

Skewness(x) =
1
L

L−1∑
k=0

(
xk − x
σ

)3

(4.5)

6. Root Mean Square (RMS) – this feature, also known as the quadratic mean,

is closely related to the standard deviation as both are equal when the mean

of the signal is zero.

RMS(x) =

√√
1
L

L−1∑
k=0

x2
k (4.6)

7. Hjorth Parameters [31] – Hjorth parameters are a set of three features origi-

nally developed for characterizing electroencephalography signals and then

successfully applied to sEMG signal recognition. Hjorth Activity Parameter

can be thought of as the surface of the power spectrum in the frequency

domain and corresponds to the variance of the signal calculated as follows:

Activity(x) =
1
L

L−1∑
k=0

(xk − x)2 (4.7)

where x̂i is the mean of the ith window. Hjorth Mobility Parameter is a

representation of the mean frequency of the signal and it is calculated as

follows:

Mobility(xi) =

√
Activity(x′i)
Activity(xi)

(4.8)

where x′i is the first derivative with respect to time of the signal for the ith

window. Similarly, the Hjorth Complexity Parameter, which represents the

change in frequency, is computed as follows:

Complexity(xi) =
Mobility(x′i)
Mobility(xi)

(4.9)

51

Chapter 4. Experimental setup

8. Integrated EMG (IEMG) [34] – a feature returning the sum of the fully-

rectified signal.

IEMG(x) =

L−1∑
k=0

| xk | (4.10)

9. Autoregression Coefficient (AR) [34] – an autoregressive model tries to

predict future data, based on a weighted average of the previous data. This

model characterizes each sample of the signal as a linear combination of

the previous sample with an added white noise. The number of coefficients

calculated is a trade-off between computational complexity and predictive

power. The model is defined as follows:

xi,k =

P∑
i=1

ρ jxi,k− j + εt (4.11)

where P is the model order, ρ j is the jth coefficient of the model and εt

represents the residual white noise.

10. Sample Entropy (SampEn) – entropy measures the complexity and ran-

domness of a system. Sample Entropy is a method which allows entropy

estimation.

SampEn
(
xi,m, r

)
= ln

(Am(r)
Bm(r)

)
(4.12)

11. EMG Histogram (HIST) [35] – when a muscle is in contraction, the EMG

signal deviates from its baseline. The idea behind HIST is to quantify the

frequency at which this deviation occurs for different amplitude levels.

HIST is calculated by determining a symmetric amplitude range centered

around the baseline. This range is then separated into n bins of equal length

(n is a hyperparameter). The HIST is obtained by counting how often the

amplitude of the signal falls within each bin boundaries.

52

Frequency Descriptors

1. Marginal Discrete Wavelet Transform (mDWT) [36] – is a feature that

removes the time-information from the discrete wavelet transform to be

insensitive to wavelet time instants. The feature instead calculates the cu-

mulative energy of each level of the decomposition. The mDWT is defined

as follows:

mxk(s) =

N
2S−1∑
u=0

| dxi(s,u) |, ∀s = 1, . . . ,S (4.13)

where the number of coefficients of the discrete wavelet transform dxi(s,u)

is equal to N and S = [log2Nc] is the deepest level of decomposition.

2. Cepstral Coefficients [37] – the cepstrum of a signal is the inverse Fourier

transform of the log power spectrum magnitude of the signal. Like the AR,

the coefficients of the cepstral coefficients are employed as features. They

can be directly derived from AR as follows:

c1 = −a1

ci = −ai −

i−1∑
n=1

(
1 −

n
i

)
anci−n, with 1 < i ≤ P

(4.14)

Time-frequency Descriptors

1. Continuous Wavelet Transform (CWT) – The Gabor limit states that a high

resolution both in the frequency and time domain cannot be achieved. Thus,

for the STFT, choosing a wider window yields better frequency resolution

to the detriment of time resolution for all frequencies and vice versa. De-

pending on the frequency, the relevance of the different signal’s attributes

changes. Low frequency signals must be precisely located in the frequency

range, as signals a few Hz apart can have dramatically different origins (e.g.

