
University POLITEHNICA of Bucharest
Faculty of Electronics, Telecommunications and Information Technology

Financial Time Series Forecasting
Using Spiking Neural Networks

Diploma Thesis

Submitted in partial fulfillment of the requirements
for the Degree of Engineer

in the domain Electronics Engineering, Telecommunications and
Information Technology

Study program: Technology and Telecommunication Systems

Thesis advisor Student
Prof. Corneliu Burileanu, PhD
Ana-Antonia Neacs,u

Roxana-Maria Iliese

Year 2020

Contents

List of Figures . iii

List of Tables . v
List of Abbreviations . vi

Thesis Motivation . 0

1. Time Series . 2
1.1. Introduction . 2
1.2. Covariance and Correlation . 2
1.3. Seasonality . 3
1.4. Stationarity . 4

1.4.1. White Noise Process . 5
1.4.2. Non-stationary Processes . 5

1.5. Stochastic Processes . 6
1.5.1. Moving Average (MA) Processes . 6
1.5.2. Autoregressive (AR) Processes . 7
1.5.3. Autoregressive Moving Average (ARMA) Processes 7
1.5.4. Autoregressive Integrated Moving Average (ARIMA) Processes 7
1.5.5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Processes 8
1.5.6. Autoregressive Conditionally Heteroskedastic (ARCH) Processes 9
1.5.7. Generalized Autoregressive Conditionally Heteroskedastic (GARCH) Processes 9

2. Spiking Neural Networks . 10
2.1. Introduction . 10
2.2. Mechanism of Spike Generation in Spiking Neurons 11
2.3. Spiking Neurons . 12

2.3.1. Leaky Integrate-and-Fire Model . 12
2.3.2. Hodgkin-Huxley Model . 17
2.3.3. Izhikevich Model . 19

2.4. Spiking Neural Networks . 22
2.5. Learning Rules in Neural Networks . 23

2.5.1. Synapses . 23
2.5.2. Hebbian Learning . 24
2.5.3. Spike-Time Dependent Plasticity . 25

3. Design, Implementation and Experimental Results 29
3.1. Foreign Exchange Rate . 29

3.1.1. Foreign Exchange Market . 29
3.1.2. Database . 30
3.1.3. ARMA Based Forecasting . 31

3.1.3.1. ACF and PACF of the Foreign Exchange Database 31
3.1.3.2. Dickey–Fuller Test for Stationarity 32
3.1.3.3. ARMA Forecasting Results . 34

3.1.4. Neural Networks Forecasting . 36
3.1.4.1. Proposed Architecture – 1 . 36
3.1.4.2. Proposed Architecture – 2 . 39

3.2. Crude Oil Stock Price . 42
3.2.1. Market Overview . 42
3.2.2. Database . 43
3.2.3. ARMA Based Forecasting . 46

3.2.3.1. ACF and PACF of the Crude Oil Adjusted Close Price 46
3.2.3.2. Dickey-Fuller Test for Stationarity 47
3.2.3.3. ARMA Forecasting Results . 48

3.2.4. Neural Networks Forecasting . 50
3.2.4.1. Proposed Architecture – 1 . 50
3.2.4.2. Proposed Architecture – 2 . 53

4. Conclusions and future steps . 56
4.1. General Conclusions . 56
4.2. Personal Contributions . 56
4.3. Future Work . 57

References . 58

ii

List of Figures

1.1. Daily New Cases of COVID-19 in the World, 10 Mar. 2020-13 May 2020 [1] . . . 3
1.2. Daily minimum temperatures in Melbourne, Australia, 1981-1990 4
1.3. Stationary Process Example- Gaussian White Noise 5
1.4. Non-Stationary Process Example – Monthly Airline Passengers, 1949-1960 . . . 6
2.1. The Internal State of a Postsynaptic Neuron . 11
2.2. Schematic diagram of the integrate-and-fire model 13
2.3. Three Constant Input Currents . 14
2.4. The LIF Neuron Response . 14
2.5. Time-dependent (random) Input Current . 16
2.6. The LIF Neuron Response . 16
2.7. Schematic Diagram of the Hodgkin-Huxley Neuron Model 17
2.8. Hodgkin-Huxley Neuron Response to a Constant Input Current 19
2.9. Izhikevich Model Applied to Known Types of Neurons 20
2.10. Step Input Current . 22
2.11. Izhikevich Neuron Model Response . 22
2.12. (a) Spiking Neural Network Architecture (b) Multiple Synapses Transmitting

Multiple Spikes From A Presynaptic Neuron To A Postsynaptic Neuron 23
2.13. Example of Synaptic Behaviour . 24
2.14. STDP function . 26
2.15. STDP with Local Variables . 27
2.16. The Weight Change as a Function of Local Variables 28
3.1. Foreign Exchange Rate EUR/RON, 2010-2020 30
3.2. Histogram of the Foreign Exchange Rate EUR/RON, 2010-2020 30
3.3. Autocorrelation of the Foreign Exchange Data 32
3.4. Partial Autocorrelation of the Foreign Exchange Data 32
3.5. Residuals After First-Order Di↵erencing . 33
3.6. Distribution of the Residuals After First-Order Di↵erencing 33
3.7. First Neural Network Architecture . 36
3.8. First Neural Network Results - Batch Size=1, Epochs=1 37
3.9. First Neural Network Results - Batch Size=1, Epochs=2 38
3.10. First Neural Network Results - Batch Size=1, Epochs=3 38
3.11. First Neural Network Results - Batch Size=1, Epochs=25 38
3.12. First Neural Network Results - Batch Size=50, Epochs=25 39
3.13. Second Neural Network Architecture . 39

iii

3.14. Second Neural Network Results - Batch Size=1, Epochs=1 41
3.15. Second Neural Network Results - Batch Size=1, Epochs=2 41
3.16. Second Neural Network Results - Batch Size=1, Epochs=3 41
3.17. Second Neural Network Results - Batch Size=1, Epochs=5 42
3.18. Second Neural Network Results - Batch Size=40, Epochs=25 42
3.19. Crude Oil Price - All Columns . 44
3.20. Crude Oil - Adjusted Close Price . 44
3.21. Histogram - Crude Oil, Adjusted Close Price 45
3.22. Autocorrelation of the Crude Oil Adjusted Close Price 46
3.23. Partial Autocorrelation of the Crude Oil Adjusted Close Price 46
3.24. Residuals After First-Order Di↵erencing . 47
3.25. Distribution of the Residuals After First-Order Di↵erencing 48
3.26. First Neural Network Results - Batch Size=1, Epochs=1 51
3.27. First Neural Network Results - Batch Size=1, Epochs=2 51
3.28. First Neural Network Results - Batch Size=1, Epochs=25 52
3.29. First Neural Network Results - Batch Size=1, Epochs=4 52
3.30. First Neural Network Results - Batch Size=50, Epochs=50 52
3.31. Second Neural Network Results - Batch Size=1, Epochs=1 54
3.32. Second Neural Network Results - Batch Size=1, Epochs=2 54
3.33. Second Neural Network Results - Batch Size=1, Epochs=5 54
3.34. Second Neural Network Results - Batch Size=1, Epochs=25 55
3.35. Second Neural Network Results - Batch Size=50, Epochs=25 55

iv

List of Tables

2.1. The Empirical Values of the Parameters E and g in the Hodgkin-Huxley Equations 18
2.2. The Empirical Values of the Parameters ↵ and � in the Hodgkin-Huxley Equations 18
3.1. Statistical Parameters for the Foreign Exchange Database 31
3.2. Dickey-Fuller Test Results . 32
3.3. Autoregressive Model Forecasting Results . 34
3.4. Moving Average Model Forecasting Results . 34
3.5. Autoregressive Moving Average Model Forecasting Results 35
3.6. Actual vs. Predicted Values for MA(1) . 35
3.7. First Architecture Results, Batch Size = 1 . 37
3.8. First Architecture Results, Number of Epochs=25 37
3.9. Second Architecture Results, Batch Size = 1 . 40
3.10. Second Architecture Results, Number of Epochs=25 40
3.11. Statistical Parameters for the Crude Oil Adjusted Close Price 45
3.12. Dickey-Fuller Test Results . 47
3.13. Autoregressive Model Forecasting Results . 48
3.14. Moving Average Model Forecasting Results . 49
3.15. Autoregressive Moving Average Model Forecasting Results 49
3.16. Actual vs. Predicted Values for AR(1) . 50
3.17. First Architecture Results, Batch Size = 1 . 50
3.18. First Architecture Results, Number of Epochs=25 50
3.19. Second Architecture Results, Batch Size = 1 . 53
3.20. Second Architecture Results, Number of Epochs=25 53

v

List of Abbreviations

ACF = Autocorrelation Function
ANN = Artifical Neural Network
AR = Autoregressive
ARCH = Autoregressive Conditionally Heteroskedastic
ARIMA = Autoregressive Integrated Moving Average
ARMA = Autoregressive Moving Average
CH = Chaterring
FS = Fast Spiking
FX = Foreign Exchange
GARCH = Generalised Autoregressive Conditionally Heteroskedastic
IB = Intrinsically Bursting
IF = Integrate-and-Fire
LIF = Leaky Integrate-and-Fire
LSTM = Long Short Term Memory
LTD = Long-Term Depression
LTP = Long-Term Potentiation
LTS = Low-Threshold Spiking
MA = Moving Average
MSE = Mean Squared Error
PACF = Partial Autocorrelation Function
PSP = Postsynaptic Potential
RMSE = Root Mean Squared Error
RS = Regular Spiking
RZ = Resonator
SARIMA = Seasonal Autoregressive Integrated Moving Average
SNN = Spiking Neural Network
STDP = Spike-Time Dependent Plasticity
TC = Thalamo-cortical

vi

Thesis Motivation

Peter Bernstein wrote in his monumental book Against the Gods that what distinguishes the
thousands of years of history from what we think as modern times is not what we might
be inclined to think of: the progress of science, technology, capitalism, and democracy. The
revolutionary idea that marks the boundary between modern times and the past is our dexterity
when dealing with risk: the notion that the future is more than a whim of the gods. The process
of mastering the risk gave humans the confidence that men and women are not passive before
nature. Before human beings discovered a way across that boundary, the future was a mirror
of the past and the nebulous domain of oracles and psychics who held a monopoly over the
knowledge of anticipated events.

The beginning of forecasting as we know it today, dates back to the year 1654, when the
famed French mathematician Blaise Pascal was challenged to solve a puzzle by Chevalier de
Mere, a french nobleman with a taste for both gambling and mathematics. The puzzle in
question tackles the division of the awards of an unfinished game of chance between two players
when one of them is ahead. The discovery of Pascal and Pierre de Fermat established the
foundation of the theory of probability. Their solution to the puzzle implied that people could
for the first time make decisions and forecast the future with the help of numbers.

It is undeniably easy to understand the humans’ desire to predict the future - besides the
will to control certain outcomes, it is the endless fascination of defying the nature. The games
of chance, along with the stock market and the bond market, are natural laboratories for the
study of risk and prediction, as they lend themselves so easily for quantification; their language
is the language of numbers. It is not hard to recognize that forecasting financial data is probably
one of the most challenging predictions we strive to make, partly due to the multitude of factors
we are not aware of and partly because of the great deal of risk and reward associated with it.[2]

This thesis will analyse the ability to predict the kind of data which has been intriguing people
since 1602, when the Dutch East India Company o�cially became the world’s first publicly
traded company by releasing shares on the Amsterdam Stock Exchange. The prediction will
be performed with the help of artificial neural networks.[3]

1

CHAPTER 1. TIME SERIES

Chapter 1

Time Series

1.1 Introduction

A time series is a chronological or time-oriented sequence of observations (xt)1tN , each one
being recorded at a specific time t. The variable of interest, X, could be anything from a stock
price, the wind speed in a certain direction at a location, or the number of people who cross a
country boarder. Each of these values could be collected on a daily, weekly, monthly, quarterly
or annual basis, but any reporting interval could be used.[4] For instance, earthquake activity
data is reported in milliseconds.[5]

To illustrate this, figure 1.1 shows the daily new cases of COVID-19 in the world, for a time
period of 65 days: from the 10th of March 2020 until the 13th of May 2020. Thus, the set T0 of
times at which observations are made has 65 elements {(10 March), (11 March),... ,(13 May)}.
We can see from this graph that each time point, t has a corresponding value, (xt) which in
this case is an integer, representing the number of people tested positive for the virus in that
specific day.

