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Introduction

Purpose

This thesis proposes to design and implement a collision avoidance system, using image-based
obstacle detection trained with Deep Neural Networks (DNNs). The system will be validated
on a 4x4 platform that will automatically move in a controlled environment.

The system works as follows: A Kinect sensor provides environmental images, that represent
the input of learning system, namely a Convolution Neural Network (CNN). The network
is able to identify the coordinates of the three types of different objects that will be detailed
later. The path finding algorithm computes the shortest path to a destination given by the
user, considering the objects detected. This path is then transmitted to the robot that will
move accordingly.

Objectives

The main objectives of the thesis are the following:

• to create a data set consisting of images containing 3 classes of objects (red – obstacles,
blue – pass through objects and the robot itself);

• to train different Convolutional Neural Networks architectures for the obstacle detection,
in the quest of finding the best trade-off between efficiency and accuracy;

• to implement a path detection algorithm, that finds the shortest way from the starting
point to the destination chosen by the user, given the obstacles;

• to control the 4x4 platform to move according to the algorithm’s output.

Motivation

In the automotive industry there are a lot of companies that started researching self-driving
cars. These cars are equipped with a variety of sensors to transmit data to the control system.
While a fully autonomous vehicle is desired, at the moment, such a system is hard to implement
and expensive. Other methods have to be developed to make use of an autonomous vehicle or
robot. These methods would need to reduce the number of sensors, the amount of data and
compute processing power needed. Of course, reducing the aforementioned items would require
compromises in other areas of the system.
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The Neural-based navigation system for 4x4 Jaguar Platform achieves a basic form for an
easier to implement and less expensive system. The only sensor used for pathfinding is the
Kinect Camera, that gives a top-down view of the robot. Given the fact that there is only
one sensor, the amount of data processed is kept at a minimum (just the images taken by the
camera). The system makes use of a CNN and a pathfinding algorithm A* connected to the
results of the CNN. A modified version of Tiny YOLO and a new model Patch Model is used
for the CNN as it provides a good accuracy as well as low requirements in terms of processing.
A comparison between Tiny YOLO, Modified Tiny YOLO and the Patch Model will be done
later in the paper. The same motivation can be presented for the A* algorithm.

This type of system presents limitations. As it is, the camera is fixed, thus, it can provide
information for a single area. A fully autonomous robot would be able to perform in all
environments. A solution for this, would be a drone companion but, this is beyond the scope
of this paper, and it comes with its own problems. A mobile camera, or a larger field of view
can be simple solutions but, in the end, the mapping will still be done for a local area. Another
limitation of the top-down camera is that the system will not be able to see the robot if the
robot goes under a foreign object (i.e. a bridge). Reviewing the lesser amount of sensors and
data, means the system will know less about the surroundings of our robot. The more the
system knows about its surroundings the more functions the robot can have (i.e. picking up an
object).

As it can be seen, achieving a simpler system comes with its compromises. Although it
has its limitations, some advantages can be seen, other than making it simple. A top-down
camera allows the system to see a lot more of the environment in which the robot performs.
While an autonomous system has to calculate the route in real time when the robot is moving,
a top-down camera can provide a clear map with the fastest route to the destination.

A variety of sensors can be attached to the robot, keeping in mind cost efficiency, to provide
more functionality to it. An example would be an infrared sensor to give precise distance
information for the robot, or a frontal camera for performing different actions if the robot has
a robotic arm, as is the case for the Jaguar 4x4 Platform. Various other software programs
can be implemented for the type of image provided, such as, an algorithm to calculate distance
between corners of different objects.

A simpler system could benefit more users, provided they can make use of it with its current
limitations.
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CHAPTER 1. THESIS TECHNOLOGIES

Chapter 1

Thesis Technologies

1.1 Hardware

The hardware used for this project is composed of: Jaguar 4x4 Mobile Platform [8], Kinect
Xbox One [9] and a laptop. The first two will be briefly introduced.

1.1.1 Jaguar 4x4 Mobile Platform

The Jaguar 4x4 Mobile Platform is a robot that has many functionalities, thanks to the many
sensors that it’s equipped with and the robotic arm attached to it. A few of these sensors will
be useful for moving the robot according to the data created by the pathfinding algorithm.
These sensors provide yaw, acceleration and gyro information.

Other than sensors, the robot has wireless control, since it comes with its own Wireless
Router WRT802G 802.11N. Information transmission will be done through this router using
TCP/IP model and the Socket Library.

The robot itself is commanded by the PMS5006 Controller, so specific commands need to be
sent and picked up by the router. A C# program has been written by Tudoroiu Mihai-Cristian
for his undergraduate thesis [10] in which he models the movement of the robot in order to be
able to receive the commands given by an external client and move at a safe speed, since the
motors of the 4x4 platform are powerful. The presented thesis makes use of this program such
that it can send the specific commands required by the PMS5006 controller.

1.1.2 Kinect Xbox One

The Kinect device [9] also has a variety of functionalities thanks to it’s Full HD camera, depth
sensors, motion tracking and voice commands. For the project only the camera will be used.

The camera is a attached to a metallic rail bolted into the ceiling of the laboratory. With
the help of this rail the camera can be moved up or down. Thanks to the way the Kinect is
attached to the rail it has two more degrees of movement allowing the user to position the
camera correctly.

Images that are captured will have a resolution of 1920x1080 pixels and a field of view of
135 degrees. The image is processed to fit into the software system created afterwards.
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1.2 Software

Most of the code is written in the Python programming language, thus, the architectures and
libraries used, are for this language. The version used for this project is Python 3.7+.

In the the following subsections, the most important libraries will be briefly presented, with
their description and usefulness for the project.

1.2.1 PyKinect2

This Python library [11] allows the creation of applications to control the Xbox One Kinect.
It does not allow for the full control of the device and presents the following functions: color,
depth, body and body index frames. These functions satisfy the need of the current project.

In order to use the library the computer must have the following prerequisites: Python 2.7.x
or 3.4 and higher, NumPy, comtypes, Kinect for Windows SDK 2.0, Kinect sensor and adapter.

To install Python packages pip is used, acronym for ”pip Installs Packages”. This is a
practical package-management system. NumPy is, according to its description, a package for
scientific computing that contains: N-dimensional array object, sophisticated (broadcasting)
functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform,
and random number capabilities. This package is very useful for Machine Learning. On the
other hand, comtypes is a lightweight COM package. It allows to define, call, implement custom
and dispatch-based COM interfaces in pure Python. Both of these packages were installed using
pip.

Kinect for Windows SDK 2.0 is used in developing applications for Kinect devices on
Windows 10. The manufacturing of the Kinect for Windows has been discontinued, as presented
on the official Microsoft website but, the SDK still proves itself to be useful in this project, while
also being a must for the PyKinect2 library. This kit enables developers to create applications
that support gestures and voice recognition, using the Kinect sensor technology. The Kinect
sensor and adapter are the hardware prerequisites. PyKinect2 being itself a Python package,
has been installed through pip, with the following command in command prompt:

pip install pykinect2
All these packages helped in creating the Python application that transmits real-time images
to the Neural Network.

1.2.2 OpenCV 4

Open Source Computer Vision Library is an open source computer vision and machine learning
software library. It contains several thousands algorithms that range from face recognition
and object detection to extracting 3D models and removing red-eyes from an image. It
was developed in order to accelerate the rate of innovation and implementation of machine
perception in commercial products [12].

In this project it is used for image processing, as it offers multiple functions for image
manipulation such as: reading images and/or video, resizing, image thresholding and displaying
windows. The main functions used from the OpenCV library are:

• Core functionality (core) – a compact module defining basic data structures, including
the dense multi-dimensional array Mat and basic functions used by all other modules.

• Image Processing (imgproc) – an image processing module that includes linear and
non-linear image filtering, geometrical image transformations (resize, affine and perspective
warping, generic table-based remapping), color space conversion, histograms, and so on.
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• Video Analysis (video) - a video analysis module that includes motion estimation,
background subtraction, and object tracking algorithms.

Full functions list is detailed in [12].

The OpenCV package was also installed using pip:

pip install opencv-Python

pip install opencv-contrib-Python

The package is originally written in C++ but, it has been ported to other programming
languages. The two packages, opencv-Python and opencv-contrib-Python represent the
main modules and the contributed modules, respectively.

1.2.3 Keras

In order to create a neural network architecture, the Keras API has been used. It does not
process low-level operations, such as tensor operations, it only provides high-level models and
functions to offer a quick and stable method for testing and creating deep neural networks. In
order to process tensor operations a back-end engine, a tensor manipulation library is required.
Keras is tied to this back-end framework. The officially supported frameworks are: Theano,
CNTK and TensorFlow. The chosen back-end for this project is TensorFlow.

A short description of Keras backends

Firstly, it needs to be mentioned that - Yoshua Bengio, anounced that major development
of the Theano framework, would be ceased, 15th of November 2017 being the release of Theano
1.0.0, the last major release. Currently, Theano is at version 1.0.4, with the PyMC team
continuing its maintenance.

CNTK [13] is presented by Microsoft and it stands for Cognitive Toolkit. It is an open-
source library for deep learning. It describes neural networks as a series of computational steps
via a directed graph. CNTK is a commercial grade architecture and it comes with many of the
functions that popular back-ends provide, but it does not provide the same integration of Keras
that TensorFlow does.

TensorFlow is developed by Google. The framework has many ideas based on the Theano

framework, many of these have been improved. It uses dataflow graphs to represent computation,
shared state, and the operations that mutate that state. It has been released as an open-
source project, and it has become widely used for machine learning research. At the moment
TensorFlow 2.0 has been released, which provides the best support for the Keras API. The
Keras library is implemented directly into TensorFlow and can be called as a Python module
for use in neural networks. In [14] can be found the TensorFlow dataflow model and the
demonstration of the compelling performance that TensorFlow achieves for several real-world
applications.

Keras can use other types of backends as well, or can use multiple backends, one example
could be MXNet. Altough the use of different backends can have an impact on performance, the
difference between back-ends for Keras while building simple CNNs (e.g. the project requires a
simple CNN to perform one specialized task, obstacle detection, with three classes) is negligible.
The reason behind this is because most of the GPUs will use cuDNN to process the heavy work.

Why Keras?

The Keras framework guides itself after the following principles: ease of use, fast experimentation,
maintained flexibility. Thus, for creating a ’normal’ CNN, a flexible and easy to use framework
is useful for experimenting with different models and hyper-parameters. On the other hand,
Keras is built inherently in Python, providing excellent support for the current thesis as it is
created using the Python programming language.
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Figure 1.1: Deep Learning Framework Power Scores 2018 [1]

Other than its principles and use as technology, Keras has a great adoption in the industry
and research community which provides also great community support and multiple examples
for multiple uses.