Theta brain waves (4 to 8 Hz) and Alpha brain waves (8 to 13 Hz)). On

the other hand, for high frequency signals, the relative difference between

a few or hundreds Hz is often irrelevant compared to its resolution in time

for the characterization of a phenomenon. This behavior can be obtained by

53

Chapter 4. Experimental setup

employing wavelets. A wavelet is a signal with a limited duration, varying

frequency and a mean of zero [38]. The mother wavelet is an arbitrarily

defined wavelet that is utilized to generate different wavelets. The idea

behind the wavelets transform is to analyze a signal at different scales of the

mother wavelet [39]. For this, a set of wavelet functions are generated from

the mother wavelet (by applying different scaling and shifting on the time-

axis). The CWT is then computed by calculating the convolution between

the input signal and the generated wavelets.

2. Short Term Fourier Transform based Spectogram (Spectogram) – The

Fourier transform allows for a frequency-based analysis of the signal as

opposed to a time-based analysis. However, by its nature, this technique

cannot detect if a signal is non-stationary. As sEMG are non-stationary [40],

an analysis of these signals employing the Fourier transform is of limited

use. An intuitive technique to address this problem is the STFT, which con-

sists of separating the signal into smaller segments by applying a sliding

window where the Fourier transform is computed for each segment. In this

context, a window is a function utilized to reduce frequency leakage and

delimits the segment’s width (i.e. zero-valued outside of the specified seg-

ment). The spectrogram is calculated by computing the squared magnitude

of the STFT of the signal. In other words, given a signal s(t) and a window

of width w, the spectrogram is then:

Spectogram(s(t),w) =| STFT(s(t),w) |2 (4.15)

Since the purpose of this work is to design a fast and efficient algorithm for

gesture recognition, the features used for classification must be simple and cost-

effective to compute. Time-frequency analysis methods involving the Short-Time

Fourier Transform, the wavelet transform or the wavelet packet transform would

require a larger computation time, with no improvement over the classification

performance. For these reasons, only time-domain descriptors were considered.

The features used in this work are: Mean absolute value (MAV) (5.1), Zero Crossing

Rate (ZC) (4.2), Slope Sign Changes (SSC) (4.3), Waveform Length (WL) (4.4), Skewness

(4.5), Root Mean Square (RMS) (4.6), Hjorth Activity (4.7), Integrated EMG (4.10).

54

4.2.4 Classification

Recently, the use of machine learning algorithms has become more prominent,

as they are being employed in various tasks, ranging from simple regressions up to

complex multinomial classification. In the field of EMG-based gesture recognition

Neural Networks can be successfully used for classification, if the data set contains

sufficient examples. Deep Network-based architectures can learn very complex

patterns, but they are prone to overfitting. However, such architectures may

be time-consuming, hence, not adequate for real time applications. This thesis

proposes a fully connected architecture with a forward pass of less than 4.5 ms,

including the feature extraction stage. The model parameters were determined

using the cross entropy loss. Considering l targets, the cross entropy loss for a

single example is given by the sum:

E = −

l∑
i=1

(
ti log2(yi) + (1 − ti) log2(1 − yi)

)
(4.16)

where t1, t2, ..., tl are the targets and y1, y2, ..., yl are the outputs of the neural

network architecture.

The model parameters are determined via backpropagation, using the ADAM

optimizer instead of the classical Stochastic Gradient Descent (SGD). The reason

for using the ADAM optimizer is its robustness to changes in hyperparameters

[41].

The entire architecture diagram is displayed in Fig. 4.7. The proposed network

is composed of 6 hidden layers, having 128, 128,128, 64, 32 and 16 neurons each.

After each layer, a batch normalization step is performed to avoid overfitting. The

activation used for all the layers is ReLu, except for the output layer which uses

Softmax activation.