There are two main motivations for studying time series:

1. To develop an understanding of the structure and underlying forces that produced the
observed data.

2. To find a model that fits our data and proceed to make forecasts and even control the
behaviour of future data points. [6]

However, in order to achieve the last, it is almost critical to master the first. As a
consequence, the next section will briefly present some properties and characteristics of time
series, which help us to understand better the data we have collected and draw insightful
conclusions in order to predict and manipulate future events.

1.2 Covariance and Correlation

Covariance is a measure of the joint variability of two random variables, X and Y say. It is
defined as follows:

cov(X, Y) = E{(X � E{X})(Y � E{Y })}
= E{XY }� E{X}E{Y }

(1.1)

2

CHAPTER 1. TIME SERIES

Figure 1.1: Daily New Cases of COVID-19 in the World, 10 Mar. 2020-13 May 2020 [1]

From the definition we highlight three cases:

• when X is above the mean and then Y also tends to be; in this case we say to have a
positive covariance

• when X is above the mean and Y tends to be below its mean; this is the case of negative
covariance

• there is no relationship of this type between X and Y (E{XY } = E{X}E{Y }), so we
have zero covariance

Therefore, this gives us a measure of linear dependency between two random variables.

Correlation is a normalized measure of covariance.

We define correlation ⇢ as:

⇢ =
cov(X, Y)p
var(X)var(Y)

(1.2)

From the Cauchy-Schwartz inequality we conclude that �1 ⇢ 1.
In the context of time series analysis, we will be interested in looking at these two measures,

covariance and correlation, within the random process X t, at two di↵erent points in time. This
gives us a good overview of the relationship between two random variables, Xt1 and Xt2 . [7]

1.3 Seasonality

Many time series exhibit seasonality. In this context, we refer to seasonality as periodic
fluctuations that appear in our set of values. For example, ice-cream sales tend to peak in
the summer, compared to other months of the year. This trend is mostly present in economic
time series and it less popular among engineering or scientific data sets. [6]

Seasonality is a very useful kind of information we can gather from our data, as it allows us
to conclude that certain patterns will repeat in the future, and, more importantly, when they
will occur.
Based on a database which includes observations made on a daily basis of the minimum
temperatures in Melbourne, Australia [8], figure 1.2 illustrates the phenomenon of seasonality

3

CHAPTER 1. TIME SERIES

Figure 1.2: Daily minimum temperatures in Melbourne, Australia, 1981-1990

in time series. We can see that temperatures between 0�C and 5�C occur between the months
May and September. This pattern tends to repeat itself every year, between the same months.
The same is true for the months January, February and March, when the lowest temperatures
are 20-25�C.

1.4 Stationarity

We say that a time series is completely or strictly stationary if the joint cumulative distribution
function of {Xt1 , Xt2 , ..., Xtn} is the same as the joint cumulative distribution function of
{Xt1+⌧ , Xt2+⌧ , ..., Xtn+⌧}.

FX(xt1+⌧ , .., xtn+⌧) = FX(xt1 , .., xtn) (1.3)

This means that a completely stationary process has a probabilistic structure that is invariant
under a shift in time.

We say that a time series is second-order or weakly stationary if the following conditions
are met:

1. Its expected value or mean is a constant independent of time:

E{Xt} = µ (1.4)

2. Its variance is a constant independent of time:

var{Xt} ⌘ �2 (= E{X2
t }� µ2) (1.5)

3. The covariance between Xt and Xt+⌧ is a constant independent of time:

cov(Xt, Xt+⌧) ⌘ �⌧ (1.6)

4

CHAPTER 1. TIME SERIES

Figure 1.3: Stationary Process Example- Gaussian White Noise

In other words, a process is stationary if its statistical properties (mean, variance and
covariance) do not change over time.

We want our processes to be stationary because it is easier to work with them and fit a
model. As its parameters are constant, we can say with high probability that it will follow the
same pattern in the future.

The next two sections will discuss and illustrate examples of stationary and non-stationary
time series.

1.4.1 White Noise Process

The white noise is a classic example of a stationary process. Also known as a purely random
process, the white noise is defined as a sequence {✏t}, consisting of independent random variables
with constant mean (E{Xt} = µ) and constant variance (var{Xt} = �2).

The fundamental property of a white noise is that no matter how close any two of its values
are in time, they are statistically independent.

There are several types of white noise processes, including those generated by the following
distributions: Gaussian, exponential, uniform and truncated Cauchy.

Figure 1.3 shows a white noise plot generated from a gaussian distribution. As it can be
noticed, the mean is zero (more precisely, -0.013222; this is due to the fact that we used only
1000 samples), and the standard deviation is 1 (more precisely, 1.003685).

1.4.2 Non-stationary Processes

We have defined a stationary process as a process whose statistical properties are time-independent.
Thus, a non-stationary process is a process whose mean, variance and standard deviation do
change over time. As a consequence, we will observe trends, seasonal e↵ects or other time-
dependent structures in our data; see for reference: [7], [9] [10], [11], [12]

Figure 1.4 illustrates a non-stationary process. It is based on a database which collected
data from January 1949 until December 1960, at a monthly rate. [13] It is clear that the
number of passengers, although shows some volatility, presents an upward trend, which may

5

CHAPTER 1. TIME SERIES

Figure 1.4: Non-Stationary Process Example – Monthly Airline Passengers, 1949-1960

be explained by the growing popularity and a↵ordability of airplane travel. It can also be seen
that the mean number of passengers grows over time, as it does the deviation from the mean.
We have discussed some of the most important tools which help us characterize a time series.
In the next following sections, we will see how time series are modelled.

1.5 Stochastic Processes

1.5.1 Moving Average (MA) Processes

Time series in social sciences often are the result of various underlying factors, events or shocks.
When predicting a value in a time series, we often need to take into account other phenomena
that could have led to a certain modification in our data.

We define a moving average process as follows:

Xt = µ+ ✏t + ✓1✏t�1 + ...+ ✓q✏t�q (1.7)

The equation 1.7 is called a qth order moving average process. ✓1, ✓2, ..., ✓q from the equation
1.7 represent the moving average coe�cients, ✏t, ✏t�1, ..., ✏t�q represent the shocks at time t, t�
1, ..., t� q, respectively.

When we replace q in equation 1.7 with 1, the resulting process will be a first order moving
average process or MA(1), that is, the simplest form of a MA process.

Xt = µ+ ✏t + ✓1✏✓t�1 (1.8)

When q=2, we get a so called second-order moving average process.

Xt = µ+ ✏t + ✓1✏✓t�1 + ✓2✏✓t�2 (1.9)

6

CHAPTER 1. TIME SERIES

1.5.2 Autoregressive (AR) Processes

Sometimes, values in a time series are dependent on the values that came before them. Hence,
having the observations made until the moment t, we can use them to forecast the t+1 value
in our data set. An autoregressive process is defined as:

Xt = �1Xt�1 + �2Xt�2...+ �pXt�p + ✏t (1.10)

The equation 1.10 is called a pth order autoregressive process. �1,�2, ...,�p from the equation
1.10 are the portions of the previous values carried over to the current value, Xt, Xt�1, ..., Xt�p

are the values of our dataset at time t, t� 1, ..., t� p, respectively. ✏t is an error term.
When we replace p in equation 1.10 with 1, we obtain a first-order autoregressive process

or AR(1). This happens when the current value is a function of the first previous value only.

Xt = �1Xt�1 + ✏t (1.11)

When p=2, we get a so called second order moving average process.

Xt = �1Xt�1 + �2Xt�2 + ✏t (1.12)

Put di↵erently, this model says that our next observation will be the weighted average of
the last q observations. Perhaps the most naive approach when it comes to modeling time
series, the autoregressive technique still gives us very useful results. [7],[14]

1.5.3 Autoregressive Moving Average (ARMA) Processes

As a combination of the last two models discussed, we say that series which present both moving
average and autoregressive characteristics are called ARMA processes.

A formulation of an ARMA process is presented in Eq. 1.13

Xt = ✏t + ✓1✏t�1 + ...+ ✓q✏t�q + �1Xt�1 + �2Xt�2...+ �pXt�p (1.13)

The eq. 1.13 is designated as ARMA (p,q), because the MA process has the order q and the
AR process has the order p.

If we want to model ARMA(1,1), we can write:

Xt = ✏t + ✓1✏t�1 + �1Xt�1 (1.14)

The ARMAmodel can be used to model time series data only when the data has a stationary
behaviour. However, many time series from natural sciences, but especially those from finance
and economics are non-stationary, as they present both trends and seasonal patterns. In order
to apply a model that suits best this kind of the data, the following section will present the
ARIMA processes. [7],[14],[15]

1.5.4 Autoregressive Integrated Moving Average (ARIMA) Processes

Autoregressive Integrated Moving Average (ARIMA) process are a generalised formulation of
ARMA processes, which include the case non-stationarity. ARIMA models a non-stationary
time series by applying finite di↵erencing of the data points.

In order to define an ARIMA process, we will introduce the lag operator, L. The lag

7

CHAPTER 1. TIME SERIES

operator L (also known as the backward shift operator), is defined as:

LXt = Xt�1 (1.15)

We write AR(p) processes using the lag operator :

✏t = �(L)Xt (1.16)

Similarly, MA(q) processes will be:

Xt = ✓(L)✏t (1.17)

And ARMA(p,q) processes will have the following form:

�(L)Xt = ✓(L)✏t (1.18)

Here, �(L) = 1�
Pp

i=1 �iLi and ✓(L) = 1 +
Pq

j=1 ✓jLj.
We can now define ARIMA(p,d,q) processes using lag polynomials as follows:

�(L)(1� L)dXt = ✓(L)✏t or

1�

pX

i=1

�iL
i

!
(1� L)dXt =

1 +

qX

j=1

✓jL
j

!
✏t

(1.19)

In eq. 1.19 p, d, q 2 Z+ and give the order of the autoregressive, integrated and moving
average parts of the model respectively. It is worth noting here that the distribution designation
I(d), is the order of integration of the model. If d = 0 then the series is stationary and we have
an ARMA process. If d = 1 the series requires first di↵erencing to become stationary and we
obtain ARIMA(p,1,q). Once the process has been made stationary, we can advance with the
analysis.

ARIMA (p,0,0) is an autoregressive AR(1) process and ARIMA(0,0,1) is a moving average
MA(1) process.[7],[14],[15]

1.5.5 Seasonal Autoregressive Integrated Moving Average (SARIMA)
Processes

The ARIMA model presented in the last section is for non-seasonal non-stationary data.
However, if we wish to generalise it so that it covers also seasonal time series, we can use
the Seasonal ARIMA (SARIMA) model. In this proposed model seasonal di↵erencing of a
convenient order is used in order to remove non-stationarity from the data. A first order
seasonal di↵erence is the di↵erence between a data point and the corresponding data point
from the preceding year and is determined as zt = Xt � Xt�s. If our data is collected on a
monthly basis s = 12, and for quarterly time series s = 4.
This model is commonly termed as the SARIMA (p, d, q) ⇥ (P,D,Q)s.