In the figure 1.1 it can be observed that TensorFlow is also one of the most adopted
architectures, which means that it also takes advantage of great community support.

Compared to TensorFlow, apart for using it as a back-end, Keras is not as verbose and
it is more streamlined. Simple functions take care of a lot of the steps that were required in
TensorFlow.

1.2.4 XML

XML is a data storage and transport system. It was used to store annotation information for
the used neural networks. It works on a parent-child system, without any visual information,
just text. This system works great for the presented project as different data can be stored in
a single file, each with its own category, such as class name or bounding box coordinates.

Two different libraries were used to work with XML files: ElementTree and minidom. Both
of them were used since the ElementTree library provides a more efficient way of creating
XML files whilst minidom provides an easy way of reading through the storage file, through tag
searching (a tag can be a parent of child and provides information on all data under it).

XML files are also used in the popular VOC Datasets on which the structure of the annotations
is based on: folder, filename, size, class and bounding box as main nodes.

1.2.5 IBM Annotation Tool

The IBM Annotation Tool is a very useful product, as it provides an online tool for creating
annotations for a dataset of images – e.g., upload images, choose between image classification
or object detection, click and drag to make boxes over different objects, with a before chosen
label. Not only the tool allows the creation of bounding boxes for the dataset but it can also
be exported in many different formats such as the one used for YOLO based on txt files or the
one used in this project in the VOC XML format.

6



CHAPTER 2. NEURAL NETWORKS

Chapter 2

Neural Networks

2.1 Concepts of Neural Networks

The software component of this thesis is based on the concept of machine learning. It employs
some powerful and complex learning techniques called neural networks.

Neural networks are mathematical structures the can map changing input data to specific
outputs. Neural networks mimic the function of the brain and represent one branch of Artificial
Intelligence. Lately, these learning methods have become ubiquitous tools, successfully in an
ever-increasing number of domains – e.g. medicine, autonomous driving, Human Computer
Interaction (HCI), computer vision etc.. Neural networks can be used for many tasks, raging
from regression to complex multi-modal classification.

A neural network is structured on layers, each composed of a number of learning units,
called neurons. The more layers, the deeper the network – hence, the name of Deep Neural
Networks. Depending on their position in the network, 3 types of layers can be distinguished:
input, hidden and output. The input layer it is used to ensure the correct dimension of input
data and has no active role in the learning process; the hidden layers is where the neural
network learns, by updating the parameters after each iteration. The output layer assures the
right dimension of the output – e.g. the number of classes in a classification task.

To train a neural network you need to have a dataset containing multiple examples and
the associated desired output, called ground truth. The learning mechanism is employing an
iterative optimization algorithm that minimizes a cost function, that measures how close is the
output of the network from the ground truth.

Fully connected layers

The most general types of layers are fully connected layers. Each neuron in such a layer
l ∈ {1 . . .m}, where m is the total number of layers, excepting the input one, is connected to
all neurons in the previous and next layer as seen in figure 2.1. The outputs of such a layer are
given by the following formulas:

Z [l] = W [l]A[l−1] + b[l] (2.1)

A[l] = σ(Z [l], ) (2.2)

where W [l] are weights matrix of layer l, A[l−1]/A[l] is the input/output matrix and b[l]

signifies the bias parameter. σ denotes an non-liner component of the network called the
activation function (e.g. sigmoid function)

7
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Figure 2.1: Fully Connected Layers [2]

Loss Functions

In order for the network to learn, the weights and biases need to change according to a
cost function. The task of the optimizer is to minimize this loss by changing the parameters
accordingly. There are many types of loss functions, two of which are explored in this project,
the Sum Squared Error (SSE) and the Sparse Categorical Cross Entropy. These losses represent
the error found between the estimated value ŷ and the true value y over m number of examples.

SSE is used in the loss of the YOLO architecture and has the following formula:

L =
m∑
i=1

(y(i) − ŷ(i))2 (2.3)

SSE is sensitive compared to other losses and can be impacted more by outliers in the data.
It can generally be seen in linear regression models.

The sparse categorical cross entropy has the following formula:

L = − 1

m

m∑
i=1

(y(i) log ˆy(i) + (1− y(i)) log(1− ˆy(i))) (2.4)

It can handle multiple classes and the labels provided to it are of integer type as opposed
to simple categorical cross entropy which takes one-hot encoding types of labels. The sparse
version is considered quicker since it only needs an integer as opposed to a whole vector.

Optimization Algorithms

Through backpropagation, the weights and biases of the network (its main parameters) are
changed with each iteration, in an effort to minimize the loss function. The formula through
which this happens varies by choosing different optimization algorithms such as: Adam, RMSProp,
Gradient Descent, SGD (i.e. Stochastic Gradient Descent) and other variations. The algorithm
used in this paper is the Adam optimization algorithm [15] as it works best in most neural
networks. This algorithm makes use of Gradient Descent with Momentum and RMSProp.

The backpropgation of the network is an algorithm that for each iteration computes the
gradients ∂L

∂w
, ∂L

∂b
with respect to all weights and biases. In order to make use of backpropgation,

8
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the aforementioned optimization algorithms are used and impact the weights and biases through
the following general formulas:

W := W − α∇L(W ) (2.5)

b := b− α∇L(b) (2.6)

Where ∇L(W ) and ∇L(b) represent the gradient with respect to weights and biases,
respectively. Different algorithms present different variants of these formulas, like the concepts
used for the Adam algorithm.

First, in order to make sens of these concepts, the exponentially weighted moving averages
must be explained.

The formula for this concept is the following:

vt = βt−1 + (1− β)θt (2.7)

The vt term represents the the moving average at iteration t. The exponential moving
average makes use of the previous average at iteration t− 1 with modifier β representing how
smooth or how precise the average can be, taking values between (0, 1) (i.e. a modifier of 0.9

can represent an average over 10 iterations as given by equation
1

1− β
). The term θt represents

the current value at iteration t. This formula will not give the best average but it is used in deep
learning as it is very memory efficient and as it is the building block for Gradient Descent

with Momentum and RMSProp, algorithms that speed up the search for the minimum of the loss.

The gradient of the loss function with respect to W and b will be denoted as follows:
∇L(W ) = dW and ∇L(b) = db.

Putting Gradient Descent with Momentum

VdW := β1VdW + (1− β1)dW (2.8)

Vd := β1Vdb + (1− β1)db (2.9)

together with RMSProp,

SdW := β2SdW + (1− β2)dW 2 (2.10)

Sdb := β2Sdb + (1− β2)db2 (2.11)

will give the final parameter equations for W and b,

W := W − α VdW√
SdW + ε

(2.12)

b := b− α Vdb√
Sdb + ε

(2.13)

making up the Adam optimization algorithm.

The symbol := represents that the value in question is updated with the new value represented
by the equation.

It has to be noted that α is the learning rate and VdW/b and SdW/b are initialized with zero.

Activation functions

9
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(a) Sigmoid Function (b) tanh Function

Figure 2.2: Activation Functions

Another concept that has to be explained, is the activation function. An activation function
can be correlated with the firing of a neuron. There are many types of activation functions,
the ones that are used in this project are: ReLU (i.e. Rectified Linear Unit), LeakyReLU and
Mish. As mentioned before, the introduce the non-linear component of the neuron.

To better show what activation functions do, the following functions will be presented
briefly: sigmoid, tanh, ReLU and Mish. The sigmoid function is displayed graphically in
figure 2.2a with the following formula:

f(x) =
1

1 + e−x
(2.14)

As it can be seen, the function tends to 0 for negative numbers and to 1 for positive number.
It is centered in 1/2, unlike the next function that has zero-mean.

The tanh function has its graph representation in figure 2.2b with the following formula:

f(x) =
ex − e−x

ex + e−x
(2.15)

It can be seen the tanh function provides a better mean with a center in zero but, because
it’s a function that goes between −1 and 1 and because it saturates really quickly, at these
limits, the slope provided by it is very small, thus, gradient descent will perform very slow.

The ReLU function has its graph representation in figure 2.3a with the following formula:

f(x) = max(0, x) (2.16)

The ReLU function provides a much better slope and it is one of the most used activation
functions, with many alternative variants, such as the LeakyReLU or Mish.

Mish [16] is a smooth non-monotonic activation function. It is similar to Swish [17] and
an improvement over the general ReLU activation function. Its graphical representation can
be found in figure 2.3b and it has the following formula:

10
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(a) ReLU Function (b) Mish Function

Figure 2.3: Activation Functions

f(x) = xtanh(ζ(x)) (2.17)

Where ζ(x) is the softplus activation function:

ζ(x) = ln(1 + ex) (2.18)

The Mish activation is bounded bellow and unbounded above, thus providing a degree of
regularization and avoiding vanishing gradients, respectively. Being a smooth non-monotonic
function it preserves small negative values, which provide better expressivity. Also, as opposed
to ReLU, Mish is continuously differentiable.

Convlutional neural networks

In computer vision, the most common networks are Convolutional Neural Networks or
CNNs. These networks make use of convolutional layers.

The convolutional layers allow for deeper networks and lower number of parameters with
filters that extract different features from the former layer.

It can be observed in figure 2.4 the calculations that are being done. A convolution is done
between the kernel (i.e. the 3× 3 matrix) also named a convolution filter, in this case a Sobel
filter (e.g. a filter that extracts the vertical edges) that is applied as a sliding window across
the 11 × 11 matrix, which represents the input features. This type of matrix convolution is
used in image processing and as it can be seen a dot product is performed between the kernel
and the window, the total sum of these products gives the result of the convolution for that
window. This calculation is repeated along the matrix until it can no longer slide the window
further.

The following equation represents the shape of the output of such a convolutional calculation
for each layer l ∈ {1 . . .m}.

n[l] =
⌊n[l−1] + 2p[l] − f [l]

s[l]
+ 1

⌋
(2.19)

11
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Figure 2.4: Convolutional Layer [3]

The notations used represent the following concepts:

f [l] – filter size

p[l] – padding

s[l] – stride

n[l−1]/n[l] – input/output matrix size

The following equalities can be observed: f [l] = 3 p[l] = 0 s[l] = 1 n[l−1] = 11 – figure 2.4

While f or n are self-explained p and s are not.