4.2.5 Experiments

This thesis proposes a simple architecture, consisting of only Fully Connected

Layers. The experimental part carried out for this work can be divided in two:

training the Neural Network without constrains and training the system under

spectral norms constraints.

55

Chapter 4. Experimental setup

s.
m.

B.
N.

B.
N.

B.
N.

B
N

64
128 128 128

64

32 16 7

B.
N.

B.
N.

B.
N.

Feature
Vectors

Figure 4.7: Proposed NN architecture

In the first part, the network was trained without imposing any kind of con-

straints, in an effort to find the best architecture for the task at hand. Several

experiments were performed, varying the depth of the network from 4 to 7 hid-

den layers, but in all cases the number of neurons was set to be higher than the

number of neurons in the next layer. The architecture consisting of 6 hidden layers

achieved the highest performance, whereas the number of neurons considered

for each layer are: 128, 128, 128, 64, 32, 16.

After the optimal design for the architecture was found, the next step was to

train the same NN subjected to spectral norm constraints on the weight matrices

of each layer, as described in Chapter 3. This was done in order to assess the effect

of training under such circumstances on the overall performance of the system.

First constraint imposed was PC1∩D, (3.8, 3.7). The system was trained for several

values of the parameter α.

Finally, the algorithm described in 3.28 was implemented in order to accurately

compute the projection PC3∩D. The same Dual Forward-backward algorithm was

used to compute the true approximation of the projection, PĈ1∩D, by imposing

A = B = Id. The results obtained will be shown and discussed in the next

Chapter.

56

Chapter 5

Results

5.1 Performance metrics

In order to measure the performance of the proposed classification system,

the performance metrics used are: the overall classification accuracy (OA), the

per-class accuracies (PC) and Kappa index (K). These measures are computed

starting from the confusion matrix C which has the number of predicted labels

on the columns and the ground truth on the rows:

OA =

l∑
i=1

Cii

N
(5.1)

PCi =
Cii

Ci+
, ∀i ∈ {1, ..., l} (5.2)

K =
1
N

∑l
i=1 Cii −

1
N2

∑l
i=1 Ci+C+i

1 − 1
N2

∑l
i=1 Ci+C+i

(5.3)

where N represents the total number of analyzed EMG signals, l is the number

of gesture categories, Ci j is the number of signals in ground truth class j and

classified as class i and the values Ci+ and C+ j are computed as:

Ci+ =

l∑
j=1

Ci j (5.4)

C+ j =

l∑
i=1

Ci j (5.5)

57

Chapter 5. Results

5.2 Results – training without constraints

The proposed method is compared to other state-of-the-art methods, such as

the transfer learning-based method presented in [3] (abbreviated DL-TL). The

results are synthesized in Table 5.1.

Table 5.1: Per-class accuracy rates (PC), overall accuracy (OA) and Kappa index

(K) of proposed method for hand gesture recognition.

Class
Proposed

method

DL-TL

[3]

Neutral 99.96 98.89

Radial Deviation 99.75 99.46

Wrist Flexion 99.86 98.42

Ulnar Deviation 99.72 96.52

Wrist Extension 99.72 99.55

Hand Close 99.86 99.43

Hand Open 99.58 94.61

OA 99.78 98.12

K 0.99 0.98

Table 5.2: Average running time per gesture (decomposed on feature extraction

and prediction stages).

Method
Feature

extraction
Prediction Total

Proposed 1.9 ms 2.5 ms 4.4 ms

DL-TL

[3]
50.2 ms 19.4 ms 69.9 ms

Compared to the solution proposed in [3], the overall accuracy achieved by

the proposed recognition system (99.78%) is higher. Moreover, for all 7 hand

gestures, the reported per-class accuracies are greater than the ones obtained by

the DL-TL method [3].