The mathematical definition of a SARIMA (p, d, q)⇥ (P,D,Q)s model using the lag operator
is written as follows:

8

CHAPTER 1. TIME SERIES

�P (L
s)�P (L)(1� L)d(1� Ls)DXt = ⇥Q(L

s)✓q(L)✏t, or

�P (L
s)�P (L)zt = ⇥Q(L

s)✓q(L)✏t

(1.20)

where zt is the seasonally di↵erenced series. [7], [14], [15]

1.5.6 Autoregressive Conditionally Heteroskedastic (ARCH) Processes

In some time series, the variance changes frequently over time. In the context of a time series
in the financial domain, this would be called increasing or decreasing volatility. In time series
where the variance is incremented in an organized manner, such as an increasing trend, this
property of the series is called heteroskedasticity. This means that we have a changing or
unequal variance across the series. If the change in variance can be corellated over time, then
it can be represented using an autoregressive process, such as Autoregressive Conditionally
Heteroskedastic (ARCH). Explicitly, an ARCH method models the variance at a time step as
a function of the residual errors from a mean process.[16]
Let us consider a time series Xt that has a variance (volatility) that changes over time,

Xt = �t✏t (1.21)

with ✏t is a sequence of independent and identical distributed (iid) random variables with zero
mean and unit variance. Here, �t represents the local conditional standard deviation of the
process.
Xt is ARCH(q) if it satisfies equation 1.21 and

�2
t = ↵ + �1,qX

2
t�1 + ...+ �q,qX

2
t�q, (1.22)

where ↵ > 0 and �j,q � 0, j = 1, ..., q (to secure that �2
t is positive).[7]

For example, we can write ARCH(1) as follows:

�2
t = ↵ + �1,1X

2
t�1 (1.23)

1.5.7 Generalized Autoregressive Conditionally Heteroskedastic (GARCH)
Processes

Generalized Autoregressive Conditional Heteroskedasticity, (GARCH), is an extension of the
ARCH model which integrates a moving average component together with the autoregressive
component.[16] A GARCH model is one where the variance is a function of previous conditional
variances as well as previous innovations. The fundamental formulation of a GARCH(p,q)
model is [14]

�2 = ! + �1,qX
2
t�1 + ...+ �q,qX

2
t�q + �1,p�

2
t�1 + ...+ �p,p�

2
t�p (1.24)

For instance, GARCH(1,1) is modeled:

�2 = ! + �1,1X
2
t�1 + �1,1�

2
t�1 (1.25)

9

CHAPTER 2. SPIKING NEURAL NETWORKS

Chapter 2

Spiking Neural Networks

2.1 Introduction

Artificial Neural Networks (ANNs), are e↵ective computational tools that were influenced by
the structure and mechanisms of the human brain. They have been used to solve complicated
problems, ranging from function estimation, pattern recognition and classification questions,
which could not be solved by using other analytical tools. As our knowledge of the brain and
how it refines information was enhancing, ANNs have emerged into more biologically realistic
and powerful models, leading to the development of recurrent networks, probabilistic neural
networks, dynamic neural networks and many other types of evolved neural networks.

Even though ANNs have experienced numerous stages of evolution, for a long time there
were no pursuits of classifying generations of neural networks. One possible explanation
would be the di�culty of this task, because there have been multiple directions in which the
ANN were developed and to define one advancement more compelling than another would
be highly inaccurate. However, we can still find an conceptual advancement that could help
us succeed in categorizing these generations, namely the development of the mathematically-
defined activation function as the information processing mean of the artificial neuron. Based
on this, we can distinguish the following categories:

1. The first generation of neurons proposed in the 1940s and 1950s did not exploit the
temporal aspect of information processing. These models of neurons fired if their internal
state (which is the weighted sum of the inputs of the respective neuron) exceeded a
certain threshold. Yet, it was of no significance when that threshold was reached. From a
biological point of view, this would mean that all inputs to a certain neuron contributed
to its internal state at the exactly same moment (were synchronous) and thus could be
directly summed. Also, the amplitude of the input did contribut to the external state,
but this is not the case for biological neurons.

2. The second generation neurons were developed fro the 1950s to 1990s and determined
their internal state in an analogous manner to their predecessors. However, unlike the
previous generation, these neurons controlled their output using a mathematically defined
activation function, generally a smooth sigmoid or radial basis function (RBF), rather
than an established threshold value. It became achievable for these neurons to have a real-
valued output. Although this model unquestionably more powerful than the one based
on the neurons from the first generation and could more complex pattern recognition

10

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.1: The Internal State of a Postsynaptic Neuron

problems (starting with the well-known XOR problem), its computational power still
did not achieved its full potential. This was because it did not express the temporal
information singular spikes.

3. In the last three decades, to surmount this deficiency, neurons that can interact via the
rigorous timing of spikes have been developed and readjusted for ANNs. These neurons
have been called spiking neurons. In the literature, these spiking neurons have been cited
as third generation neurons. Akin to the first generation neurons, spiking neurons act as
integrate-and-fire units and have an all or none output behaviour. However, the spiking
neuron has an intrinsic dynamic nature defined by an internal state which modifies over
time. Every postsynaptic neuron fires a spike or action potential at the time moment
when its internal state exceeds the neuron threshold. The magnitude of the spikes (either
input or output) encloses no information. This is a characteristic of the biological neurons
as well. Instead, all information is contained in the timing of the spikes [17].

As a consequence, spiking neurons and spiking neural networks are of great interest, not only for
the machine learning applications, but also because they represent an important stepping-stone
in our quest for understanding how the human brain works and implicitly, how to understand
certain neuronal behaviours, such as diseases or learning.

2.2 Mechanism of Spike Generation in Spiking Neurons

Esentially, action potentials or spikes from numerous presynaptic neurons reach a postsynaptic
neuron and induce postsynaptic potentials (PSPs). The PSP represents the internal state of
the postsynaptic neuron caused by the presynaptic spike and depends on synaptic properties
such as travel time or delay through the synapse, strength of the synaptic connection, and other
biological influences.
A spike train represents a sequence of such spikes. Each spike in the spike train generates a
PSP at the moment it arrives at the postsynaptic neuron. In the long run, various presynaptic
neurons, each with multiple spikes, produce multiple PSPs. These are temporally integrated to
compute the internal state of the postsynaptic neuron as a function of time. The postsynaptic

11

CHAPTER 2. SPIKING NEURAL NETWORKS

neuron produces a spike when the integrated internal state exceeds a threshold.

Fig. 2.1 shows the internal state of a postsynaptic neuron after it has received a presynaptic
spike. Nonetheless, if the postsynaptic neuron fires, its internal state does not continue to be
the same as the PSP. In other words, the timing of the spike from the postsynaptic neuron
a↵ects the internal state if the neuron itself. Shorlty after an output spike is produced, the
internl state declines sharply. This phase is named repolarization. After this phase, the internal
state of the neuron will remain at a value smaller than the resting potential of the neuron (Fig.
2.1), and the neuron is in the hyperpolarization phase. Subsequently, it will be a challenge
for the neuron to reach the threshold and fire again for a determined time period, known as
refractory period (Fig. 2.1).
The three processes mentioned above are undoubtful evidence of the importance of the timing
of the presynaptic spike train for encoding information [17].

2.3 Spiking Neurons

Whenever the membrane potential u crosses some threshold �, a spike is generated. We consider
t(f) to be the time moment when a spike occurs (the firing time). This phenomenon can be
formally described by the following equation:

t(f) : u(tt(f)) = � and
du(t)

dt

�����
t=t(f)

> 0 (2.1)

In the next following sections, some models of spiking neurons will be presented. We will begin
by discussing the Leaky Integrate-and-Fire neuron.

2.3.1 Leaky Integrate-and-Fire Model

As shown in the figure 2.2, the basic circuit of the integrate-and-fire model (on the right
side, inside the dashed circle) consists of a capacitor C in parallel with a resistor R. The RC
circuit is charged by a current I(t). The current I(t) could be divided into two components:
I(t) = IR + IC . The first component, IR is the current which traverses the resistor R. Using
the Ohm’s law we get IR = u/R, where u is the voltage between the two black dots, across the
resistor. The second current (Ic) charges the capacitor C. If the electrical charge is denoted by
q and u is the notation for the voltage, from the definition of the capacity we have C = q/u.
The capacity current will then be IC = Cdu/dt.

Thus,

I(t) =
u(t)

R
+ C

du

dt
(2.2)

If we multiply Eq. (2.2) by R and denote ⌧m = CR to be the time constant of the leaky
integrator, it yields us the standard form:

12

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.2: Schematic diagram of the integrate-and-fire model

⌧m
du

dt
= �u(t) +RI(t) (2.3)

We mention that u is the membrane potential and ⌧m is the membrane time constant of the
neuron. In integrate-and-fire models, spikes are formal events characterized by the firing time
t(f), which is defined by a threshold criterion:

t(f) : u(tt(f)) = � (2.4)

Immediately after t(f), the potential is reset to a new value ur < �,

lim
t!t(f);t>t(f)

u(t) = ur (2.5)

For simplicity, ur is usually considered to be 0 (the potential when the neuron is in a resting
state has the value 0).

After defining the neuron, we want to see how it will behave under certain circumstances, that
is, how it will react when presented to certain stimuli.

First, let’s consider that our LIF neuron is stimulated by a constant input current I(t) = I0.
Under the assumption that ur = 0, we can find the behaviour of the membrane potential by
integrating the equation 2.3:

u(t) = RI0

"
1� exp

⇣
� t� t(1)

⌧m

⌘#
(2.6)

where t(1) is the time when a spike has occurred. When t!1, the membrane potential (2.2)
approaches the asymptotic value of RI0. If RI0 < �, no further spike could appear, as the
threshold value is never reached. However, if RI0 > �, the membrane potential reaches the

13

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.3: Three Constant Input Currents

Figure 2.4: The LIF Neuron Response

threshold value � at time t = t(2). The threshold value � can be found from the condition
u(t(2)) = � or

� = RI0

"
1� exp

⇣
� t(2) � t(1)

⌧m

⌘#
(2.7)

If we want to find the time between the occurrence of two consecutive spikes, we solve for
T = t(2) � t(1):

T = ⌧mln
RI0

RI0 � �
(2.8)

We conclude that for a constant input current I0, the time between two consecutive spikes
which are produced is constant, so the spiking period will be T (given by eq. 2.8).

To illustrate the aforementioned behaviour, a LIF neuron was created using the Python
Tensorflow library. Three constant currents with the intensity of 0.45mA, 1.25mA and 1.5mA
respectively, were fed to our neuron (fig 2.3).

14

CHAPTER 2. SPIKING NEURAL NETWORKS

Fig. 2.4 shows the LIF neuron respone to the above input currents. The red line highlights the
threshold value upsilon, which in our case was initialized with the value 1. The blue line shows
the trajectory of the membrane potential, u(t). At time t = 5ms, when first current is fed
to the neuron, the membrane potential begins to increase. However, due to the low intensity
of the current, the membrane potential has a slow growth and because of the short time if
the input, the membrane potential does not reach the threshold during the first stimulus. At
the time t = 20ms, when the first stimulus ceases to exist, the membrane potential begins to
decrease until the momtent t = 40ms, when the second stimulus is applied. Then, it increases
again until it reaches the threshold value (until it meets the red line). At that moment, a spike
is produced (the orange line) and the membrane potential (the blue line) is set to resting value.
The process repeats itself as long as the current has a positive value.

Now let’s analyze what happens when the stimulus is a time-dependent current.

Suppose we have an input current I(t), which changes over time and a spike has happened
at the moment t = t̂. Integrating the equation 2.2 we get the trajectory of the membrane
potential, u(t):

u(t) = urexp

� t� t̂

⌧m

!
+

1

C

t�t̂Z

0

exp
⇣
� s

⌧m

⌘
I(t� s)ds (2.9)

This expression gives the membrane potential behaviour for t > t̂ and is valid until the potential
reaches the threshold value, when the u(t) is reset to ur and the integration restarts.