Padding (p) is used to put an extra set of numbers around the input matrix. In most cases
those numbers do not affect the result in any significant way. Generally zeros or neighbouring
numbers are used. Padding is used, in general, to keep the dimensions of the input matrix, as
a convolution will downsize the image passing through layers. It can also be observed that the
edge information is not as used as a center point information is. Thus it can be said that a bit of
information is lost along the way. There are two types of padding: ”valid” and ”same”. Valid
padding means no padding is added to the input matrix, while same padding means padding
is added in order to keep the same dimensions of the input matrix. The formula for how much
to pad a matrix, for same padding, is:

s× (n− 1)− n+ f

2
(2.20)

The layer number is no longer necessary for this equation since the size of the input will be
equal to the size of the output.

Stride (s) is the number by which the window is sliding across the input matrix.

A convolution over a plain has been covered but, in neural networks, convolutions are usually
made over volumes. A well known example of such a volume is a colored image. This image
has 3 channels – red, green and blue with matrices where each number represents the intensity
of the pixel in that particular channel. When applying a convolutional layer, multiple filters
are used. Most used dimensions are: 16, 32 and more filters, but other user-chosen numbers

12
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can be used as well. The final output shape of the convolution will be: nh × nw × nc. Where
nh and nw represent the size for height and width, and nc represents the number of channels.

Each filter will have a size of f [l]× f [l]×n[l−1]
c . The number of channels of the filter is given

by the input, in order to make the correct computation. The number of output channels n
[l]
c is

given by the number of filters applied.

All of these concepts tied together, represent the convolutional layer in a neural network.
There can be fully convolutional networks or networks with convolutional layers that end in a
few fully connected layers.

The number of parameters to be learned in a convolutional layer are:

f [l] × f [l] × n[l−1]
c × n[l]

c (2.21)

The computational cost of such a layer is the following:

f [l] × f [l] × n[l−1]
c × n[l]

c × n[l] × n[l] (2.22)

Other than the conventional layers and the activation layers, there are different layers that
help in specific directions such as regularization or normalization.

In order to understand the use of regularization, first the concepts of underfitting and
overfitting have to be explained. These two can be understood in terms of high bias or high
variance, respectively. Having a high training error (i.e. the model does not fit the data good
enough) means a high bias, thus, underfitting. Having a big difference between the training error
and the test error means there is high variance, thus, overfitting. In figure 2.5 a better graphical
intuition can be gained. In order to address each of these problems, there are few steps that
can be taken. For underfitting the best approaches are getting a bigger network and training
the data for longer. For overfitting the best approaches are getting more data or include some
regularization techniques in the training process. Both of them can also be addressed through
modifying the neural network architecture, but this leads to a lot of experimentation, while the
methods mentioned above are proven steps to enhance your performance.

As it can be seen regularization can be used to address overfitting. There are different types
of regularization such as `2 regularization and dropout which are used in this project and which
will be explained further.

The `2 regularization is an addition to the cost function with the Frobenius norm. The
function looks like this:

J(w[1], b[1], ..., w[l], b[l]) =
1

m

m∑
i=1

loss(ŷ(i), y(i)) +
λ

2m

L∑
l=1

|| w[l] ||2F (2.23)

Where λ is the regularization parameter and:

|| w[l] ||2F=
n[l−1]∑
i=1

n[l]∑
j=1

(w
[l]
i,j)

2 (2.24)

Through backpropagation, this leads to the following update of the weights of each layer l:

13
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w[l] := w[l] − α[∇L(w[l]) +
λ

m
w[l]]

:= w[l] − λα

m
w[l] − α∇L(w[l])

:= (1− λα

m
)w[l] − α∇L(w[l])

This is why `2 regularization also gets the name weight decay.

The reason why `2 regularization works, is because it manages to make the fitting more
linear, by decreasing the value of weights, thus, some neurons along the network have a lesser
impact on the result.

Another way to implement regularization is Dropout. This type makes use of a probability
to eliminate a number connections from the network, resulting in a smaller network. Because
dropout eliminates nodes at random, it spreads the weight impact across, since the node that
calculates with the help of the inputs can not rely on any one feature, having a similar effect
to `2 regularization but, with different scaling. One of the disadvantages of dropout is that
it reduces the networks capacity, or it is thinning the network, thus, a wider network may be
required during training.

Other than regularization there is normalization. In this thesis, a layer named batch
normalization is used. In neural networks normalization and standardization (which is usually
referred to as normalization, as well) are used to bring the input data to a certain smaller
scale (e.g. from 10 – 10, 000 to 0 – 1), as pre-process step. This normalization helps by
reducing the training time and reduces the chance of exploding gradients, because of input
features having very large values, which will cascade across the network. The cascade effect
is still not completely avoided; some neurons tend to have a much higher impact than others,
batch normalization is applied as standardization to the inputs of a layer for each mini-batch,
also reducing the number of training epochs needed. This technique adds two more learnable
parameters µ and σ as explained bellow:

z =
x− µ
σ

(2.25)

Where x represents the input, µ is the mean and σ is the standard deviation. It then multiplies
by an arbitrary parameter g and adds another arbitrary parameter b, giving the final form:

x̂ = zg + b (2.26)

One last concept that will be needed for this project is transfer learning. If the training dataset
is small (e.g. 100 images like the case of this project), transfer learning can be a very good
mechanism for getting good results. The idea behind it is that some architectures are trained
on very large datasets, such as ImageNet, and many of the low end features have been learned.
Features such a lines, corners or other low level ones. Through transfer learning, the new
network can borrow the learned weights and train just the high level features. The high level
features can be just the last layer used for classification, or multiple layers down if the training
dataset is larger and it has the confidence that it can improve accuracy. For transfer learning
the inputs have to be the same (e.g. images for images, audio for audio). The concept for
using just part of the network is known as freezing. Freezing means that the first layers of the
network, those that hold the low level features, are frozen or better said, not trained. Data
is propagated only forward through the frozen layers and the training process affects only the
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Figure 2.5: Types of data fitting [4]

last layers,

Hyperparameters

As mentioned before the W and b parameters are modified while training such that the
neural network will learn to do the given task. In order to achieve the best performance, and
the best parameters, various hyperparameters have to be tuned. These hyperparameters are
the variable elements of the network, such as: α (i.e. learning rate), β (i.e. exponentially
weighted averages modifier), number of layers, number of neurons, kernel size, number of filters
and others. All these moving parts of the neural network have to be tuned in order to achieve
the best performance.

The description of neural networks and the notations were inspired by Andrew Ng’s series
on Deep Learning [5].

2.2 Modified Tiny YOLO

The first type of neural network used for developing the navigation system, was the object
detection network YOLOv3 [18]. Since then, version 4 [19] has been released, by a new team, on
23rd of April, this year. These versions are the state of the art networks in object detection.
YOLO provides great accuracy at a high framerate. The chosen version for this project is Tiny

YOLO, a small version that came together with the YOLOv3 network. The reason for choosing
this version, is that even though, YOLOv3 provides great results, it is expensive in terms of
computational and storage resoruces. Thus, in order to have a network that works on mobile
platforms or low-end hardware Tiny YOLO was best suited for this.

Tiny YOLO was created with embedded systems in mind. While the accuracy of Tiny YOLO

is lower of mAP – 33.1 compared to YOLOv3 of mAP – 55.3 it is much faster and requires less
computational power. The number of FLOPS and FPS of Tiny YOLO are FLOPS – 5.56 Bn
and FPS – 220 compared to YOLOv3 FLOPS – 65.86 Bn and FPS – 35.

2.2.1 How does YOLO work?

There are two types of object detection networks: one-stage detectors and two-stage detectors.
First, a few two-stage detector examples: Fast R-CNN, Faster R-CNN or R-FCN. These type of
detectors, use a sliding window technique to classify and localize objects in a window. The latest
versions of R-CNN, such as Faster R-CNN, make use of region proposals and segmentation, in
order to classify only where necessary. On the other hand, one-stage detectors, such as: YOLO,
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Figure 2.6: YOLO’s Simple Output

SSD or RetinaNet; are end-to-end neural networks, that look only once at the features of the
image and provide all the results at once. That is one of the reasons why YOLO stands for -
”You Only Look Once”. The one-stage detectors provide great speeds while almost retaining
the accuracy of two-stage detectors.

YOLO takes as input the matrices of an image representing its pixels. These are taken
through what is called a backbone network such as: Darknet, ResNet or VGG16. The backbone
is responsible for learning and classifying the image. The second part of an object detector
is the head which is responsible for taking the result of the backbone and transforming those
into information such as: confidence, class and bounding-box position. Because the YOLO

architecture is used, the Tiny YOLO head will be used for the implemented system.

YOLO’s simple output is y = (pc, bx, by, bw, bh, c) and can be observed in figure 2.6.

The number of classes can vary from task to task, in this project there are a number of 3
classes (i.e. Red, Blue, Jaguar). Thus, it can be said that each bounding box is represented by
8 numbers, 3 classes plus 1 confidence number and 4 position numbers.

YOLO also makes use of anchors, which are height/width ratios that represent different
classes. For example a human may not have the same ratio as a car – skinny and tall as
opposed to wide and short. Anchors are very useful when two objects overlap in a image
allowing the user to detect both correctly. After encoding for example an image of shape
[m× 416× 416× 3], the final output would be of shape [m× 13× 13× 3× 8].

As stated before 8 represents the bounding box, 3 is the number of anchors, 13×13 represents
the grid by which YOLO detects objects and m is the number of the example to be detected.

From the specified grid if an object is found in one of the grid cells, it will be used for
detecting the object. A representation of the grid can be seen in figure 2.7, where the cell
painted in red is the grid cell in which part of the object was found.

The network does this for all cells and through training it will get closer and closer to the
ground truth. Due to the fact that there are many cells and anchors, when the network will
detect, there will be more bounding boxes than necessary. There are two ways, to clear them
out and get the best results. First is a threshold with regards to confidence, in this case pc ∗×c,
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Figure 2.7: Image Grid

Figure 2.8: Intersection over Union [5]

this equation makes use of Python broadcasting. Usually, if this confidence for a box is lower
than 0.5, that box is eliminated; this threshold can be chosen by the user. Another way to
eliminate the remaining boxes is through non-max suppression. Non-max suppression oversees
boxes that overlap each other by a certain threshold and that share the same class. It selects
the box with the highest score and iteratively removes the boxes that significantly overlap (i.e.
over the specified threshold). In order to do this it makes use of IoU (Intersection over Union)
seen in figure 2.8. The IoU is the parameter that has to be above the set threshold.

Another concept that has to be taken into consideration is that YOLO predicts across multiple
scales [18]. Previous versions of YOLO had trouble with small objects thus, it now makes use of
upsampling at the end of the network similar to pyramid networks. It makes use of previous
feature maps and upsamples it by 2. At the end these two outputs are concatenated and then
the final features are computed with 2 more convolutional layers. Giving the network two grids
for computing features, the original 13× 13 one and a 26× 26 one, after upsampling.