An important aspect for real-time applications is the average running time,

which, in the case of the proposed recognition technique, is 4.4 ms. Compared to

the DL-TL method, this represents a speedup of 16 times. However, apart from

58

the feature extraction and prediction stages, the most time-consuming part of the

DL-TL method is the transfer learning stage which requires almost 5.25 minutes.

This represents a drawback for real-time applications in the context of sEMG-

based gesture recognition, since the convolutional network (ConvNet) scheme

presented in [3] relies upon transfer learning techniques. These techniques lever-

age inter-user data and increase the overall accuracy by pre-training a model on

multiple subjects before training it on a new participant, but come at the cost of

spending additional time for learning a specific mapping.

The average running times for both methods, decomposed on feature extrac-

tion and prediction stages, are shown in Table 5.2. All the experiments were

carried on an NVIDIA Quadro M4000 GPU.

5.3 Results – training with constraints

Without imposing any constraints, the approximate Lipschitz constant of the

network is

θT = 1.5930763e09

. This proves that despite very good theoretical results, the robustness of the

system against potential adversarial inputs is not controlled.

To overcome this, the second part of this thesis is concentrated on training

the neural network subjected to spectral norm constraints on the weights. This is

done by projecting the weights in the optimization step onto the non-empty space

of intersection of two convex sets that will satisfy the conditions of non-negativity

and impose some restrictions on the spectral norm operator of the weights of each

layer.

In order to do this, first an approximate projection C1 described in Equation

(3.8) was considered: first the projection on the spectral ballB(0, α) was computed

for each weight matrix individually, and than the result was again projected with

respect to the positivity constraint.

Figure 5.1 shows how the accuracy of the system, computed using Equation

5.1 varies with respect to the value of α. As it was expected, imposing strict

constraints has an important effect on the overall performance. Accuracy drops

from 99.78% to 71.43% is the spectral norm of each weight matrix is less than 1.

The results improve as the constraints loosen (e.g. as α increases). But, as the

59

Chapter 5. Results

Figure 5.1: Results - PC1∩D

]

Figure 5.2: Lipschitz Constant Bounds - C1 constraint

60

performance improve, the Lipschitz of the network (θT) increases exponentially.

Figure 5.2 depicts how the Lipschitz constant of the network (θT) varies with

respect to α. Lipschitz constant was computed using the rough approximation

described in Equation 3.5 and also the lower bound provided by Equation 3.6.

This method won’t affect the speed of the system, since it relatively easy from the

computational point of view, but is not a very good solution to the robustness

problem aforementioned.

Note that as the performance increases, θT grows up exponentially, with an

order of 7 (6 hidden layers, and the output). Therefore, for α = 7, even though

the overall accuracy OA = 93.039%, the Lipschitz constant of the network has

increased to

θTC1∩D = 4.779224e04

This is an important improvement from the unconstrained training, but still a

good robustness is not ensured.

Figure 5.3: Results - PC3∩D

In an effort to ensure a small Lipschitz constant, but not affect too much the

performance of the system, another constraint was considered, Equation 3.6. The

projection C3∩D was computed accurately using the DFB algorithm described in

3.28. This is a far lighter constraint, since the spectral norm limitation is imposed

61

Chapter 5. Results

on the product of all weights of the network, offering the system more freedom

of learning its parameters.

Additionally, note that in this context the parameter α is in fact the Lipschitz

constant of the system (θT = α), so the linear variation of α is no longer producing

an exponential response from θT. The results can be viewed in Figure 5.3, which

depicts how overall accuracy OA varies with respect to θT. Note that the results

have improved with more than 10%. This improvement comes with a great

computational cost, since the iterative algorithm must be applied to all the weights

of the network. For a [128 × 128] matrix up to ≈ 10.000 iterations are required

for the algorithm to converge with a tolerance of 0.01. In an effort to optimize

the learning process, warm restart technique was employed, which consisted on

transferring the variable Y0 of the DFB algorithm, from one epoch to another. By

doing this, the computational time is reduced after after the first 3 epochs. This

last implementation ensures a great trade-off between the overall performance

of the system and its robustness against adversarial attacks, but comes at the

expanse of a high computational cost.