Figure 2.5 shows a varying current which corresponds to a normal distribution of 1.5 mA
and standard deviation 1.0 mA. Now we stimulate our neuron with this current and its respons
can be seen in figure 2.6. With the red line is represented the threshold value, which in our case
is equal to 1.0 mA. When the current is fed to our neuron, the membrane potential(the blue
line) value increases, but it shows a random or varying growth, until it reaches the threshold
value. Then, a spike is emited (the orange line) and the membrane potential is set to the resting
value, ur. After that, the process repeats itself, as long as there is a stimulus (current). Each
spike is separated from the next one by a resting period, defined when our neuron was initialized.

So far there was considered an isolated neuron that was stimulated by an external current
I(t). However, in a more realistic approach, there is a larger network where the integrate-and-
fire model is part of and the input current I(t) is generated by the postsynaptic activity of
other, presynaptic neurons.

In the context of the integrate-and-fire model, each presynaptic spike generates a postsynaptic
pulse. More precisely, if the presynaptic neuron j has emitted a spike at the moment t(f)j ,

the postsynaptic neuron i ’feels’ the current with time course ↵(t � t(f)j) (fig 2.2). The total
input which enters the neuron i is the weighted sum over of current pulses, from all presynaptic
neurons:

Ii(t) =
X

j

wij

X

f

↵(t� t(f)j) (2.10)

The factor wij is a measure of the e↵ectiveness of the synapse from neuron j to neuron i.

15

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.5: Time-dependent (random) Input Current

Figure 2.6: The LIF Neuron Response

The time course from eq. 2.10 could be defined in multiple ways, but the simple choice is a
Dirac �-pulse, ↵(t) = q �(t). Here, q is the total charge injected in a postsynaptic neuron via
a synapse with e�cacy wij=1. In a more realistic scenario, the postsynaptic current ↵ should
have a finite durations; for example, this is the case of an exponential decay with time constant
⌧t,

↵(t) =
q

⌧t
exp
⇣
� s

⌧t

⌘
⇥(t) (2.11)

It is worth mentioning that the ⇥ from the equation 2.11 is the Heaviside step function with
⇥(t)=1 for t¿0 and ⇥(t) = 0 elsewhere.

We can now make sense of the rest of the figure 2.2: the output pulse (spike) �(t�t(f)j) generated
fron the presynaptic neuron j enters the synapse (wij). After passing through the synapse where

it is low-pass filtered, it generates and input current pulse ↵(t�t(f)j , which is then multiplied by

16

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.7: Schematic Diagram of the Hodgkin-Huxley Neuron Model

its weight. The resulting current will charge the RC circuit and will generate a spike �(t� t(f)i)
if the membrane potential is equal to the threshold value: u(t) = �.

2.3.2 Hodgkin-Huxley Model

In 1952 Hodgkin and Huxley modelled the biochemical activity that occurs in the brain using
di↵erential equations. Several years later, they won the Nobel Prize for their revolutionary
work. After doing experiments on the axon of the squid, they found three types of ion current:
sodium (Na+), potassium (K+) and a leak current that is mainly made of Cl� ions.

Figure 2.7 helps us understand their model: the interior of the cell and the extracellular liquid
are separated by a semipermeable cell membrane that acts as a capacitor. When an input
current I(t) is injected into the circuit it may add further charge on the capacitor, or flow
through the ion channel into the cell membrane.
The above considerations could be described using mathematical equations as follows: We know
from the conservation of the electric charge on the membrane, that the current I(t) may divide
into a capacitive current IC which will charge the capacitor C and other component Ik which
will penetrate through the ion channels.
Therefore, we can write

I(t) = IC(t) +
X

k

Ik(t) (2.12)

where k is the index of the ion channel and the sum takes into consideration all the ion channel
of the cell membrane.
As we can see from the Figure 2.7, there are three types of channel: a sodium channel (Na),
a potassium channel (K) and a leakage channel with resistance R. Because there is always
a movement of the ions from the inside to the outside of the cell and vice-versa, there is a
di↵erence of the concentration. This di↵erence of concentration from the interior of the cell to
the extracellular liquid generates the Nernst potential and is represented by the batteries.
The definition of the capacity (C) states that if we have a charge Q and a voltage u across the
capacitor, then C = Q/u. Thus, the current IC which charges the capacitor is IC = C du/dt.
If we replace the above in 2.12 we get

C
du

dt
= �

X

k

Ik(t) + I(t) (2.13)

17

CHAPTER 2. SPIKING NEURAL NETWORKS

x Ex gx

Na 115 mV 120 mS/cm2

K -12 mV 36 mS/cm2

L 10.6 mV 0.3 mS/cm2

Table 2.1: The Empirical Values of the Parameters E and g in the Hodgkin-Huxley Equations

x ↵x(u/mV) �x(u/mV)

n (0.1-0.01u)/[exp(1-0.1u)-1] 0.125 exp(-u/80)
m (2.5-0.1u)/[exp(2.5-0.1u)-1] 4 exp(-u/18)
h 0.07 exp(-u/20) 1/[exp(3-0.1u)+1]

Table 2.2: The Empirical Values of the Parameters ↵ and � in the Hodgkin-Huxley Equations

In eq. 2.13 u represents the voltage across the membrane and
P

k Ik(t) is the sum of all ionic
currents that pass through the cell membrane.
The three types of channel could be described by their resistance, but also by their conductance.
The conductance of the leakage channel, gL, is voltage-independent: gL = 1/R. However, the
other two channels have conductances that are dependent of time and voltage. Let gNa and gK
be the maximum conductance of the sodium and the potassium channels, respectively. When
all the channels are open, they transmit current with gNa and gK . In reality, only some of the
channels are open, while some are blocked. The additional variables m, n and h describe the
probability that a channel is open. The Na+ gates are controlled by m and h, while n controls
the K+ channels.
Hodgkin and Huxley came up with the following mathematical formulation:

X

k

Ik(t) = gNam
3h(u� ENa) + gKn

4(u� EK) + gL(u� EL) (2.14)

In eq. 2.14, ENa, EK and EL are reversal potentials. Conductances and reversal potentials are
empirical values. In Table 2.1 are given the original values discovered by Hodgkin and Huxley
based on experimental behaviour of neurons. The values presented here are those found by
considering a resting potential of 0 mV. However, today the resting potential accepted is �65
mV, so the scale has to be shifted by that value. For instance, the corrected value of EK is
�77 mV.
The variables m, n and h are called gating variables (because they give us information about
the state of a gate). They evolve as function of u and their behaviour is given by the following
di↵erential equations:

ṁ = ↵m(u)(1�m) + �m(u)m

ṅ = ↵n(u)(1� n) + �n(u)n

ḣ = ↵h(u)(1� h) + �h(u)h

(2.15)

where ṁ =dm/dt, ṅ =dn/dt and ḣ =dh/dt. In Table 2.2 are given the function ↵ and �, that
are empirical functions of u. They were found by Hodgkin and Huxley by trying to fit the data
of the axon of the squid.
the Hodgkin-Huxley neuron model is defined by the equations 2.13, 2.14 and 2.15, together

18

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.8: Hodgkin-Huxley Neuron Response to a Constant Input Current

with the values presented in Table 2.1 and Table 2.2. [18]

To illustrate the Hodgkin-Huxley neuron model behaviour, a simulation using the library Brian2
was performed. Figure 2.8 shows the response of the neuron to a constant input current of 0.5
nA. By giving the neuron a greater input current, it would have a greater rate of spikes (the
spike period would have a smaller value). Similarly, if the input current was smaller, the neuron
would have take longer to spike. The simulation time was set to 50 ms.
With the blue line is represented the voltage across the membrane and with orange are represented
the spikes. As it can be seen, the voltage increases until the value of�40 mV, a spike is produced
and the potential returns to its resting potential (�65 mV). �40 mV is the threshold value.
As long as there is an input current, this process will repeat.

Despite the biochemical accuracy of the Hodgkin-Huxley neuron, this model is very computationally
expensive and thus ine�cient. In the next section we will explore a simpler neuron model.

2.3.3 Izhikevich Model

On the quest of finding a trade-o↵ between the biologically realistic Hodgkin-Huxley neuron
and the computationally e�cient integrate-and-fire neuron, Eugene M. Izhikevich proposed a
model that satisfies both requirements 1.

This model can describe the behaviour of a real neuron in an elegant way, by a system of
two-dimensional di↵erential equations as follows:

1Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com

19

www.izhikevich.com

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.9: Izhikevich Model Applied to Known Types of Neurons

v0 = 0.04v2 + 5v + 140� u+ I (2.16)

u0 = a(bv � u) (2.17)

Also, there are the following after-spike resetting statements:

if v � 30mV, then

(
v c

u u+ d
(2.18)

The parameters a, b, c, d from the above equations are dimensionless constant, and the variables
v and u are also dimensionless. v0 is the derivative of the membrane potential of the neuron
with respect to time. and u0 is the derivative of the membrane recovery potential with respect
to time. After the membrane potential reaches the threshold value (30 mV), the two variables
are reset (eq. 2.18). The current I from eq. 2.16 could be an external current (injected), or
coming from other neurons (synaptic current). There are various possibilities of choosing the
paramenters of this model, and their significance is presented below:

• a is a constant that gives information about how long it will take for the membrane to
recover. If we choose a smaller a, the recovery will be slower. Similarly, for large values
of a there will be less time needed for this to happen. An usual value is a = 0.02.

• How sensitive the recovery variable is to the fluctuations that take place under the
threshold of the membrane potential is described by the variable b. If b has a large
value then u and v are strongly correlated and thus more subthreshold oscillations may
happen. Greater values of b also mean that spikings occur at a lower threshold value,

20

CHAPTER 2. SPIKING NEURAL NETWORKS

resulting in a higher firing rate. A typical value is b = 0.2.

• The parameter c, as we could imagine from eq. 2.18, is the reset value which the membrane
potential takes after a spike. Typically, this value is �65 mV.

• d gives information about the after-spike reset of the recovery variable u and usually
d = 2.

However, the choice of the aforementioned parameters is made assuming that we want to model
a specific type of neurons. In Fig. 2.9 can be seen that by choosing a specific combination of
values for a and b, we obtain di↵erent types of neurons. For example, if we choose a = 0.02
and b = 0.25 we can model a low-threshold spiking (LTS) or a thalamo-cortical (TC) neuron.
Similarly, for di↵erent compilation of parameters c and d we can model various neurons.
We can classify the neurons in the mammalian brain by their spiking and bursting patterns.

In the following paragraph will be presented the neuron types illustrated in Fig. 2.9. The
excitatory cortical cells are split into the following categories:

• RS (regular spiking) neurons are the most common type in the cortex. When we apply
a constant DC current as shown in Fig. 2.9, at the beginning there are a few spikes
with a small period of repetition. After some time, The period becomes larger, so the
firing rate decreases. This phenomenon is referred to as spike frequency adaptation. If
a current with a greater amplitude is injected into the neuron, the interspike frequency
will increase. RS neuron are modeled here with the following parameter values: a = 0.02,
b = 0.2, c = �65 and d = 8.

• IB (intrinsically bursting) neurons present a burst of spike at the beginning of the action
of the injected current. Then, their spiking patter becomes normal. The corresponding
values on the model are a = 0.02, b = 0.2, c = �55(this means that after a spike the
voltage reset is high) and d = 4.

• CH (chattering) neurons can fire bursts of spikes separated by some period of time . The
inter-burst frequency can reach values up to 40 Hz. The parameter values for this type
of neurons are a = 0.02, b = 0.2, c = �50 (this represents a very high reset voltage) and
d = 2.

Besides excitatory cells, there are also inhibitory cortical cells. Two di↵erent kinds of inhibitory
neurons exist:

• FS (fast spiking) neurons produce spikes with very high frequency, without slowing down,
as it can be seen in Fig. 2.9. This neurons have the model parameters: a = 0.1 (this
means they have a fast recovery), b = 0.2, c = �65 and d = 2.