With all these concepts detailed, the backbone of the the Modified Tiny YOLO can be
presented. Only the backbone is presented, as this is the part of the network that has been
significantly modified.

The orignial Tiny YOLO architecture, has the following structure:

1 def tiny_yolo_body(inputs , num_anchors , num_classes):

2 ’’’Create Tiny YOLO_v3 model CNN body in keras.’’’

3 x1 = compose(

4 DarknetConv2D_BN_Leaky (16, (3,3)),
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5 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

6 DarknetConv2D_BN_Leaky (32, (3,3)),

7 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

8 DarknetConv2D_BN_Leaky (64, (3,3)),

9 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

10 DarknetConv2D_BN_Leaky (128, (3,3)),

11 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

12 DarknetConv2D_BN_Leaky (256, (3,3)))(inputs)

13 x2 = compose(

14 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

15 DarknetConv2D_BN_Leaky (512, (3,3)),

16 MaxPooling2D(pool_size =(2,2), strides =(1 ,1), padding=’same’),

17 DarknetConv2D_BN_Leaky (1024 , (3,3)),

18 DarknetConv2D_BN_Leaky (256, (1,1)))(x1)

19 y1 = compose(

20 DarknetConv2D_BN_Leaky (512, (3,3)),

21 DarknetConv2D(num_anchors *( num_classes +5), (1,1)))(x2)

22

23 x2 = compose(

24 DarknetConv2D_BN_Leaky (128, (1,1)),

25 UpSampling2D (2))(x2)

26 y2 = compose(

27 Concatenate (),

28 DarknetConv2D_BN_Leaky (256, (3,3)),

29 DarknetConv2D(num_anchors *( num_classes +5), (1,1)))([x2,x1])

30

31 return Model(inputs , [y1 ,y2])

Parameters for Tiny YOLO:

====================================================================

Total params: 8,680,864

Trainable params: 8,674,496

Non-trainable params: 6,368

____________________________________________________________________

In this case DarknetConv2D BN Leaky represents a Convolutional Layer with `2 kernel
regulizer, a Batch Normalization Layer and a LeakyReLU activation, while a simple DarknetConv2D
is just a Convolution Layer with `2 kernel regulizer. Either of the two have as inputs the number
of filters and the kernel size, as in the case of the first one, with a number of 16 filters and a
kernel size of 3× 3.

As it can be seen from the output convolutions the final shapes are 13 × 13 × 24 and
26×26×24. This time having the last two dimensions flattened (i.e. a shape of 13×13×3×8
to a shape of 13× 13× 24).

With the help of various modifications the number of parameters will be reduced in the
Modified Tiny YOLO version.

The modified version has the following structure:

1 def bsctiny_yolo_body(inputs , num_anchors , num_classes):

2 ’’’Create Tiny YOLO_v3 model CNN body in keras.’’’

3 x1 = compose(

4 _bs_conv(filters =32, strides =(1,1)),

5 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

6 _bs_conv(filters =32, strides =(1,1)),

7 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

8 _bs_conv(filters =64, strides =(1,1)),

9 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

10 _bs_conv(filters =128, strides =(1,1)),

11 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

12 _bs_conv(filters =256, strides =(1,1))

13 )(inputs)

14 x2 = compose(

15 MaxPooling2D(pool_size =(2,2), strides =(2 ,2), padding=’same’),

16 _bs_conv(filters =512, strides =(1,1)),

17 MaxPooling2D(pool_size =(2,2), strides =(1 ,1), padding=’same’),
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18 _bs_conv(filters =1024 , strides =(1 ,1)),

19 _bs_conv(filters =256, strides =(1,1), kernel_size =(1 ,1)))(x1)

20 y1 = compose(

21 _bs_conv(filters =512, strides =(1,1)),

22 DarknetConv2D(num_anchors *( num_classes +5), (1,1)))(x2)

23

24 x2 = compose(

25 _bs_conv(filters =128, strides =(1,1), kernel_size =(1 ,1)),

26 UpSampling2D (2))(x2)

27 y2 = compose(

28 Concatenate (),

29 _bs_conv(filters =256, strides =(1,1)),

30 DarknetConv2D(num_anchors *( num_classes +5), (1,1)))([x2,x1])

31

32 return Model(inputs , [y1 ,y2])

Parameters for Modified Tiny YOLO:

====================================================================

Total params: 168,263

Trainable params: 155,263

Non-trainable params: 13,000

____________________________________________________________________

As it can be seen the number of parameters has been drastically reduced. The Modified

Tiny YOLO structures achieves a reduction in parameters of 98.1% from the original number of
parameters. It can also be observed that the number of Non-trainable parameters has increased;
this will be discussed later. The overall structure of the architecture has not been modified, but
now the training is approached diferently. The numbers of filters have been increased from 16 to
32 for the first layer. The most striking difference is the one between DarknetConv2D BN Leaky

to bs conv, which stands for blueprint separable convolution [6]. With the help of this type of
convolution the number of parameters has been reduced, while getting a better inference and
accuracy.

2.2.2 Modified Tiny YOLO Concepts

In order to understand Blueprint Separable Convolutions, Depthwise Separable Convolutions
must be acknowledged first. The concept of depthwise separable convolutions was taken from
the implentation of MobileNetv1 [20].

Depthwise separable convolutions make use of a depthwise convolution and a pointwise
convolution which is a 1× 1 convolution. A depthwise convolution applies convolution to each
channel of the input. The pointwise convolution creates a linear combination of the result for
the number of filters that need to be applied, in a extra-kernel approach.

It can be recalled that a normal convolution applies a filter to an input feature map and
then combining the results to create a new feature map, having finer more complex details.
The concept of depthwise separable convolution splits this act in two, by applying the filter
through the depthwise convolution and combining the results with a pointwise convolution.

In subsection 2.1 the computational cost of a convolutional layer was presented as:

f [l] × f [l] × n[l−1]
c × n[l]

c × n[l] × n[l] (2.27)

Taking first the cost of a depthwise convolution:

f [l] × f [l] × n[l−1]
c × n[l] × n[l] (2.28)

19



CHAPTER 2. NEURAL NETWORKS

Figure 2.9: Depthwise Separable Convolution

Combined with the cost of the pointwise convolution that follows it:

n[l−1]
c × n[l]

c × n[l] × n[l] (2.29)

It can be seen that a smaller cost is achieved, without affecting the overall results of the
network:

f [l] × f [l] × n[l−1]
c × n[l] × n[l] + n[l−1]

c × n[l]
c × n[l] × n[l] (2.30)

The amount of the reduction is of:

f [l] × f [l] × n[l−1]
c × n[l] × n[l] + n

[l−1]
c × n[l]

c × n[l] × n[l]

f [l] × f [l] × n[l−1]
c × n[l]

c × n[l] × n[l]
=

1

n
[l]
c

+
1

f [l],2
(2.31)

Using a 3 × 3 depthwise covolution achieves a reduction in parameters of 8 to 9 times
smaller (i.e. from 8,680,864 to 1,085,108) It can be observed that already a significant drop in
the number of parameters has been achieved without affecting the network’s accuracy.

To better understand how the number of parameters is reduced a graphical representation
will be shown in figure 2.9.

It can be observed from the figure that the depthwise convolution passes through the input
one channel at a time creating a new filtered map with the same number of channels, then the
pointwise convolution makes the combination of the previous result, giving the final feature
map across the desired number of channels.

The number of parameters can be computed with the help of the following equations:

For the depthwise convolution the number of trainable parameters is:

n[l−1]
c × f [l] × f [l] (2.32)
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Figure 2.10: Filter Correlation along Depth Axis [6]

For the pointwise convolution the number of trainable parameters is:

n[l−1]
c × n[l]

c (2.33)

The reduction compared to a normal convolution will be the same as it was for the computational
cost:

n
[l−1]
c × f [l] × f [l] + n

[l−1]
c × n[l]

c

n
[l−1]
c × n[l]

c × f [l] × f [l]
=

1

n
[l]
c

+
1

f [l],2
(2.34)

In the MobileNet architecture there are two more concepts: width multiplier and resolution
multiplier. Two more hyperparameters that allow to change the width of the layers and the
resolution of the input but they are not used in this version of Modified Tiny YOLO. While
they do help in achieving a much smaller network, they significantly affect its accuracy.

In order to bring the number of multiplications-additions and parameters to an even lower
amount a new version of separable convolutions was issued - the blueprint separable convolutions
[6].

These type of convolution still make use of a separation of general convolutions by using
pointwise and depthwise convolutions. The difference between these and depthwise separable
convolutions is that they first make use of the blueprint created by the pointwise convolution
and then apply the filter of the depthwise convolution.

Further on, blueprint separable convolution and depthwise separable convolution will be
referred to as BSConv and DSC respectively.

While DSC makes use of cross-kernel correlations BSConv makes use of intra-kernel correlations.
The team behind BSConv [6] showed intra-kernel correlation along the depth axis. Observing
that the slices for a filter have the same f [l] × f [l] ’blueprint’ with variations like a negative
scale or simply an inverted version. They determined the variance of the filter kernel through
PCA. The correlation and variation can be seen in figures 2.10 and 2.11. With the axis of 2.11
being ’filter count’ on the Oy axis and ’filter kernel variance explained by PC1 [%]’ on the Ox

axis with the same networks being tested.

To better represent how to BSConv operates a few graphical representation will be shown
to compare and to go trhough the steps it takes in figures 2.12, 2.13 and 2.14.

There are two types of BSConvs proposed by [6]. The unconstrained one which is just the
reverse of DSC but has a bigger cost in terms of computation as opposed to DSC, while retaining
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Figure 2.11: Filter Variance [6]

almost the same number of parameters of DSC. The second type is the Subspace BSConv that
provides much better results.