62

Chapter 6

Conclusions

6.1 General Conclusions

In the past decades, researchers had been focused on creating human-computer

interfaces. They managed to create hand gesture interfaces by sensors which

measure the activities of the musculature system (sEMG). Previous studies have

focused on forearm movements controlled by upper arm muscles, which is setting

limitations on what kind of hand motions can be classified. Research results have

demonstrated that not only finger,but also joint motions can be distinguished

from each other successfully by using sEMG signals. This thesis presents a novel

method for hand gesture recognition based on simple and easy to compute time-

domain features. Using a relative easy to train neural network architecture, the

proposed system is able to accurately recognize 7 basic hand gestures in a timely

manner, being a candidate for online recognition of rapidly varying hand ges-

tures.

The signals were acquired using an armband equipped with 8 sEMG sensors

displayed circularly around the forearm. The raw signal is then process and a

vector of 64 relevant features is extracted from each window of 250 ms. These

vectors were used as input data to train a fully connected 6-hidden layers neural

network, designed to classify 7 basic gestures: ulnar deviation, radial deviation,

hand open, hand close, wrist extension, wrist flexion and neutral position. The

system performs very well, obtaining an overall accuracy of 99.78%, competing

with other state-of-the-art methods presented in literature. A comparison with

another method is provided in Chapter 5.

63

Chapter 6. Conclusions

The aim of this work is the development of a real-life application that can be

used in a wide variety of fields, ranging from medical health domain to military

applications, as mentioned in Chapter 1. To make sure that the proposed system

is reliable, the stability of the NN was evaluated. Using recent mathematical

findings, novel solutions were proposed to ensure a robust system.

Starting from the premises detailed in Chapter 3, that activation functions used

in machine learning algorithms are proximal operators, a strategy of training a NN

under spectral norm constraints was designed in order to control the robustness

of the system against possible malicious inputs. Several constraints described

in Chapter 3 were proposed and implemented (see Chapter 4 for details) in an

effort to find the best trade-off between the robustness of the NN and the overall

performance of the system. All results were detailed in Chapter 5.

6.2 Personal Contributions

The contributions of the author are the following:

• Implementing a wide list of descriptors in both time and frequency to char-

acterize the sEMG signal.

• Finding the the most relevant and fast features that will serve as an input of

the learning system.

• Designing a fast feature extraction block, with a running time of 1.9 ms.

• Designing and implementing a 6-hidden layers Fully Connected Neural

Network capable of classifying with a high accuracy (99,78 %) 7 basic ges-

tures in real time.

• Proposing several spectral norm constraints to be applied on the weights of

the network to ensure robustness

• Training NN under norm constraints, finding the the best trade-off between

performance, speed and robustness

• Implementing a novel DFB algorithm to accurately compute the intersection

of two convex sets in order to find the true projection of the weights.

64

6.3 Future Work

This work has proven that learning methods can be very successful in classifi-

cation tasks compared to traditional approaches in the area. However, deep NN

pose problems of implementation heaviness during the learning phase. More-

over, as shown in this thesis the appear as black boxes whose robustness is poorly

controlled.

To overcome these difficulties, lately new architectures were proposed inspired

by iterative algorithms used in data analysis or inverse problems, generally ob-

tained by unfolding an optimization algorithm. recent mathematical results show

that it becomes easier to control the stability of these networks by introducing

appropriate constraints on their weights. This nevertheless requires the manage-

ment of constraints that are not necessary convex in the training phase. Hence,

an important part of the future work to be done consists in implementing and

testing with more constraints, to ensure a better evaluation of the performance of

the system as a function of robustness.

Another objective is to propose new architectures based on this philosophy. It

is necessary to develop efficient optimization methods for NN during supervised

learning and to consider different structures of NN, given different classes of

iterative methods existing (proximal methods, in particular).