• LTS (low-thershold spiking) neurons also emit spikes with high frequency, but unlike
FS neurons, they do show a frequency adaption (The time period between the spikes
increases after the initial spikes). The LTS neurons emit spikes at a low threshold. The
corresponding model parameters are a = 0.02, b = 0.25, c = �65 and d = 2.

Apart from the aforementioned neocortical neurons, the Izhikevich model can also exhibit
the behaviour of the neurons which deliver the most input to the cortex, namely the thalamo-
cortical (TC) neurons Fig. 2.9. The model can reproduce other interesting dynamics, as RZ
(resonator) neurons.
The function v0 = 0.04v2+5v+140�u+I in eq. 2.12 was chosen to fit various types of neurons.

21

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.10: Step Input Current

Figure 2.11: Izhikevich Neuron Model Response

As large networks are usually made by multiple kinds of neurons, a ”one-fits-all” equations is
needed. However, if we are interested to simulate the behaviour of only a specific neuron type,
other equation and parameter values might suit better. [19], [20]

To exemplify the Izhikevich model, a simulation using Tensorflow was made. The model in
our program had the following paramters: a = 0.02, b = 0.2, c = �65 and d = 8. From these
values we would expect that our neuron will behave as a regular spiking (RS) neuron. The
neuron was injected with a step input current with amplitude 7 A (Fig. 2.10). Indeed, the
neuron produced spikes with a higher frequency at the beginning, followed by regular spikes with
a lower firing rate. When the current was eliminated, the membrane potential stopped growing
and did not reach its threshold. As a result, a spike was not produced and the membrane
potential returned to its resting value.

2.4 Spiking Neural Networks

Straightforwardly, SNNs are netwotks of spiking neurons. The SNN architecture is generally
identical to that of a traditional ANN.

Figure 2.12 shows an example of a SNN architecture. Contrary to traditional feedforward
ANNs in which two neurons are connected by just one synapse, the connection between two
SNN neurons is modeled by various synapses, as it can be seen in Fig. 2.12(b). A neuron from

22

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.12: (a) Spiking Neural Network Architecture (b) Multiple Synapses Transmitting
Multiple Spikes From A Presynaptic Neuron To A Postsynaptic Neuron

[21]

this network has the ability to assimilate multiple input spikes from presynaptic neurons and
fire multiple output spikes as a response. Specifically, information conducted from one neuron
to the next is encoded in the form of a spike train rather than a single spike. The enhanced
connection which can be seen in Fig. 2.12(b) exhibits the temporal sequence of spikes (short
vertical lines) from the presynaptic neuron, the synaptic wights (the weight are greater if the size
of the star unit in the center is greater) and the resulting post-synaptic potential (proportional
to the size of the PSP, as shown in figure). Therefore, a neuron j 2 {1, 2, ..., Nl} in layer l is
postsynaptic to Nl+1 presynaptic neurons, where Nl is the number of neurons in layer l. Each
presynaptic neuron i 2 {1, 2, ..., Nl} is connected to the postsynaptic neuron j via K synapses.
The number K is constant for any two neurons [17, 21].

2.5 Learning Rules in Neural Networks

2.5.1 Synapses

The synapse is where the axon of a presynaptic cell and the dendrite (or soma) of postsynaptic
neuron are connected. Because most of the input currents in the brain come not from external
injected stimuli but from other neurons, they have to somehow make contact [18].
In Fig. 2.13 two neurons, Neuron 0 and Neurons 1, are connected through a synapse. Only
Neuron 0 is injected with an external current, I. If the two neurons were not connected with
the synapse, the potential v of Neuron 1 would have remained 0 on the entire simulation period.
The link between the two neurons is defined as follows: When Neuron 0 fires a spikes (every 10
ms), the potential v of Neuron 1 increases by 0.25. This happens for every spike of Neuron 0
until the value of the potential v of Neuron 1 reaches the threshold 1. At that moment, Neuron

23

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.13: Example of Synaptic Behaviour

1 fires a spike and its potential v returns to 0, waiting for Neuron 1 to spike again.

In the above example, the synapse rule was specified explicitly. However, for large neural
networks, as it is the case of most real applications and in biological networks, this is not
usually possible [22]. For this reason, the next sections will present two of the most widely-
known learning rules in neural networks.

2.5.2 Hebbian Learning

The formal theory of neural networks states the the weight wij of a link between neuron j and
neuron i is a parameter that can modify its value over time in order to increase the performance
of a network while performing a task.
Learning is defined as the process by which the parameters adapt their values, and the method
by which the weights are adjusted is called a learning rule.

Hebb’s postulate describes how the connection between a presynaptic neuron j and a postsynaptic
neuron i should be altered: ”When an axon of cell j is near enough to excite cell i or repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that j’s e�ciency, as one of the cells firing i, is increased.” In other words,
the adjustment of the weight wij between neuron j and neuron i depends only of the states of
the two neurons j and i, and the present value of wij, but not on the states of other neurons
k. Hebb also wrote that if two cells are simultaneously active multiple times, they will move
toward an association between them, so that an activity �j in one of them promotes activity �i
in the other. Based on the above we can define a general mathematical formulation of Hebb’s
postulate:

d

dt
wij = F (wij; �i, �j) (2.19)

There are many other formulaic descriptions of Hebbian learning. For instance,

24

CHAPTER 2. SPIKING NEURAL NETWORKS

wij = xixj (2.20)

is also used to characterize the synaptic e�cacy wij between neurons j and i. In eq. 2.20, xi

and xj is the inputs of neurons i and j respectively. What this means for binary neurons (their
states can be only 0 and 1) is that only when neuron i is active and neuron j is active, the
weight wij would be set to 1.
Another formula used to describe Hebb’s Rule is the following:

wij =
1

p

pX

k=1

xk
i x

k
j (2.21)

In eq. 2.21 p represents the number of training patterns, xk
i is the kth input for neuron i. This

type of learning is called learning by epoch, that is when the weights are updated only after all
the training examples are disclosed.

Hebb’s Learning Rule is regularly generalised as follows:

wij[n+ 1] = wij[n] + ⌘xi[n]xj[n] (2.22)

What this means is that the e�cacy of a synapse from neuron j to neuron i at the (n + 1)th

step, wij[n+ 1] is equal to the e�cacy of the synapse at the nth step plus the product between
the output of neuron j at the nth step and the input of neuron i at the nth step, multiplied by
a learning rate, ⌘.

To summarise what Hebb concluded about the firings of the neurons, we will say that if a
synapse participates repeatedly in firing a postsynaptic neuron, the e�cacy of that synapse
will rise. However, we often over-simplify the rule by saying that neurons that wire together,
fire together. This simplification is not accurate because if two neuron fire simultaneously (at
the exact same tame), then we cannot have a causality relationship between the two neurons.
To have this cause-e↵ect relationship (a presynaptic neuron to contribute in the firing of a
postsynaptic neuron), the presynaptic neuron has to spike just before the postsynaptic neuron
fires. This temporal dependency led to a new theory, which explores how the timing of the
spikes influences the weights adjustment and how the changes of the weights a↵ect the timing
of the spikes [18, 23, 24].

2.5.3 Spike-Time Dependent Plasticity

Spike-Time Dependent Plasticity (STDP) is a form of Hebbian Learning that takes into account
the temporal relationships between the spikes produced by the presynaptic and postsynaptic
neurons. STDP is also believed to underlie the learning process, the storage of information
and the ontogenesis of neural paths in the human brain. In this theory, presynaptic spikes that
arrive many times to a postsynaptic neuron just a few milliseconds before it fires a spike, lead
to Long-Term Potentiation (LTP) of the synapses which carried those spikes. On the other
hand, if a synapse repeatedly transmits spikes to a postsynaptic neuron just after it fired a
spike, the synapse will su↵er Long-Term Depression (LTD).
The STDP function is defined as the modification of the e�cacy of a synapse plotted as a
function of the time di↵erence between the presynaptic and postsynaptic action potentials .
The STDP function may be di↵erent for particular synapse types.

25

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.14: STDP function

Let us write mathematically the definition of STDP. If we denote the change of weight of
particular synapse from a presynaptic neuron j by �wj, then �wj will depend on the relative
timing between the spike that arrives from the presynaptic neuron j and the firing of postsynaptic
neuron i. If tfj are the time moments when the spikes f , with f = 1, 2, ..., N arrive at the synapse
j and tni are time moments when the postsynaptic neuron i fires the spike n, with n = 1, 2, ..., N ,
then we can conclude that

�wj =
NX

f=1

NX

n=1

W (tni � tfj) (2.23)

whereW (x) stands for one the various STDP functions (they are also named learning windows).
A favored STDP function W (x) is the following:

W (x) = A+exp(�
x

⌧+
) for x > 0

W (x) = �A�exp(
x

⌧�
) for x < 0

(2.24)

The eq. 2.24 was used in fits to experimental datasets and models. The time constants ⌧+ and
⌧� are of order of 10 ms. The parameters A+ and A� may vary depending on the actual value
of the e�cacy, wj.

Figure 2.14 illustrates the SDTP function W (x) defined in eq. 2.24, with ⌧�=⌧+=10 ms,
A+=0.02 and A�=0.021.

Simulating STDP using directly these equations would be highly ine↵ective, since the sum
goes over all the spike pairs. Besides, this is not physiologically conceivable because a neuron
cannot recall all its preceding spike times. For that reason, we will present a more productive
and physiologically plausible method for achieving the same results.

We can use the following assumptions: each presynaptic spike tfj (Fig. 2.15) leaves behind a
trace xj(t) which decays exponentially if there no spikes and is updated by an amount a+(xj),

26

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.15: STDP with Local Variables

as follows:

⌧+
dxj

dt
= �xj + a+(xj)

X

f

�(t� tfj) (2.25)

Similarly, each spike fired by a postsynaptic neuron (a postsynaptic spike), leaves a trace y (Fig.
2.15), which is increased by an amount a�(y) when the neuron fired and falls exponentially in
the absence of postsynaptic spikes:

⌧�
dy

dt
= �y + a�(y)

X

n

�(t� tn) (2.26)

Consequently, the weight change will have the following formula:

dwj

dt
= A+(wj)x(t)

X

n

�(t� tn)� A�(wj)y(t)
X

f

�(t� tfj) (2.27)

Hence, the synaptic e�cacy is heightened when there is a postsynaptic firing by an amount
that varies according to the value of the trace x left by the presynaptic spike. Then as well,
the weight su↵ers a depression with a magnitude proportional to the the trace left by the trace
y of the postsynaptic spike. If we integrate eq. 2.27 we obtain eq. 2.24. [18],[22],[25]

To illustrate how the weight w changes as a function of the local variables introduced, xj

and y, a simulation using the library Brian2 was done. Below is presented how the code by
which xj is updated as a function of y and y is modified as a function of xj works.
For the first 10 ms, there was no spike produced and xj and y are both set to zero (Fig. 2.16).
At the moment t = 10 ms a presynaptic spike occurs and the variable xj is updated by the
rule: xj xj +A+, where A+ = 0.01 in our simulation [26]. When a presynaptic spike arrives
the weight w is updated according to the following rule: w w + y, but as there was no
postsynaptic firing y is still zero, so the weight w will remain unchanged. After the presynaptic
spike, xj starts to fall exponentially. At the time t = 20 ms the postsynaptic neuron fires and
the variable y is changed: y y +A�, with A� = �0.0105. At the moment of a postsynaptic

27

CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.16: The Weight Change as a Function of Local Variables

spike, w is changed: w w+ xj. At t = 20 ms, xj has become 0.005, as it can be seen in Fig.
2.16, so the weight is now w = 0.005, and it will remain so until another spike is produced [26].