In order to see the difference the cost and number of parameters formulas will be deduced:
First layer computational cost for Unconstrained BSConv:

n[l−1] × n[l−1] × n[l−1]
c × n[l]

c (2.35)

Last layer computational cost for Unconstrained BSConv:

f [l] × f [l] × n[l] × n[l] × n[l]
c (2.36)

This gives a total reduction in computational cost for the Unconstrained BSConv of:

n[l−1] × n[l−1] × n[l−1]
c × n[l]

c

f [l] × f [l] × n[l] × n[l] × n[l−1]
c × n[l]

c

+
f [l] × f [l] × n[l] × n[l] × n[l]

c

f [l] × f [l] × n[l] × n[l] × n[l−1]
c × n[l]

c

(2.37)

After simplification the final result will be:

n[l−1] × n[l−1]

f [l] × f [l] × n[l] × n[l]
+

1

n
[l−1]
c

(2.38)

First layer computational cost for Subspace BSConv:

n[l−1] × n[l−1] × n[l−1]
c × n

[l]
c

α
(2.39)

Second layer computational cost for Subspace BSConv:

n[l−1] × n[l−1] × n
[l]
c

α
× n[l]

c (2.40)

Last layer computational cost for Subspace BSConv:

f [l] × f [l] × n[l] × n[l] × n[l]
c (2.41)
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Figure 2.12: BSConv comparison with Standard Convolution Layer [6]

Figure 2.13: Unconstrained BSConv

This gives a total reduction in computational cost for the Subspace BSConv of:

n[l−1] × n[l−1] × n[l−1]
c × n

[l]
c

α

f [l] × f [l] × n[l] × n[l] × n[l−1]
c × n[l]

c

+
n[l−1] × n[l−1] × n

[l]
c

α
× n[l]

c

f [l] × f [l] × n[l] × n[l] × n[l−1]
c × n[l]

c

+
f [l] × f [l] × n[l] × n[l] × n[l]

c

f [l] × f [l] × n[l] × n[l] × n[l−1]
c × n[l]

c

(2.42)

After simplification the final result will be:

n[l−1] × n[l−1]

f [l] × f [l] × n[l] × n[l]
× 1

α
+

n[l−1] × n[l−1] × n
[l]
c

α

f [l] × f [l] × n[l] × n[l] × n[l−1]
c

+
1

n
[l−1]
c

(2.43)

23



CHAPTER 2. NEURAL NETWORKS

Figure 2.14: Subspace BSConv

It can be observed that the computational cost for the Subspace BSConv decreases much
quicker than DSC and it is a lot smaller than that of Unconstrained BSConv.

The α paramteter used in the Subspace BSConv is a positive integer number chosen by the

user, divisor of n
[l]
c . This creates a subspace that reduces the number of parameters used by

the normal pointwise convolution and outputs the desired n
[l]
c number of filters. The number

32, as seen in the figure 2.14 is the α chosen in the Modified Tiny YOLO architecture, giving
the best results.

The number of parameters for the Unconstrained BSConv remains similar to DSC as it can
be seen in the following equations:

For the first layer – pointwise convolution:

n[l−1]
c × n[l]

c (2.44)

For the last layer – depthwise convolution:

n[l]
c × f [l] × f [l] (2.45)

With the reduction being of:

n
[l−1]
c × n[l]

c

n
[l−1]
c × n[l]

c × f [l] × f [l]
+

n
[l]
c × f [l] × f [l]

n
[l−1]
c × n[l]

c × f [l] × f [l]
=

1

n
[l−1]
c

+
1

f [l] × f [l]
(2.46)

It can be observed that the number of parameters for the Unconstrained BSConv is slightly
higher than that of DSC because the first term is divided by the channels of the previous layer.
The reason why it is just slightly higher is because the number of filters usually increases very
quickly, thus, the first term has only a small influence on the overall result.

Until now the Unconstrained BSConv does not seem to be much better than the DSC, it has
a bigger computational cost and almost the same number of parameters. The reason behind
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the higher computational cost is that it first uses a pointwise convolution and as presented in
both [20] and [6] papers, over 95% of the parameters can be found there and more than 70%
of the computational cost is represented by the pointwise convolutions. Having the pointwise
first means more computations have to be performed since the input has more features to
be computed (i.e. instead of having the smaller n[l] x n[l] feature map it has the original
n[l−1] x n[l−1] which is almost always bigger and has to combine those features into a new
number of channels). It does not hold only disadvantages, since the feature map given, first
uses a pointwise, the depthwise convolution can fully use the feature maps – as stated by the
BSConv team – ”feature maps from the first regular convolution can be fully utilized by the
depthwise convolution via the preceding pointwise distribution. In contrast, each kernel of the
first depthwise convolution of the original MobileNetV1 model can only benefit from a single
feature map, leading to limited expressiveness” [6].

On the other hand the Subspace BSConv has a much lower number of parameters as it can
be seen from the following sequence of formulas:

For the first layer - pointwise convolution:

n
[l]
c

α
× n[l−1]

c (2.47)

For the second layer - pointwise convolution:

n[l]
c ×

n
[l]
c

α
(2.48)

For the last layer - depthwise convolution:

n[l]
c × f [l] × f [l] (2.49)

With the reduction being of:

n
[l]
c

α
× n[l−1]

c

n
[l−1]
c × n[l]

c × f [l] × f [l]
+

n
[l]
c ×

n
[l]
c

α

n
[l−1]
c × n[l]

c × f [l] × f [l]
+

n
[l]
c × f [l] × f [l]

n
[l−1]
c × n[l]

c × f [l] × f [l]
=

1

n
[l−1]
c

+

+
n
[l]
c

α× n[l−1]
c × f [l] × f [l]

+
1

α× f [l] × f [l]

(2.50)

It can be observed that the reduction in parameters is much bigger and that is why the
number of parameters of the Modified Tiny YOLO is 155,263, while the number of parameters
for Tiny YOLO is 8,674,496. Moreover, because of the advantage mentioned for the Unconstrained
BSConv the Modified Tiny YOLO gets better accuracy results compared to Tiny YOLO when
training from scratch and similar results or even slightly better when Tiny YOLO makes use of
transfer learning.

On the other hand, the number of non-trainable parameters has increased. It’s because
convolution function is now being formed out of three layers and has two more batch normalization
layers for the first two pointwise convolutions. These layers do not have an activation function
attached, only the final depthwise layer does.

2.2.3 Results of Modified Tiny YOLO

With a dataset of just 100 images the network achieves an accuracy of above 96%. An example
can be seen in figure 2.15a, whereas visual results are depicted in figure 2.15b. As a result of
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(a) Detection Results

(b) Detection Image Output

Figure 2.15: Modified Tiny YOLO Results

the low number of parameters the output weights are only 894 KB compared to the 34 MB of
the normal architecture. The size of the weights is given for the Keras implementation of the
network, not the original one implemented in C, with .h5 format file.

Training Tiny YOLO from scratch on the normal architecture gets lower accuracy for detecting
Red and Blue classes and it is having trouble detecting the Jaguar class as it can be seen in
figure 2.16a. Testing on other different images the normal architecture struggles with red and
blue objects as well. On the other hand using transfer learning the network does get better
results, but it still struggles with finding the 4x4 Jaguar Platform as it can be seen in figure
2.16b, also the accuracy for the red and blue objects is lower than that of Modified Tiny YOLO

version.

All three networks were tested over 100 epochs with a batch of 8 and a learning rate of 0.01
for the first 50 epochs and a learning rate of 0.001 for the last 50 epochs.

2.2.4 YOLO Comparison

As it can be seen, the Modified Tiny YOLO model is a big improvement over the standard
architecture of Tiny YOLO. The areas where the architecture was improved is in its number of
parameters and accuracy.

The are a lot of features, methods and techniques that improve networks and that also
improve inference. More and more of this techniques are generally applicable. The Blueprint
Separable Convolution and the Depthwise Separable Convolution are clear examples of this.
More and more teams are providing small, well performing networks and are improving and
creating different methods constantly. As opposed to early days when the main focus of building
neural networks was on how to build the largest network with the most parameters, due to the
rise of IoT and mobile devices, small networks that are able to work on low end or small devices
are needed more and more.
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(a) Detection Image Output
(b) Detection Image Output with Transfer
Learning

Figure 2.16: Tiny YOLO Results

Architecture No. of Layers Loss Function Optimizer
Tiny YOLO 20 SSE Adam
Tiny YOLO w/ transfer
learning

20 SSE Adam

Modified Tiny YOLO 42 SSE Adam

Table 2.1: Main features of used NNs

Architecture No. of
Conv

No. of Pool
Layers

No. of
Depthwise
Conv

No. of
Pointwise
Conv

Tiny YOLO 13 6 - -
Tiny YOLO w/ transfer
learning

13 6 - -

Modified Tiny YOLO 36 6 11 22

Table 2.2: Layers of used NNs

Architecture Red Blue Jaguar
Tiny YOLO 0.89 0.89 -
Tiny YOLO w/ transfer
learning

0.89 0.95 0.51

Modified Tiny YOLO 0.99 0.99 0.96

Table 2.3: Accuracy of used NNs

The accuracy for each class has been calculated by taking the values predicted for the test
images and making the average.
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Architecture No. of trainable
params

No. of non-
trainable
params

Tiny YOLO 8,674,496 6,368
Tiny YOLO w/ transfer
learning

8,674,496 6,368

Modified Tiny YOLO 155,263 13,000

Table 2.4: Parameters of used NNs

The tables provide some interesting views on how the networks compare. As it can be
seen the number of layers for the Modified Tiny YOLO is larger, but the types of layers are
different. Although the layers are of different types their main objectives are the same, making
a convolutional layer. It can be seen that the approach of the BSConvs is better by lowering
the number of parameters and increasing the accuracy, making it even better than Tiny YOLO

with transfer learning.

2.3 Patch Model

The Patch Model is a very different architecture compared to YOLO. This architecture was
build from scratch as a two-stage detector, with a completely different strategy. It is trained
purely as a classifier, and afterwards a post-processing step is employed before it is fed to the
path-finding algorithm.

2.3.1 Dataset for Patch Model

To train such structure, a different type of dataset had to be built. This dataset is composed
of 16× 16 pixels images, basically splitting the images from the original dataset into a 26× 26
grid and labeling each patch of 16×16 pixels with its corresponding class. This type of dataset
was achieved by making, first a patch annotation script and after that a patch split script.

The patch annotation script takes the XML annotation of each image and slides a window
across the shape of the image. If the window is inside the bounds of any object then it labels
that patch with the objects name, and if does not find itself inside the bounds of any object then
it labels that patch as background. In order to make sure that the patch is inside the bounds of
an object since the objects do not match the grid perfectly, all corners were taken into account
and multiple checks were done in order to asses if any corner of the patch is inside the bounds
of an object. As an example: if the bottom right corner of the patch is taken as assessment
point then – if xmax of the patch is bigger than xmin and smaller than xmax of the bounding box
and if ymax of the patch is bigger than ymin and smaller than ymax of the bounding box then
the patch is inside the object’s borders. For clarity: (xmin, ymin) – top left corner, (xmin, ymax)
– bottom right corner, (xmax, ymin) – top right corner and (xmax, ymax) – bottom right corner.
To verify a good representation of the target object is captured, another parameter was added,
the RANGE INT. This range is a variable that is added or subtracted from xmin, ymin, xmax or
ymax, thus, making the bounding box smaller and making sure the annotation captures more
of the object and not a large part of background and just a small part of the object.