Applications of these theoretical background can be applied in the field of

biometrics, for classification of not only EMG signals but also extended towards

more complex ones as EEG.

65

Chapter 6. Conclusions

66

Bibliography

[1] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and Trends R© in

Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[2] T. labs, “Myo documentation.”

[3] U. Côté-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin,

K. Glette, F. Laviolette, and B. Gosselin, “Deep learning for electromyo-

graphic hand gesture signal classification using transfer learning,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 2019.

[4] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A framework for

hand gesture recognition based on accelerometer and emg sensors,” IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,

vol. 41, no. 6, pp. 1064–1076, 2011.

[5] T. S. Saponas, D. S. Tan, D. Morris, and R. Balakrishnan, “Demonstrating the

feasibility of using forearm electromyography for muscle-computer inter-

faces,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. ACM, 2008, pp. 515–524.

[6] T. Shanableh, K. Assaleh, and M. Al-Rousan, “Spatio-temporal feature-

extraction techniques for isolated gesture recognition in arabic sign lan-

guage,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics), vol. 37, no. 3, pp. 641–650, 2007.

[7] G. Fang, W. Gao, and D. Zhao, “Large vocabulary sign language recogni-

tion based on fuzzy decision trees,” IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 34, no. 3, pp. 305–314, 2004.

67

Bibliography

[8] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language

recognition using desk and wearable computer based video,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 20, no. 12, pp. 1371–1375,

1998.

[9] K. Assaleh, T. Shanableh, M. Fanaswala, H. Bajaj, and F. Amin, “Vision-based

system for continuous arabic sign language recognition in user dependent

mode,” in 2008 5th International Symposium on Mechatronics and Its Applica-

tions. IEEE, 2008, pp. 1–5.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at

scale,” 2016.

[11] C. Anil, J. Lucas, and R. Grosse, “Sorting out lipschitz function approxima-

tion,” 2018.

[12] P. L. Combettes and J.-C. Pesquet, “Lipschitz certificates for neural net-

work structures driven by averaged activation operators,” arXiv preprint

arXiv:1903.01014, 2019.

[13] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval

networks: Improving robustness to adversarial examples,” in Proceedings of

the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

2017, pp. 854–863.

[14] J. Kim, S. Mastnik, and E. André, “Emg-based hand gesture recognition

for realtime biosignal interfacing,” in Proceedings of the 13th international

conference on Intelligent user interfaces. ACM, 2008, pp. 30–39.

[15] J. Pauk, “Different techniques for emg signal processing,” Journal of Vibro-

engineering, vol. 10, pp. 571–576, 12 2008.

[16] N. Womack, N. Williams, J. Holmfield, J. Morrison, and K. Simpkins, “New

method for the dynamic assessment of anorectal function in constipation,”

British Journal of Surgery, vol. 72, no. 12, pp. 994–998, 1985.

[17] J. R. Cram, Introduction to surface electromyography. Aspen Publishers, 1998.

68

[18] C. Sapsanis, G. Georgoulas, and A. Tzes, “Emg based classification of basic

hand movements based on time-frequency features,” in 21st Mediterranean

Conference on Control and Automation. IEEE, 2013, pp. 716–722.

[19] A. D. Orjuela-Cañón, A. F. Ruíz-Olaya, and L. Forero, “Deep neural network

for emg signal classification of wrist position: Preliminary results,” in 2017

IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE,

2017, pp. 1–5.

[20] H. Drucker and Y. LeCun, “Improving generalization performance using

double backpropagation,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 3, no. 6, pp. 991–997, 11 1992.

[21] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Im-

proved training of wasserstein gans,” 2017.

[22] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization

for generative adversarial networks,” 2018.

[23] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent

in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp.

115–133, 1943.