28

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Chapter 3

Design, Implementation and Experimental Results

3.1 Foreign Exchange Rate

3.1.1 Foreign Exchange Market

The foreign exchange market, also known as forex, FX or the currency market, is a global
marketplace that regulates the exchange rate for currencies around the world. Those who
participate in the FX market are allowed to buy, sell, exchange and speculate on currencies
[27]. Foreign Exchange rate is one of the most significant channels through which we determine
a country’s relative level of economic health. A country’s foreign exchange rate yields a window
to its economic stability, so it is understandable the interest for it being persistently watched
and analyzed. For instance, we want to know the foreign exchange rate when we have to send
or receive money internationally.
Although, there are undoubtedly a myriad of factors that influence the shifts in exchange rates,
the ones we will present are the following:

• Inflation rates : currency exchange rates are dependent on the market inflation. If a
country has a lower inflation rate than another country, the first will experience an
appreciation in the value of its currency. When the inflation is small the prices of goods
and services rise at a slower rate.

• Interest rates : Fluctuations in interest rate disturb currency value and exchange rates.
FX rates, interest rates and inflation are correlated. When a country has consistent
increases in interest rate, its currency will appreciate due to the rates to lenders. As a
consequence, it will attract more foreign capital, which will result in increased exchange
rates.

• Government Debt : the public debt or national debt owned by the central government. If
a country has a relatively high government debt, it will less likely acquire foreign capital,
which will lead to inflation.

• Political Stability and Performance: A country which is less predisposed to political
turbulence is more attractive to foreign investors, resulting in an appreciation in the
value of its domestic currency [28].

From the aforementioned arguments we can conclude that the foreign exchange market is of
great interest to the majority of the population, and at the same time a market influenced by
many aspects which are di�cult to predict.

29

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.1.2 Database

The database used in this simulation was obtained from the National Bank of Romania (BNR)
website. It contains the exchange rates between Euro and RON (Romania’s national currency)
– EUR/RON, from 2010 until 2020. The samples were collected from the 4th of January 2010
until the 3rd of June 2020, on a daily basis, resulting in a total of 2629 samples.

Figure 3.1: Foreign Exchange Rate EUR/RON, 2010-2020

Figure 3.2: Histogram of the Foreign Exchange Rate EUR/RON, 2010-2020

Figure 3.1 shows the evolution of the previously mentioned variable over a 10-year period.
For example, on the 6th of August 2014, 1 Euro was exchanged for 4.4455 RON. Despite the
fluctuations, there is clearly an upward trend in the exchange rate – RON sees a depreciation
compared to EUR.

30

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Statistic V alue

mean 4.479480

std 0.175376

min 4.065300

25% 4.383700

50% 4.466400

75% 4.598500

max 4.844800

Table 3.1: Statistical Parameters for the Foreign Exchange Database

The histogram of our dataset can be seen in fig. 3.2. The most frequent exchange rates are
between 4.4 and 4.5. However, the distribution is not a perfect Gaussian, as we can find a low
frequency for rates around 4.2 and 4.8, but also for rates around 4.3, 4.6 and 4.7.

Let us now proceed by looking at some statistics for the database.
Table 3.1 shows di↵erent statistical tools which give us better insight into the data. The

mean has a value of 4.479480, meaning that the expected value of our data over all data points
sits around this value. The standard deviation shows how dispersed from the mean are the
values from our dataset, in this case the standard deviation being equal to 0.175376. A smaller
value gives us a more uniform distribution, while a greater value would mean a more volatile
distribution. The minimum value from our dataset is 4.065300, and the maximum value is
4.844800, which means that we cannot find any value out of this range. Another useful insight
would be to know what percent of the data we can find below a certain value. From the Table
3.1 we can see that 25% (or one quarter) of the data lies below the value 4.383700, 50% (or half
of the data) can be found below the value 4.466400 and 75% (or three quarters) of the data
lies below the value 4.598500.

3.1.3 ARMA Based Forecasting

3.1.3.1 ACF and PACF of the Foreign Exchange Database

In order to apply a stochastic model, it is useful to know how the data is correlated. Figure 3.3
illustrates the autocorrelation of our dataset, for a number of n = 600 lags. We can see that
for n = 0 we have an autocorrelation of 1 (as it should be, since a value is perfectly correlated
with itself).
As n increases, meaning that the distance in time between two data point increases, the
autocorrelation decreases, and eventually tends to zero. An autocorrelation of zero means
that there is no relationship between two data points. This shows us that the data does not
exhibits any seasonality trends, and the more distanced in time are any two data points, the
less they are correlated. It can also be observed that for the first n = 600 lags, the data points
are positively correlated.

The partial autocorrelation function (PACF) is slightly di↵erent from the autocorrelation
function (ACF). The partial autocorrelation function seeks to remove the autocorrelations from
previous lags. For this reason, in figure 3.4 we can see that only the first lag has the value
1, and then the rest are very close to zero. This is because there is little variation in the
autocorrelation between two consecutive lags.

31

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.3: Autocorrelation of the Foreign Exchange Data

Figure 3.4: Partial Autocorrelation of the Foreign Exchange Data

3.1.3.2 Dickey–Fuller Test for Stationarity

Dickey � FullerParameter V alue

ADF Statistic -1.208443
p-value 0.669953

Table 3.2: Dickey-Fuller Test Results

Before we can proceed forecasting with any ARMA-based model, we need to know if our data
is stationary or not. If it is, then we can directly apply an ARMA model. However, if not, then
we need to transform our data in order to make it stationary.
The Dickey-Fuller Test is one of the tools we have at our disposal to test the stationarity of the
data set. What is of great interest are two parameters: the ADF Statistic and the p-value. If
the ADF statistic is very negative, it means we have a stationary dataset. However, as it gets
closer to zero, it is more likely that we have to deal with non-stationary data. A p-value below

32

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

a threshold (such as 5% (or 1%)) suggests that the data is stationary. On the other hand, a
p-value above the threshold suggests our data is non-stationary.[11]

Table 3.2 gives us the results of the Dickey-Fuller test, when applied to the Foreign Exchange
Rate database. The p-value exceeds the threshold of 0.05 (actually, the p-value is very large
– 0.669953, so we can say with enough confidence the data is non-stationary). Also, the ADF
Statistic is not very negative, so the data is non-stationary.

Figure 3.5: Residuals After First-Order Di↵erencing

Figure 3.6: Distribution of the Residuals After First-Order Di↵erencing

The next step is to transform the data in order to make it stationary. To do that, we will
apply a first di↵erencing to the data (I=1). The residuals from our first-order di↵erencing can
be seen in figure 3.5. It is clear that the data no longer poses any trends and it looks like a
white noise, with the mean centered at zero.

33

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

However, to be really sure there is no need to further di↵erentiate the data, the distribution
of the residuals is shown in figure 3.6. There is no doubt that the mean of the residuals is zero,
so the data resulted is stationary (there is no relationship between any two data points, no
matter how close to each other they are in time).

3.1.3.3 ARMA Forecasting Results

After we have seen that there is no need for us to do a second-order di↵erencing, we can now
proceed by forecasting the data using an ARIMA model. Because we found that I = 0 (first-
order di↵erencing), we apply ARIMA (p,1,q), where p is the order of the AR model, and q is
the order of the MA model.

We will compare the results from di↵erent ARMA-based model by using the mean squared
error (MSE) metric (or, alternatively, the root mean squared error (RMSE) metric). As we
would expect, we want these two metrics to be as close to zero as possible, so it will give us the
most accurate results.

Model MSE RMSE

AR(1) 23.55⇥ 10�6 48.528⇥ 10�4

AR(2) 23.58⇥ 10�6 48.563⇥ 10�4

AR(3) 23.68⇥ 10�6 48.671⇥ 10�4

AR(4) 23.71⇥ 10�6 48.696⇥ 10�4

AR(5) 23.71⇥ 10�6 48.697⇥ 10�4

Table 3.3: Autoregressive Model Forecasting Results

Table 3.3 shows the results from our simulation for di↵erent values of the parameter p, while
the parameter q is set to zero, so we get an autorregresive AR(p) model.

Model MSE RMSE

MA(1) 23.54⇥ 10�6 48.526⇥ 10�4

MA(2) 23.57⇥ 10�6 48.552⇥ 10�4

MA(3) 23.68⇥ 10�6 48.661⇥ 10�4

MA(4) 23.75⇥ 10�6 48.734⇥ 10�4

MA(5) 23.74⇥ 10�6 48.727⇥ 10�4

Table 3.4: Moving Average Model Forecasting Results

Table 3.4 shows the results from our simulation for di↵erent values of the parameter q, with
the parameter p set to zero, so we get a moving average MA(q) model.

Table 3.5 shows the results from our simulation for di↵erent values of the parameter p
(p = 1, 2, 3, 4), and di↵erent values for the parameter q (q = 1, 2, 3, 4).

From the above results we can conclude that the most accurate predictions are obtained
for lower values of the parameters p and q. Also, simulating greater MA and AR models with
greater values for p and q would be computationally expensive and thus ine�cient. Fortunately,
there is no need for us to do so, as the best results require smaller values of the aforementioned
parameters.

34

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Model MSE RMSE

ARMA(1,1) 23.67⇥ 10�6 48.6⇥ 10�4

ARMA(1,2) 23.58⇥ 10�6 48.532⇥ 10�4

ARMA(1,3) 23.72⇥ 10�6 48.756⇥ 10�4

ARMA(1,4) 23.82⇥ 10�6 48.854⇥ 10�4

ARMA(2,1) 23.71⇥ 10�6 48.697⇥ 10�4

ARMA(2,2) 24.06⇥ 10�6 49.055⇥ 10�4

ARMA(2,3) 24.11⇥ 10�6 49.262⇥ 10�4

ARMA(2,4) 24.30⇥ 10�6 49.421⇥ 10�4

ARMA(3,1) 24.79⇥ 10�6 49.897⇥ 10�4

ARMA(3,2) 25.02⇥ 10�6 50.076⇥ 10�4

ARMA(3,3) 25.36⇥ 10�6 50.358⇥ 10�4

ARMA(3,4) 25.89⇥ 10�6 50.882⇥ 10�4

ARMA(4,1) 26.25⇥ 10�6 51.234⇥ 10�4

ARMA(4,2) 26.64⇥ 10�6 51.613⇥ 10�4

ARMA(4,3) 26.98⇥ 10�6 51.942⇥ 10�4

ARMA(4,4) 27.23⇥ 10�6 52.182⇥ 10�4

Table 3.5: Autoregressive Moving Average Model Forecasting Results

The lowest MSE value was obtained for the MA(1) model (MSE=0.000023548), but overall
there was little di↵erence in the performance of the ARMA-based model forecasts. To get an
idea about how our network performed, table 3.6 shows the actual vs. predicted values for the
first 10 forecasted values, using the MA(1) model.

Date Actual Predicted

27.04.2018 4.649000 4.647277

30.04.2018 4.661800 4.649338

02.05.2018 4.658900 4.663002

03.05.2018 4.663000 4.658778

04.05.2018 4.661800 4.663543

07.05.2018 4.656900 4.661867

08.05.2018 4.654200 4.656708

09.05.2018 4.649600 4.654202

10.05.2018 4.645400 4.649433

11.05.2018 4.639700 4.645276

Table 3.6: Actual vs. Predicted Values for MA(1)

Now that we have seen how the stochastic models perform on the Foreign Exchange database,
let us proceed to the results obtained by using artificial neural networks. The next section will
analyze two di↵erent network architectures, and for each there will be given the two metrics
(MSE and RMSE).

35

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.1.4 Neural Networks Forecasting

In this section, we can find the results obtained by simulating artificial neural networks using
the Python Keras library.

3.1.4.1 Proposed Architecture – 1

Figure 3.7: First Neural Network Architecture

The first neuronal architecture used to forecast the foreign exchange data is shown in fig. 3.7.
This neural architecture was proposed on the Kaggle website to forecast financial time series.[29]
The architecture uses a sequential model, and contains four layers plus the input layer. The
input layer has the shape of the training data. The first and the second layers have 50 long
short-term memory (LSTM) neurons each. The third layer is a dense layer, that is, a regular
layer of neurons in a neural network, where each neuron receives input from all the neurons in
the previous layer (thus densely connected). This third layer has 25 neurons, so its output will
be 25, as it can be seen in fig. 3.7. The output from the third layer will be the input for the
fourth layer, which is also a dense layer, but with only one neuron (output=1, fig. 3.7).
In table 3.7 we can find the MSE and RMSE scores for a batch size (the number of training
samples to work through before the model’s internal parameters are updated) of 1, but di↵erent
values for the epochs (complete passes through the training dataset).