The information is then stored in another XML file with the following information: all new
676 bounding boxes with their positions and class names, together with the image path from
which all the bounding boxes were created.
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(a) Background

(b) Jaguar

(c) Red

(d) Blue

Figure 2.17: Patch Dataset

Because the number of 676 bounding boxes is very large and because a large percent of
them represent background, the split for background is done separately, as it would take too
much time to process all the annotations and image splitting.

Image splitting is the second part of morphing the dataset according to the patch model.
Reading the newly created annotations in the XML format, the splitting script makes use of the
path of the image and the class names; for each class name the exact bounding box is cut from
the image and stored as a new smaller image in a folder representing that class (e.g. Red), thus,
created 4 folders: Background, Red, Blue and Jaguar with new, hundreds of 16 × 16 images
each. This forms the final dataset for the patch model.

The results can be seen in figure 2.17.

Although this is the final dataset, it still needs to be pre-processed in order to input it into
the network. To do this all images are read by class name and added as numpy arrays to an
x training set, at the same time, the class name is added to another list y, which represents
the labels of the training set. The numpy array is then reshaped with the following shape (-1,
16, 16, 3), where -1 is representative for the number of examples passed (i.e. if there are 164
images then -1 is representative for 164), 16 and 16 represent the size of the image by width
and height and 3 is the number of channels as these pictures are colored, using RGB encoding.
These sets are then saved in two .pickle files for further use in a neural network. Pickle is a
Python method used for serializing and de-serializing information. In this case the information
is converted in memory as a byte stream and saved in the .pickle file, that can be later de-
serialized for use in a program. A pickle serialization should not be confused with compression,
which encodes data to occupy less space on disk.

2.3.2 The Keras model

The neural network was built in Keras and it has the X.pickle input normalized by 255 as
pixels have a range of [0, 255]. Multiple variants were experimented with, giving the final model
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which looks like this:

1 model = Sequential ()

2 model.add(Conv2D (32, (3, 3), input_shape=X.shape [1:], kernel_regularizer=l2(5e-4)))

3 model.add(Activation(’relu’))

4 model.add(MaxPooling2D(pool_size =(2, 2)))

5

6 model.add(Conv2D (64, (3, 3), kernel_regularizer=l2(5e-4), padding=’same’))

7 model.add(Activation(’relu’))

8 model.add(Dropout (.2))

9

10 model.add(Conv2D (128, (3, 3), kernel_regularizer=l2(5e-4), padding=’same’))

11 model.add(Activation(’relu’))

12 model.add(Dropout (.2))

13

14 model.add(Conv2D (256, (3, 3), kernel_regularizer=l2(5e-4), padding=’same’))

15 model.add(Activation(’relu’))

16 model.add(Dropout (.2))

17

18 model.add(Flatten ())

19

20 model.add(Dense (4))

21 model.add(Activation(’softmax ’))

It can be seen that the network has 4 convolutional layers with an increasing number of
filters. Although creating a model is an experimental process where libraries like Keras Tuner

provide tools for even faster experimentation, some of the parameters can be explained. First
of all Keras Tuner was not used in this network, a manual approach was used, with the help
of for loops and lists and with the help of the TensorBoard library for comparison between
networks.

The number of 4 convolutional layers has been reached by first starting with just one layer.
The more layers a network has, the more complex features it can encode in its weights.

Along the convolutional layers there are activation functions of type ReLU. In this case a
LeakyReLU is not needed as it does not get any significant improvements, thus, a simple ReLU
function was chosen.

A pooling layer was also added after the first convolutional layer to downsample the image
and summarize the feature map created by the convolutional layer. This is useful for the
robustness of the feature map.

The last is a dense layer (i.e. a fully connected layer) with a softmax activation function in
order to output the four types of classes with values ranging from 0 to 1. In order to add the
dense layer the input from the previous layers has to be flattened.

There is one more important feature for the patch model, the addition of the regularization
technique of dropout. After training the model with just convolutional layers and the final
dense layer, according to the validation dataset, the model was overfitting. In order to stop
it from overfitting `2 regularization was used but its impact was limited. Dropout imporved
the generalization of the networks, thus leading to better results. The problem that overfitting
posed in this situation was that it was overfitting for the 4x4 Jaguar Platform class and it
would not detect it properly, most of the time mistaking it for background. While the dropout
layers did not make the model perfect, the jaguar class is a lot more visible.

The prediction script

The image is split in a grid, a 26 × 26 grid with 16 × 16 patches of pixels. The prediction
makes use of a sliding window technique instead of an end to end prediction of all patches.
The grid gives the number of predictions per image. Each patch is classified using the model
and the image is re-stitched using the predicted patches. Each classified patch is replaced by
specific color of the label: white for background, black for the Jaguar Platform, red for Red
Obstacle and blue for the Blue Pass Through Object.

Position data
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(a) Original Image (b) Detection Image Output

Figure 2.18: Patch Model Results

(a) Original Image (b) Detection Image Output

Figure 2.19: Patch Model Results

As opposed to the YOLO model, the Patch Model does not provide bounding boxes and,
thus, does not provide xmin, ymin, xmax and ymax from the start. These positions have to be
computed after the prediction for each patch. In order to do this dictionaries and lists are used
to store the positions for each object. For getting the positions (xmin, ymin) and (xmax, ymax)
the first patch that is representative of a label is taken and the last patch that is representative
of the same label is also taken. The (xmin, ymin) of the overall bounding box is the (xmin, ymin)
of the first patch and (xmax, ymax) of the overall bounding box is the (xmax, ymax) of the last
patch for the represented label.

While building this approach a problem was encountered. If there are just singular representations
of each class then the script performs correctly. On the other hand, if there are multiple objects
of the same class, the first patch and the last patch will not correspond to the same object. To
split the objects into separate lists, the algorithm looks for the next patch on Oy axis, if the
next patch represents the same label then it represents the same object, if does not represent
the same label then the list for the current object is closed and the list for the next object is
opened. In the case of background patches, no lists are created, as there is no need for bounding
boxes representing the background.

2.3.3 Results of the Patch Model

With this approach the system can give the same output data as the YOLO model but, it also
performs segmentation on the image, trying to achieve an accurate representation of the objects,
not in terms of a bounding box but, in terms of the actual shape of the object (e.g. round
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object, non-uniform objects like the Jaguar 4x4 Platform).

The Patch Model still, does not detect the Jaguar class perfectly, sometimes mistaking it
for the Red class or the Background class. This happens due to the very low resolution of
the images in the dataset making it hard for the network to make a difference between the
two classes and the Jaguar class. While most of the Jaguar 4x4 Platform is of a dark black,
depending on how the light comes across it, some parts of it might look close to white due to
the to its reflective (metallic) material. Not only this, the Jaguar 4x4 Platform, also has white
patches on it, making it even harder to make the perfect shape. In most of the tests, a good
enough contour can be seen on the final detection image.

The training of the network is very fast due to the low resolution images, but on the second
stage of detection, in the prediction stage, the system can be slow. It is slow because not only
does it have to do a prediction, it has to do a prediction for each 16 × 16 patch for the test
image, compute the xmin, ymin, xmax, ymax positions and recreate the image for the segmented
view.

The number of parameters of the Patch Model is:

=================================================================

Total params: 438,596

Trainable params: 438,596

Non-trainable params: 0

_________________________________________________________________

As it can be seen the number of parameters is larger than that of the Modified Tiny YOLO.
The blueprint separable convolution modification was experimented with in the Patch Model

as well but, with worse results than the standard convolutions.

The overall accuracy of the Patch Model is of 98% but, it is clear that there are still a
considerable amount of false positives. Some results of the Patch Model can be seen in figures
2.18 and 2.19.

In the end the Patch Model provides more details about the image that it’s testing but, it
is slower and prone to errors.

2.4 Advantages and disadvantages

Comparing the two created networks Modified Tiny YOLO and Patch Model, a few advantages
and disadvantages can be seen. Both of them have been used in the pathfinding algorithm,
with various degrees of success.

The Modified Tiny YOLO model provides a great accuracy in classifying objects as well as
providing a correct sized bounding box. As specified in the objective of the thesis, the model is
smaller in terms of parameters, it works on a small dataset and it provides enough information
for creating a path for the robot in use.

At the moment, this architecture, is trained and tested in a controlled environment. The
performance might decrease in a new one. An example would be a t-shirt with blue patches
on it; the network identifies those patches as the blue objects given in the dataset. What this
means, is that the objects provided in the dataset are not very unique, having just a few major
features, the most important feature is of the object being color. With this in mind, if the
system is to be applied in a public environment, such as an airport, a bigger more general
dataset must be used for training, in order to provide uniqueness to the classes it predicts. On
the other hand, if the network is used in a storage facility, there are not many factors that
can be out of ordinary. A good example can be a shipping yard, as it can be observed in
figure 2.20. This environment is what can be called a controlled environment as opposed to
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what can be seen in figure 2.21 which represents a top down view of a market. In a market,
when it is empty it can be seen that there a lot of objects that occupy its space, of various
sizes and of various shapes, which can be problematic. But a market is not built to be empty
(i.e. without customers). In figure 2.21b can be seen a busy market, with many customers
shopping. These customers are always moving, blending in with the background and bringing
in various other objects that may not be found in the dataset, such a place is very difficult to
process correctly by any neural network. On the other hand the shipyard is less cluttered and
organized. Most of the containers are of a specific shape or color. In the presented image the
robot that may be controlled is the crane that picks up a certain container, or the truck onto
which it is loaded. For the crane there are not many obstacles that have to be avoided but,
there might be areas where the crane must not place containers, areas which are detected by
the network. For the truck, on the other hand, there are obstacles. The simple approach of
detecting these obstacles from a top-down perspective and controlling the truck in the same
manner can provide a more efficient process. There are already automated processes in modern
shipyards, that take advantage of artificial intelligence such as, LBCT - Long Beach Container
Terminal [21].

The Patch Model provides similar informational output to that of the Modified Tiny YOLO

model but, can provide better segmentation of the objects and more precise shape. While the
YOLO architecture creates a bounding box around the object, there are moments where certain
edges or corners are out of the borders of the bounding box or considering a tight space the
borders can be larger than the object itself and the robot might not consider that path due to
it not being wide enough for the robot to pass through. Detecting the position of the robot and
then processing the image with the segmentation provided by the Patch Model can provide a
great precision in regards to what areas are passable or not.

This network as it stands now, does have some major problems. Due to the low resolution
of the input data it can misclassify certain patches, which can be very problematic when it
classifies a passable spot as non-passable, or worse the other way around leading to a crash.
While the precision of the network is vastly improved, the lack of accuracy greatly diminishes
its usability.