[24] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[25] P. L. Combettes and J.-C. Pesquet, “Deep neural network structures solving

variational inequalities,” arXiv preprint arXiv:1808.07526, 2018.

[26] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representations

by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[27] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural networks:

analysis and efficient estimation,” in Advances in Neural Information Processing

Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 3835–3844.

[28] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neu-

ral networks for perception. Elsevier, 1992, pp. 65–93.

69

Bibliography

[29] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal pro-

cessing,” in Fixed-point algorithms for inverse problems in science and engineering.

Springer, 2011, pp. 185–212.

[30] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard,

and Y. Laurillau, “Emg feature evaluation for improving myoelectric pattern

recognition robustness,” Expert Systems with applications, vol. 40, no. 12, pp.

4832–4840, 2013.

[31] K. Englehart, B. Hudgins et al., “A robust, real-time control scheme for mul-

tifunction myoelectric control,” IEEE transactions on biomedical engineering,

vol. 50, no. 7, pp. 848–854, 2003.

[32] L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “A real-time

pattern recognition based myoelectric control usability study implemented

in a virtual environment,” in 2007 29th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society. IEEE, 2007, pp. 4842–4845.

[33] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager, S. Elsig,

G. Giatsidis, F. Bassetto, and H. Müller, “Electromyography data for non-

invasive naturally-controlled robotic hand prostheses,” Scientific data, vol. 1,

p. 140053, 2014.

[34] A. Phinyomark, S. Hirunviriya, C. Limsakul, and P. Phukpattaranont, “Eval-

uation of emg feature extraction for hand movement recognition based on

euclidean distance and standard deviation,” in ECTI-CON2010: The 2010

ECTI International Confernce on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology. IEEE, 2010, pp. 856–860.

[35] M. Zardoshti-Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi, “Emg

feature evaluation for movement control of upper extremity prostheses,”

IEEE Transactions on Rehabilitation Engineering, vol. 3, no. 4, pp. 324–333,

1995.

[36] M.-F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina, “Multi-

channel surface emg classification using support vector machines and signal-

based wavelet optimization,” Biomedical Signal Processing and Control, vol. 3,

no. 2, pp. 169–174, 2008.

70

[37] R. N. Khushaba, “Correlation analysis of electromyogram signals for mul-

tiuser myoelectric interfaces,” IEEE Transactions on Neural Systems and Reha-

bilitation Engineering, vol. 22, no. 4, pp. 745–755, 2014.

[38] M. Teplan et al., “Fundamentals of eeg measurement,” Measurement science

review, vol. 2, no. 2, pp. 1–11, 2002.

[39] A. Graps, “An introduction to wavelets,” IEEE computational science and en-

gineering, vol. 2, no. 2, pp. 50–61, 1995.

[40] R. N. Khushaba, S. Kodagoda, M. Takruri, and G. Dissanayake, “Toward

improved control of prosthetic fingers using surface electrosashmyogram

(emg) signals,” Expert Systems with Applications, vol. 39, no. 12, pp. 10 731–

10 738, 2012.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

71

	List of figures
	List of tables
	List of abbreviations
	Introduction
	Thesis Motivation
	Applicability
	Thesis Objectives and Outline

	Theoretical Background
	Related Work on EMG
	Theoretical Background
	Deep Neural Networks – General Aspects
	Activation functions
	Proximity operators
	Loss functions
	Backpropagation and optimization

	Learning with constraints
	Motivation
	Computation of Lipschitz constant
	Proposed constraints
	Dealing with constraints

	Computing the projection
	Formulating the problem
	Reformulation
	Algorithm

	Experimental setup
	Data Acquisition
	Proposed method
	Training Data Set
	General Overview
	Feature Extraction
	Time Descriptors
	Frequency Descriptors
	Time-frequency Descriptors

	Classification
	Experiments

	Results
	Performance metrics
	Results – training without constraints
	Results – training with constraints

	Conclusions
	General Conclusions
	Personal Contributions
	Future Work