36

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Number of Epochs MSE RMSE

1 26.35⇥ 10�5 16.232⇥ 10�3

2 37.39⇥ 10�6 58.175⇥ 10�4

3 30.27⇥ 10�5 17.4⇥ 10�3

4 33.84⇥ 10�6 61.635⇥ 10�4

5 63.59⇥ 10�6 79.746⇥ 10�4

10 37.39⇥ 10�5 19.33⇥ 10�3

25 85.43⇥ 10�6 92.431⇥ 10�4

Table 3.7: First Architecture Results, Batch Size = 1

In table 3.8 we can see the results obtained with the first architecture, by varying the
batch size, keeping the number of epochs constant at the value of 25. It is clear that the best
performance of this architecture was obtained for a batch size of 20 and the number of epochs
of 25.

Batch Size MSE RMSE

10 43.76⇥ 10�6 66.15⇥ 10�4

20 28⇥ 10�6 52.918⇥ 10�4

30 10.08⇥ 10�5 10.042⇥ 10�3

40 19.39⇥ 10�5 13.927⇥ 10�4

50 30.06⇥ 10�6 54.833⇥ 10�4

100 80.94⇥ 10�6 89.97⇥ 10�4

Table 3.8: First Architecture Results, Number of Epochs=25

Figures 3.8, 3.9, 3.10, 3.11, 3.12 show the results obtained for di↵erent values of the number
of epochs and the batch size. With the blue colour are represented the training data, in our
case, the first 80% of the values. With green are represented the data used for validation, that
is, the last 20% of the values from our dataset. The values are used to compare our predicted
values, which are illustrated with the colour red.

Figure 3.8: First Neural Network Results - Batch Size=1, Epochs=1

37

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.9: First Neural Network Results - Batch Size=1, Epochs=2

Figure 3.10: First Neural Network Results - Batch Size=1, Epochs=3

Figure 3.11: First Neural Network Results - Batch Size=1, Epochs=25

38

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.12: First Neural Network Results - Batch Size=50, Epochs=25

Similar to our assumptions made just by looking at the MSE, the predictions obtained using
a batch size of 1 and two epochs are better than the predictions made by using a batch size of
1 and only one epoch (in the first case the green and the red line are almost one and the same;
in the second case they are not quite overlapping).

In fig. 3.12 we can see the best performing model from the first architecture (batch size=50,
epochs=25). It is obvious the two lines are almost the same, so the performance of this model
is quite remarkable.

3.1.4.2 Proposed Architecture – 2

Figure 3.13: Second Neural Network Architecture

The second neural network architecture (fig. 3.13) is a neural network developed by me for
the scope of this thesis. Although it has a similar sequential model,the number of layers and

39

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

neurons di↵er. The input layer has, as in the previous case, the shape of the training data.
The first layer has 200 LSTM neuron cells. The second and third layers are dense and have
100 neurons and one neuron, respectively.

Number of Epochs MSE RMSE

1 27.23⇥ 10�6 52.182⇥ 10�4

2 26.14⇥ 10�6 51.12⇥ 10�4

3 39.76⇥ 10�6 63.055⇥ 10�4

4 35.97⇥ 10�6 59.974⇥ 10�4

5 31.65⇥ 10�6 52.258⇥ 10�4

10 25.28⇥ 10�6 50.52⇥ 10�4

25 36.73⇥ 10�6 60.605⇥ 10�4

Table 3.9: Second Architecture Results, Batch Size = 1

In table 3.9 we can find the MSE and RMSE scores for a batch size of 1, but di↵erent values
for the epochs, for the second neural network architecture.

Batch Size MSE RMSE

10 25.89⇥ 10�6 50.882⇥ 10�4

20 37.23⇥ 10�6 61.016⇥ 10�4

30 32.52⇥ 10�6 57.026⇥ 10�4

40 24⇥ 10�6 48.989⇥ 10�4

50 35.62⇥ 10�6 59.682⇥ 10�4

100 30.83⇥ 10�6 55.524⇥ 10�4

Table 3.10: Second Architecture Results, Number of Epochs=25

In table 3.10 we can see the results obtained with the second architecture, by varying the
batch size, keeping the number of epochs constant at the value of 25. It is clear that the best
performance of this architecture was obtained for a batch size of 40 and the number of epochs
of 25, with a MSE score of 24⇥ 10�6.

From tables 3.7, 3.8, 3.9 and 3.10, it is clear that the second neural network architecture
outperformed the first one, giving more accurate predictions. Hence, the MSE and RMSE
scores are lower, especially for a lower number of epochs (therefore more time e↵ective).

Figures 3.14 3.15, 3.16, 3.17, 3.18 show the results obtained for di↵erent values of the number
of epochs and the batch size. The training data is represented in blue (first 80% of the data),
while the data used for validation is coloured in green (last 20% of the values) . The values are
compared to our predicted values, which are illustrated with the colour red. This architecture
gives a very accurate prediction for a batch size of 40 and 25 epochs, as it can be seen in fig.
3.18, where the green and red line are very hard to distinguish.

40

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.14: Second Neural Network Results - Batch Size=1, Epochs=1

Figure 3.15: Second Neural Network Results - Batch Size=1, Epochs=2

Figure 3.16: Second Neural Network Results - Batch Size=1, Epochs=3

41

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.17: Second Neural Network Results - Batch Size=1, Epochs=5

Figure 3.18: Second Neural Network Results - Batch Size=40, Epochs=25

3.2 Crude Oil Stock Price

3.2.1 Market Overview

Crude oil, sometimes referred to as “black gold”, is one of the world’s most precious commodities.
Its changes in price can a↵ect the economic ecosystem at every level, from family budgets to
corporate earnings or to the nations’ GDP. Indeed, abrupt price drops or unexpected spikes
can send global financial markets into animosity. Crude oil prices change rapidly in response
to news cycles, policy changes, and fluctuations in the world’s other markets. Since 2014, oil
prices have experienced a downward trend, falling from highs of around $105 per barrel. In
February and March of 2020, crude prices accelerated their decline in reaction to the coronavirus
pandemic and an expected extreme drop in demand. In addition, major oil producers failed to
come to an agreement on production cuts, intensifying the problem.

The major factors which drive the crude oil price are enumerated below:

• Supply
For several decades, the Organization of Petroleum Exporting Countries (OPEC) has

42

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

been a monumental player on the world’s trading floors, with its oil-producing member
nations working together to determine prices by raising or reducing crude oil production.
While OPEC’s grip on the market has loosened in the past years, its decisions continue to
have a dominant role. Every action made by OPEC is watched closely by governments,
oil companies, speculators, hedgers, investors, traders, policymakers, and consumers.
OPEC’s policies are a↵ected, in turn, by geopolitical developments. The crude oil supply
is also a↵ected by external factors, which might include exploration and production (E&P)
costs, weather patterns, investments and innovations.

• Demand
Intense economic growth and industrial production tend to heighten the demand for oil
— as reflected by the changes in demand patterns by the non-OECD (Organization for
Economic Cooperation and Development) nations, which have grown quickly in recent
years. Other critical factors that influence the demand for oil include transportation
(both commercial and personal), population growth, and seasonal changes. For instance,
oil use increases during the busy summer travel seasons and in the winters, when more
heating fuel is consumed.

• Derivatives and Reports There is an increasing trend of market participants buying
and selling crude oil, not in its physical form, but in the form of contracts. For instance,
airlines and oil producers use derivatives, like futures and options, to hedge against
fluctuations in the oil price, while speculators drive those prices upwards or downwards
when there are waves of buying or selling over incoming news.[30]

It is clear that predicting oil prices is much more di�cult than predicting other stock prices,
due to the great forces which shape the oil market. Thus, it is a huge challenge to forecast or
even speculate how the oil market is going to evolve.

3.2.2 Database

The database used in this simulation was collected from the Yahoo Finance website. It contains
the crude oil prices for a period of two years: from the 18th of June 2018 until the 17th of June
2020. The samples were collected on a daily basis, resulting in a total of 609 samples.

Figure 3.19 shows the evolution of the previously mentioned variable over a period of two
years. In the first image (fig. 3.19 first row, left) it is presented the evolution of the open price,
that is, the price the crude oil stock was traded at the beginning of the trading day. The first
image (fig. 3.19 first row, right) shows the evolution of the closing price, that is, the price the
crude oil stock was traded at the end of the trading day. The second row presents the evolution
of the high and low prices, which are the maximum and minimum prices of the oil stock on a
given day. The fifth image from fig. 3.19 (third row, left) shows the volume traded on a specific
day, that is, the number of crude oil stocks traded on a given day. The adjusted close price is
the closing price adjusted for splits and dividend distributions.
It is clear that the oil price presented some fluctuations, but it had a dramatic decline around
February 2020 (most likely because of the coronavirus crisis). It is also then when the volume
of stocks being traded daily skyrocketed from around 500.000 to approximately 500 millions.
Because the price of a stock is usually referred to as its adjusted closing price, we will further
analyze this variable in greater detail.
Fig. 3.20 shows the evolution of the adjusted closing price of the crude oil over a two years
period. What is worth noting is that on the 20th of April 2020 the price fell even under zero,

43

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

an unprecedented event for the oil market. This proves once again the di�culty of predicting
such noisy datasets as financial time series.

Figure 3.19: Crude Oil Price - All Columns

Figure 3.20: Crude Oil - Adjusted Close Price

44

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Fig. 3.21 represents the histogram of the adjusted closing price. As expected, most values
of the dataset are between $50 and $70, with significantly less values outside this range.

Figure 3.21: Histogram - Crude Oil, Adjusted Close Price

Let us now proceed by looking at some statistics of the adjusted close price.
Table 3.11 shows di↵erent statistical tools which give us better insight into the data. The

mean has a value of 53.696994, meaning that the expected value of our data over all data
points sits around this value. The standard deviation shows how dispersed from the mean
are the values from our dataset, in this case the standard deviation is equal to 13.947700. A
smaller value gives us a more uniform distribution, while a greater value would mean a more
volatile distribution. The minimum value from our dataset is �2.72, and the maximum value is
76.410004, which means that we cannot find any value out of this range. Another useful insight
would be to know what percent of the data we can be found below a certain value. From the
Table 3.1 we can see that 25% (or one quarter) of the data lies below the value 51.44, 50% (or
half of the data) can be found below the value 56.25 and 75% (or three quarters) of the data
lies below the value 62.059999.

Statistic V alue

mean 53.696994

std 13.947700

min -2.720000

25% 51.440000

50% 56.250000

75% 62.059999

max 76.410004

Table 3.11: Statistical Parameters for the Crude Oil Adjusted Close Price

45

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.2.3 ARMA Based Forecasting

3.2.3.1 ACF and PACF of the Crude Oil Adjusted Close Price

As mentioned in the previous section, in order to apply a stochastic model, it is useful to know
how the data is correlated. Figure 3.22 illustrates the autocorrelation of our dataset, for a
number n = 500 lags. We can see that for n = 0 we have an autocorrelation of 1 (as it should
be, since a value is perfectly correlated with itself).

Figure 3.22: Autocorrelation of the Crude Oil Adjusted Close Price

As n increases, meaning that the distance in time between two data point increases, the
autocorrelation decreases, and eventually tends to zero after nearly 100 lags. An autocorrelation
of zero means that there is no relationship between two data points. What is also important
is that at about n = 400 lags the data is very negatively correlated, meaning that one value
increases, the other (after 400 moments) decreases.