The other problem that the Patch Model encounters is its very low speed. In a fast moving
environment, which can be assumed most real environments are, the lack of speed of a network
will not detect changes in a scene in time for the system to make adjustments.

In order to apply this type of network a controlled environment is a must, where objects
have a clear general uniqueness so that they can be accurately detected, like the red and blue
objects are detected in the test images of this project. To provide that great precision either
the resolution of the patches has to be lowered or the resolution of the images that model is
applied to has to be increased, such that a bigger grid can provide more information. A good
lighting has to be provided, with materials that are not prone to reflections. More images will
lead to a better generalization of the dataset and can improve the accuracy of the detection.

Which architecture to use?

As the advantages and the disadvantages of the networks were presented, it can be seen
that one architecture can be more useful than the other in different cases.

The Modified Tiny YOLO model can be used in more general environments, providing a
high accuracy and a good precision for bounding boxes and its small number of parameters and
speed is useful considering real time control.

The Patch Model is good for precision segmentation and can be useful in tight spaces where
every centimeter counts and its fast training speed means it can be adapted very easily to the
situation at hand.

Both of them suffer from generalization problems, but the Patch Model more so than the

33



CHAPTER 2. NEURAL NETWORKS

Figure 2.20: Shipping yard [7]

(a) Top down market portrait [22]
(b) Busy market

Figure 2.21: Market images

Modified Tiny YOLO model, with the YOLO architecture having a much better accuracy and
detection speed. The Patch Model is also very dependent on the environment and the contrast
and uniqueness of the objects in the dataset, so although it is fast to train, it is confined by
these constraints to a small number of applications.

It can be concluded that the Patch Model needs to be improved but, it does provide some
useful features, while the Modified Tiny YOLO model achieves its objective and can be deployed
in different environments.

This is the reason why, moving forward in this paper, the model used for pathfinding is the
Modified Tiny YOLO model.
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Chapter 3

Pathfinding System

The pathfinding system is the second part of the neural based navigation system. Taking the
output of the neural network, it must find the shortest path to the objective given by the user,
while avoiding the obstacles along the way. The pathfinding system must be fast, accurate and
able to send the correct commands to the 4x4 Jaguar Platform.

3.1 Pathfinding algorithms

When it comes to pathfinding there are multiple algorithms that can be used with different
features and approaches. The ones that will be presented in this thesis are the Dijkstra
Algorithm and the A* Algorithm [23], [24].

In order to understand these algorithms, the first concept that needs to be explained is
heuristics. Heuristics are techniques for solving problems in a quick way. These techniques are
not the best solution but, the fastest one. They are usually approximations that give a good
enough result in order to reach the object in the shortest way.

The heuristics of pathfinding give the cost for following a certain path. Dijkstra algorithm
does not use heuristics, whereas A* algorithm does. The A* algorithm can be viewed as a
Dijkstra algorithm with heuristics.

Both algorithms use a cost of movement by which they find the shortest path. Dijkstra has
a cost of movement from the current cell to the very next one, while A* has a cost f = g + h
where g is the cost from the current cell to the next one and h is the cost from the next cell to
the final destination. In this case h is the approximation or the heuristic because the algorithm
does not know yet the shortest path to the objective, since there might be obstacles in the way
(e.g. walls, humans or others).

The Dijkstra algorithm has two lists one that includes the cells use for the shortest path
to the objective (generally called the closed list) and one that has the other neighbouring cells
with their costs (generally called the open list). The initial cell is initialized with a cost of zero,
while all the other initialized with infinity. As the algorithm goes through the cells it checks the
neighbouring cells and adds them to the open list with their representative costs, if a shorter
path to a cell is found the cost for that cell is updated or the other way around if a cell is in the
open list already with a lower cost the current one is skipped. With the next iteration, starting
from the cell that had the lowest cost the algorithm adds the next cells in the path with their
costs and so on until they reach the end goal where the algorithm stops and then it backtracks
the steps it has taken to get there.

The A* algorithm has the same approach but the cost of each cell is seen differently. A*
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(a) Manhattan Distance [24] (b) Diagonal Distance [24]

(c) Euclidean Distance [24]

Figure 3.1: Types of Distances

can also be seen as a Dijkstra algorithm with direction. Detailing the h term a few types of
heuristics can be seen such as:

Manhattan distance which is the sum of the absolute differences between the current cell’s
x and y values and the objective’s x and y values:

h = |cx − ox|+ |cy − oy| (3.1)

Diagonal distance is the maximum between the Manhattan distance’s differences:

h = max(|cx − ox|, |cy − oy|) (3.2)

Euclidean distance is the direct distance from the current cell to the objective using the standard
distance formula:

h =
√
|cx − ox|2 + |cy − oy|2 (3.3)

A graphical representation of them can be found in figure 3.1.

The A* algorithm works the following way. It has two points, a start point and an end point.
These points have no parent cell. Two lists are created an open list that at the beginning has
only the start cell and a closed cell which initially is empty. The algorithm checks the open
list for the cell with lowest cost (in this case f). The one with lowest cost is popped out of the
open list and appended into the closed list. From this cell, children cells are then created in all
8 directions. If any of these cells are out of bounds or an obstacle, they are ignored. If they are
clear cells then they are created as new objects with the current cell as parent (in this initial
case the starting cell). All of these children are then appended into a a children list which will
be iterated with s for loop in order to first check if they are in the open or closed list already,
in which case they will be skipped, if they are not, the cost f will be computed using the one
of the heuristics presented (the Manhattan distance is used in this project) and they will be
appended to the open list. The cycle repeats this time by checking the open list for the child
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with the lowest cost, popping it out of the list and appending it to the closed list, this child
then becoming the current cell from which the algorithm moves further into the other new 8
direction until the end cell is reached. If the end cell is reached, a new list will be created, the
path list, in which all the cells that lead to it, will be added by going from parent to parent
ending with the starting cell and finally returning the path in a reversed list.

Between the two algorithms it is clear that the A* algorithm is faster because it has a
direction as opposed to the Dijkstra algorithm which can take unnecessary paths just because
they have a low cost but not knowing that they may lead to a completely different direction that
the objective. Thus, the algorithm that is used for the pathfinding system is the A* algorithm.

3.2 Helpful functions

In order for the A* pathfinding to create the correct path to follow, for the 4x4 Jaguar Platform,
two helpful functions were created. The functions are named Jaguar Direction and White
Objects.

Jaguar Direction

The 4x4 Jaguar Platform needs to be facing the start of the path, meaning that even though
the found path commands the robot to move left, the robot may be facing right, thinking that
it is facing in the correct direction it will move forward but, instead of moving towards the
objective it is moving in the opposite way. In the initial form of the system the starting point
of the pathfinding algorithm was the center point of the robot but, in doing so, the above
problem was encountered. The direction is important because in order for the robot to have
the shortest path to the objective it is better for it to be facing that objective directly. Suppose
the following scenario. The robot is facing right and the objective is at the bottom of the
image. Normally, the pathfinding algorithm would start creating a path from the front of the
robot which is facing right, meaning extra pixels will have to be identified for the path. By
finding the direction of the robot and then facing it towards the objective the system will get
a correct starting point and path, and a shorter one, as well. Facing the objective fixes the
problem of moving in the opposite way from the objective. Even if the direction of the robot is
found and starting point is set at the front of it, the path would go through the robot towards
the objective but, the robot will not, so, facing the objective is both shorter and it also solves
the problem of moving away from the objective.

In order to create this script a cropped image of the robot had to be created. With the help
of the output of the neural network in the form of an XML file the positions of the bounding box
are known. The bounding box cropped out of the original image and then a few algorithms
are used in order to detect the front of the robot, which way is it facing and how it should be
turned towards the objective if needed.

For detecting the front of the robot, a few unique features of the the robot were used. The
robot has a white patch on its front, so this patch was used to detect the position in the image’s
matrix. The cropped imaged was split in 4 sections as seen in figure 3.2. The algorithm checks
if the white patch is in any of these sections. By detecting in which section the patch is, the
algorithm has a rough estimation of where the front might be. To detect the correct section,
first it checks if there are any white spots either in the left part of the robot or the right part of
the robot. Then it checks if the are any white spots on the top or on the bottom of the robot. If
the are white spots in both left and right parts the left and right variables are evaluated as false.
If white is detected only in one direction, that one is validated as true and the other as false.
The same steps are applied to the top and down sections. The white patch can not be in both
opposite directions, thus setting them as false leads to less parameters to deal with, meaning
that the algorithm will know from the start the final direction without having to choose if its
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Figure 3.2: Direction Detector

direction is vertical or horizontal. If there are still two directions set at true, – i.e. in order to
check if it is down or right, the connected components are mapped on the cropped image. The
x position of the white pixel is subtracted from half the length of the cropped image, giving
the algorithm the information of how close to the edge or the middle of the image the pixel
is. If the absolute value of this difference is bigger than a quarter of the length of the robot
the left or right variable is set as false else the top or down variable is set as false, leaving just
one direction as the true direction. The difference works because the split in half and then in
quarters makes a symmetrical representation. For more clarity if half the length is 6, then we
can see all 4 quarters as being in the intervals: 0 –3 , 3 –6, 6 –9 and 9 – 12. If the point is
of value 8 and it is subtracted from 6 it would give –2, that as absolute value is 2. In order
to get 2, the value 4 can also be subtracted from 6. The value of 2 is closer to the edge –
i.e. lower than the quarter length, meaning that the white patch is closer to the middle. This
invalidates the horizontal direction, leaving just the vertical one. The reverse is true, as well.
After identifying the direction, the representative position of x and y is also given (i.e. not as
the position of the pixel but as the maximum center position of either direction).

After some testing while, this approach works, if the white patch is not visible enough, the
result might be wrong or it might not find the front even if it gives a wrong direction. Another
approach was experimented with, one in which the robot is still split in 4 section but, this time
these sections are triangles, each triangle representing now the top, bottom, right and left of
the image as if that triangle would be the front of the robot. In order to reduce the number of
checks if the width of the robot is bigger than its height, then only left and right are checked
and top and bottom are checked if the reverse is valid. While this approach is simpler, the
results are similar. In order to be sure that the system calculates the right result the image has
to be uniformly lit and the white patch has to be clearly visible.

After the direction the robot is facing is found the part of the system where this direction
is compared to the position of the objective begins.

First, two subtractions are computed in order to get the sign for Ox and Oy axis. After
getting the signs, depending on whether these signs are positive or negative, the algorithm can
tell in which direction the objective is compared to the front of the robot. These directions are
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noted as: SE, NW, SW, NE, S, N, W and E.

The robot being a rectangle, changing its orientation might not give to correct position of
the new front. In order to orient the robot towards the objective the center of the robot is
calculate as variables xc and yc. From xc and yc two more values are calculated named rx and
lx, representative of either the value on the Ox axis when the robot needs to be facing left or
right, or the value on the Oy axis for when the robot needs to be facing top or bottom. In
this algorithm the rx and lx values are used only for the Ox axis since it is sufficient. These
values offer three sections on the Ox axis – e.g. smaller than 0, interval 0 – 12 and bigger than
12, in order to know in which section the robot finds itself, another two values are computed,
these values are represented by the differences: drx = rx− objectivex and dlx = lx− objectivex;
where objectivex is the position on the Ox axis for the objective. Depending on the signs of
the results, if drx is positive and dlx is negative the final orientation of the robot is given by
the orientation given in the last paragraph. If drx is negative the final direction is right, if dlx
is positive, the final direction is left. At the end, the function returns the final direction, the
position of the start dot for the pathfinding algorithm and the angle by which the robot must
turn in order for the front of it be at the position specified by the dot.

White Objects

The pathfinding algorithm will work on binary images. So, for the sake of simplicity, all the
obstacles that are marked as free to pass (i. e. the blue ones) will be also painted black.

The White Objects function addresses one more problem. The path is painted starting
from the center front point of the robot, thus, the robot moves only on this line. The problem
here is even if the robot does ”avoid” the obstacle, it does not do it correctly because it might
be possible that half of it will still hit the obstacle. Another problem that stems from this
one is that even though the algorithm may find a path through two obstacles the width of this
path might not be large enough for the robot to pass through. The are multiple methods to
address this problem, such as, clearance-based A*, where another parameter is added to the
cost function, the clearance as specified in its title. Depending on the how close to an obstacle
a cell is, it will have a certain clearance cost that will be added to the overall cost. While this
approach works, the algorithm is much slower.

A simpler approach is implemented. The area of the white space that is painted on image
is enlarged by half of the length of the robot in each direction as seen in figure 3.3a. This way
the robot will not step on the obstacle and will not encounter a situation where the path is not
wide enough for it to pass through.

The final path with the avoidance area created by the White Objects function can be seen
in figure 3.3b.

3.3 Robot commands

After the path has been created, it has to be transmitted to the robot to perform the necessary
moves to arrive at the objective. A new script was created for this called Jaguar Move. This
script makes use of the socket library and the program Jaguar Base Controller, written in
C#, used in [10] for transmitting the correct format of the command and for the motors to have
a good enough speed in order for the robot to not crash or not to be too slow.

With the help of the script and the Jaguar Base Controller the system connects to
the robot’s router and transmits a series of commands. In order for these commands to be
transmitted they would have to be created from the path that was given by the A* algorithm,
which give a list of positions. The script sees the direction in which the robot has to move
for a certain portion of the path. For example is has to move left, then for as long as the y
position on Oy axis does not change, then the robot, because it is facing that direction, moves
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(a) White Objects Binarization (b) Final Path

Figure 3.3: Path Creation

forward for how many steps there are until the y position changes. The same idea can be
applied if the robot is moving towards the bottom of the image, only this time the change in
direction is given by a change in x of the Ox axis. All these steps are saved in a list and with
the help of this list, three more lists are created (directions, distances, angles) that will provide
the parameters for the robot commands. The steps saved in the list are saved as directions:
top, bottom, right, left, bottom-right, top-left, top-right, bottom-left. For each step that is
the same as the previous one, the number of steps is increased. For each step that is different
than the previous one, the previous direction is appended to the directions list and the angle
for the turn is appended to the angles list. If the direction is not on a diagonal path, then the
distance is appended by multiplying the number of steps with a constant that was deduced
by measuring the width or height (since they are equal) of the area that was captured by the
Kinect and dividing by the length of image (the number of pixels on one axis), giving the value
in centimeters for 1 pixel, thus giving the value of the constant, of 0.85 cm. In order to get
the constant for a diagonal move this value was multiplied by

√
2 giving 1.2 cm. These values

were lower to 0.5 and 1 since the robot would not be able to break well enough in order to stop
in the exact spot given by the algorithm. Of course, if the direction is changed, the number of
steps would be reinitialized to 0. This part is done in a for loop and in order to get the last
command parameters this part of the script is done one more time separately.

An example of the parameters for final path in figure 3.3b:

Directions: [’bottom-right’, ’bottom’, ’bottom-right’, ’right’]

Angles: [45, 90, 45, 0]

Distances: [27, 60, 33, 13]

After the parameter lists are filled, a for loop for constructing commands is created.
The commands have the following format - "sendCommand(angle, distance)". The distance
remains the same as it is given in the list but, the angles need to be processed further. As
they are in the initial format of the list, the angles represent the direction in which the robot
needs to be facing. The robot moves by the amount of degrees it has received. Thus, every
turn is represented in angles by the difference between the current angle and previous one.
While connected to the robot with the help of the Jaguar Base Controller program, these
commands are sent one by one, with the final command "endCommand" that ends the connection.
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Chapter 4

Conclusions

There are many approaches of creating autonomous robots and the applications are vast. In
order for these robots to be more accessible, less expensive systems need to be created. Having
the possibility of implementing an autonomous system at home, will open the market to new
opportunities and applications.

Objectives Review

The main product of this thesis, is a neural-based navigation system with a top-down view.
This product started with the following objectives in mind:

• to create a data set for the neural network

• to train different Convolutional Neural Networks architectures for the obstacle detection

• to implement a pathfinding algorithm

• to control the 4x4 platform according to the algorithm

The motivation behind them was that a system such as this could provide autonomous
control with less resources. While researching the desire for such a system, a few criteria were
set along the way, such as:

• lower number of sensors

• smaller computational cost

• similar results to autonomous obstacle avoiding systems

To do this, sensors had to be used in a new way, that’s why there is a top-down view. In
order to have small computational cost, it lead to modifications to some of the networks or
algorithms, and all of these had to work together in such a way, that the limitations, imposed
by the made modifications, would not significantly affect the obstacle avoiding system quality.
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Personal Contributions

The navigation system as a whole achieves its initial objectives and overall purpose.

Thus, a dataset consisting of 100 images has been created, with the help of the Kinect
camera and the IBM Annotation Tool for the YOLO architecture. The dataset consists of 3
classes: Red, Blue and Jaguar. Another dataset was created for the Patch Model with 4
classes (with the added Background class). The dataset for the Patch Model was created from
the original dataset by creating 3 new scripts, used for: recreating the annotations, processing
the images based on the new annotations and encoding these images in a format recognized by
the neural network.

These two dataset were fed into two neural networks. One network that is based on the
Tiny YOLO architecture, where the contribution can be seen in the implementation of the
Blueprint Separable Convolutions in order to reduce the number of parameters and to
increase accuracy. The other network was created from scratch, together with the detection
system, specifically for the approach of patch recreation.

A pathfinding system inspired by the A* algorithm was implemented. This includes the A*
algorithm itself, with a focus on speed in mind. This algorithm was fitted with some helpful
function, for detecting the robots front facing direction and in order to rotate it to face the
direction of the objective. Another functionality added to the algorithm consist in making
sure the robot fits between two obstacles, or that it has enough clearance to go around one.
The system is completed by the script that translates the created path into commands that
the robot can understand and perform. The final piece is the link with movement system,
that is separated from the pathfinding system. The movement system was developed by Eng.
Mihai-Cristian Tudoroiu in his undergraduate thesis [10].

Navigation System Results

The presented system manages to lower both the number of images in the dataset and the
number of parameters needed for training a network, while increasing the accuracy of the
system for the Tiny YOLO architecture. It can be seen that there are many tools to improve
networks performances and to make them accessible to low end devices. Also, it was shown that
different types of approaches can work, and can provide new features, such as the Patch Model.
This model can be improved further to reduce errors and accelerate the detection process. By
using the patch model with the improvements done to the YOLO model, it was seen that the tools
used to improve that architecture are not generally valid for every architecture, especially when
dealing with images of a very low resolution, from which not many features can be extracted.

The system also manages to lower the number of sensors needed for driving the robot to
its destination, but some problems still remain – e.g. the robot has to always be in the field
of view of the camera and the camera vision of the robot should not be obstructed by any
elements on the map. Although these problems occur, if the automation is done in a controlled
environment, this method can significantly simplify a system that makes use of autonomous
robots. The device used for capturing images was an Xbox Kinect, but any camera can be used
as long as it can send the data to the network, such as a mobile phone.

Future Developments

The system can have various improvements, starting with the main problems and ending with
adding new features.
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Begining with the Modified Tiny YOLO, the architecture could be ported to TensorFlow

Lite. In doing so the network can be implemented on mobile devices. Linked with the a mobile
application can be built, in order to place the destination of the robot using the touch screen
display. In this application multiple analysis features can be implemented (i.e. battery voltage,
speed or others). A type of this application already exists, created by the Dr Robot team for
the 4X4 Jaguar Platform. If the application can be modified, the network can be implemented
as one of its features. Atop of porting the network to TensorFlow Lite, it can also be modified
further to test if it can provide better inference on the mobile devices, or low end devices.

Considering the Patch Model, as it was stated both in its description and in chapter 4 it
needs further development in order to lower its error for classification. If this error can be
lowered this type of network can provide more information to the system and make it more
robust. Making the patch model, into an end-to-end architecture, similar to YOLO, or modifying
the YOLO architecture to perfom the task of the Patch Model.

For the pathfinding system, the algorithm can be improved in order to provide a faster
response, trying to achieve a real-time movement of the robot as opposed for having a buffer
time to calculate the route, albeit a small one. Different heuristics can be tested, such as a
clearance cost to get a better precision when avoiding obstacles.

Taking into account the top-down view and the fix camera, a mobile camera can taken into
consideration, such as a drone companion, but this type of companion would still have to be
controlled in some manner, in order to fly safely and not crash itself in different obstacle that
might appear in the area (e.g. a tree, a building or other). If the air zone is mostly clear, the
drone companion could follow the robot, acting as the robot’s eyes. In order for the robot to
reach a location outside the area of its vision, geographical coordinates can be given to it acting
as the direction of the objective, while it continuously creates a path ahead of itself avoiding
obstacles.

As the 4X4 Jaguar Platform has also other sensors equipped to it, as well as a robotic arm,
different scripts can be created for them to add more functionality to the system. With the
help of these developments this neural based navigation system, could be a better autonomous
system, with still some limitations to consider but, with much vaster functionality if set in a
different environment, not needing a controlled environment anymore.

All software resources of the project are available online on a public GitHub 1 repository.

1https://git.speed.pub.ro/costeamadalinalexandru/neural-based-navigation-system-for-4x4-

jaguar-platform
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