The partial autocorrelation function (PACF) is slightly di↵erent from the autocorrelation
function (ACF). The partial autocorrelation function seeks to remove the autocorrelations from
previous lags. For this reason, in figure 3.23 we can see only a few spikes in the plot, and they
happen when the correlation between two consecutive lags tends to be very di↵erent.

Figure 3.23: Partial Autocorrelation of the Crude Oil Adjusted Close Price

46

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.2.3.2 Dickey-Fuller Test for Stationarity

Before we can proceed forecasting with any ARMA-based model, we need to know if our data
is stationary or not. If it is, then we can directly apply an ARMA model. However, if it is not,
we need to transform our data in order to make it stationary.

We use once again the Dickey-Fuller Test to test the stationarity of the data set. What is
of great interest are two parameters: the ADF Statistic and the p-value. If the ADF statistic
is very negative, it means we have a stationary dataset. However, as it gets closer to zero, it is
more likely that we have to deal with non-stationary data. A p-value below a threshold (such
as 5% (or 1%)) suggests that the data is stationary. On the other hand, a p-value above the
threshold suggests our data is non-stationary.[11]

Dickey � FullerParameter V alue

ADF Statistic -1.651211
p-value 0.456409

Table 3.12: Dickey-Fuller Test Results

Table 3.12 gives us the results of the Dickey-Fuller test, when applied to the adjusted price
of the crude oil database. The p-value exceeds the threshold of 0.05 (actually, the p-value is
large enough – 0.456409, so we can say with enough confidence the data is non-stationary).
Also, the ADF Statistic is not very negative, so the data is non-stationary.

The next step is to transform the data in order to make it stationary. To do that, we will
apply a first di↵erencing to the data (I=1). The residuals from our first-order di↵erencing can
be seen in figure 3.24. It is clear that the data no longer poses any trends and it looks like a
white noise, with the mean centred in zero.

Figure 3.24: Residuals After First-Order Di↵erencing

However, to be really sure there is no need to further di↵erentiate the data, the distribution
of the residuals is shown in figure 3.25. There is no doubt that the mean of the residuals is

47

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

zero, so the data resulted is stationary (there is no relationship between any two data points,
no matter how close to each other they are in time).

Figure 3.25: Distribution of the Residuals After First-Order Di↵erencing

3.2.3.3 ARMA Forecasting Results

After we have seen that there is no need for us to do a second-order di↵erencing, we can now
proceed by forecasting the data using an ARIMA model. Because we found that I = 0 (first-
order di↵erencing), we apply ARIMA (p,1,q), where p is the order of the AR model, and q is
the order of the MA model.
We will compare the results from di↵erent ARMA-based models by using the mean squared
error (MSE) metric (or, alternatively, the root mean squared error (RMSE) metric). Needless
to say, we want these two metrics to be as close to zero as possible, so it will give us the most
accurate results.

Table 3.13 shows the results from our simulation for di↵erent values of the parameter p,
while the parameter q is set to zero, so we get an autorregresive AR(p) model.

Model MSE RMSE

AR(1) 11.5976 3.4055

AR(2) 11.8932 3.4486

AR(3) 11.9299 3.4539

AR(4) 11.9706 3.4598

AR(5) 12.1210 3.4815

AR(10) 12.0932 3.4775

Table 3.13: Autoregressive Model Forecasting Results

Table 3.14 shows the results from our simulation for di↵erent values of the parameter q,
with the parameter p set to zero, so we get a moving average MA(q) model.

48

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Model MSE RMSE

MA(1) 11.7236 3.4240

MA(2) 11.9284 3.4537

MA(3) 11.8675 3.4449

MA(4) 12.0188 3.4668

MA(5) 12.1008 3.4786

MA(10) 12.2522 3.5003

Table 3.14: Moving Average Model Forecasting Results

Table 3.15 shows the results from our simulation for di↵erent values of the parameter p
(p = 1, 2, 3, 4), and di↵erent values for the parameter q (q = 1, 2, 3, 4).

Model MSE RMSE

ARMA(1,1) 11.8385 3.4407

ARMA(1,2) 12.0934 3.4775

ARMA(1,3) 12.5421 3.5414

ARMA(1,4) 13.0076 3.6066

ARMA(2,1) 11.8251 3.4388

ARMA(2,2) 12.0521 3.4716

ARMA(2,3) 12.4786 3.5325

ARMA(2,4) 12.7659 3.5729

ARMA(3,1) 12.1244 3.4820

ARMA(3,2) 12.1693 3.4884

ARMA(3,3) 12.2342 3.4977

ARMA(3,4) 12.2854 3.5050

ARMA(4,1) 12.0845 3.4763

ARMA(4,2) 12.1457 3.4851

ARMA(4,3) 12.5827 3.5472

ARMA(4,4) 13.0769 3.6161

Table 3.15: Autoregressive Moving Average Model Forecasting Results

From the above results we can conclude that the most accurate predictions are obtained
for lower values of the parameters p and q. Also, simulating greater MA and AR models with
greater values for p and q would be computationally expensive and thus ine�cient. Fortunately,
there is no need for us to do so, as the best results require smaller values of the aforementioned
parameters.

The lowest MSE value was obtained for the AR(1) model (MSE=11.5976), but overall there
was little di↵erence in the performance of the ARMA-based model forecasts. To get an idea
about how our network performed, table 3.16 shows the actual vs. predicted values for the first
10 forecasted values, using the AR(1) model. As we can see, its performance is very good, the
values predicted being very close to the expected values.

49

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Date Actual Predicted

14.02.2020 52.049999 51.369145

16.02.2020 52.180000 51.979570

18.02.2020 52.049999 52.138122

19.02.2020 53.290001 52.022433

20.02.2020 53.779999 53.188660

21.02.2020 53.380001 53.722763

23.02.2020 52.080002 53.370878

24.02.2020 51.430000 52.116446

25.02.2020 49.900002 51.428605

26.02.2020 48.730000 49.939284

Table 3.16: Actual vs. Predicted Values for AR(1)

3.2.4 Neural Networks Forecasting

3.2.4.1 Proposed Architecture – 1

The neural network architecture used in the following simulations is the same as the network
used in section 3.1.4.1 and illustrated in fig. 3.7.

Number of Epochs MSE RMSE

1 35.8193 5.9849

2 40.3747 6.3541

3 35.9031 5.9919

4 27.1093 5.2066

5 37.1407 6.0943

10 39.0285 6.2472

25 31.7712 5.6366

Table 3.17: First Architecture Results, Batch Size = 1

In table 3.17 are given the MSE and RMSE scores for a batch size (the number of training
samples to work through before the model’s internal parameters are updated) of 1, but di↵erent
values for the epochs (complete passes through the training dataset).

Batch Size MSE RMSE

10 43.2143 6.5737

20 46.7505 6.8374

30 34.3024 5.8568

40 33.2613 5.7672

50 27.2719 5.2222

100 31.5979 5.6212

Table 3.18: First Architecture Results, Number of Epochs=25

50

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

In table 3.18 we can see the results obtained with the first architecture, by varying the
batch size, keeping the number of epochs constant at the value of 25. It is clear that the best
performance of this architecture was obtained for a batch size of 1 and the number of epochs
of 4.

In fig. 3.26, 3.27, 3.28, 3.29, 3.30 are shown the results obtained for di↵erent values of
the number of epochs and the batch size. With the blue colour are represented the training
data, in our case, the first 80% of the values. With green are represented the data used for
validation, that is, the last 20% of the values from our dataset. The values are used to compare
our predicted values, which are illustrated with the colour red.

Figure 3.26: First Neural Network Results - Batch Size=1, Epochs=1

Figure 3.27: First Neural Network Results - Batch Size=1, Epochs=2

51

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.28: First Neural Network Results - Batch Size=1, Epochs=25

Figure 3.29: First Neural Network Results - Batch Size=1, Epochs=4

Figure 3.30: First Neural Network Results - Batch Size=50, Epochs=50

52

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

As we would have supposed by looking at the MSE and RMSE scores, the predictions made
by using a batch size of 1 and 4 epochs, a batch size of 1 and 25 epochs and a batch size of 50
and 50 epochs are the best (in this case the green and the red line are very close to each other;
in the rest of the cases they are not quite overlapping).

3.2.4.2 Proposed Architecture – 2

The neural network architecture used in the following simulations is the same as the network
used in section 3.1.4.2 and illustrated in fig. 3.13.

Number of Epochs MSE RMSE

1 15.8012 3.9750

2 13.3535 3.6542

3 26.2934 5.1277

4 20.0975 4.4830

5 12.5851 3.5475

10 15.2495 3.9050

25 12.8710 3.5876

Table 3.19: Second Architecture Results, Batch Size = 1

In table 3.19 are given the MSE and RMSE scores for a batch size of 1, but di↵erent values
for the epochs, for the second neural network architecture.

Batch Size MSE RMSE

10 18.6608 4.3198

20 16.9491 4.1169

30 17.3486 4.1651

40 19.9724 4.4690

50 15.4323 3.9284

100 16.9039 4.1114

Table 3.20: Second Architecture Results, Number of Epochs=25

From tables 3.17, 3.18, 3.19 and 3.20, it is clear that the second neural network architecture
outperformed the first one, giving more accurate predictions, thus lower MSE and RMSE scores.

In fig. 3.31 3.32, 3.33, 3.34, 3.35 are shown the results obtained for di↵erent values of the
number of epochs and the batch size. With the colour blue are represented the training data
(first 80% of the data) With green are represented the data used for validation(last 20% of
the values). The values are used to compare our predicted values, which are illustrated with
the colour red. This architecture gives a very accurate prediction for a batch size of 1 and 5
epochs and a batch size of 1 and 25 epochs, as it can be seen in fig. 3.33, and 3.34 where the
green and red line are very hard to be distinguished.

53

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.31: Second Neural Network Results - Batch Size=1, Epochs=1

Figure 3.32: Second Neural Network Results - Batch Size=1, Epochs=2

Figure 3.33: Second Neural Network Results - Batch Size=1, Epochs=5

54

CHAPTER 3. DESIGN, IMPLEMENTATION AND EXPERIMENTAL RESULTS

Figure 3.34: Second Neural Network Results - Batch Size=1, Epochs=25

Figure 3.35: Second Neural Network Results - Batch Size=50, Epochs=25

Overall, the second neural network proved to be more e↵ective and more accurate than the
first neural network, giving remarkable results on both datasets.

55

CHAPTER 4. CONCLUSIONS AND FUTURE STEPS

Chapter 4

Conclusions and future steps

4.1 General Conclusions

The main motivation of this thesis was to perform an analysis on financial time series, which
are one of the most di�cult values to predict. Due to their complicated nature and the great
financial rewards associated with them, their prediction is one of the favourite task of many
professionals and not only.

Stochastic methods like Moving Average, Autorregresive and Autorregresive Moving Average
proved to be very accurate, but also required more statistical analysis and data pre-processing.
For higher parameter values and large datasets, they were also very time-consuming.

To solve this problem, Artificial Neural Networks were proposed as an alternative to the
stochastic methods. They did not require a statistic analysis of the data to give outstanding
performance, but the selection of the architecture was crucial.

Two architectures were analyzed, one already applied to financial time series and one
developed by me. They both gave good predictions, however, the last architecture outperformed
the first one.

The selection of the Crude Oil Price database was for the purpose of testing the ANNs
performance when the series display a chaotic and completely unpredictable behaviour. The
crash of the oil price (even below zero), an event completely unexpected some months ago, was
successfully modeled by the second neural network, with the right selection of its parameters.

To summarize, ANNs are powerful substitutes for stochastic methods when analyzing financial
time series, even though their full potential has not yet been reached and need to be further
researched.

4.2 Personal Contributions

For the scope of this thesis, my contributions are the following:

• I did an extensive research on the statistical models used for time series forecasting (AR,
MA, ARIMA based models).

• I also searched for databases and simulated in Python examples for seasonality, stationarity
and non-stationarity (fig. 1.2, 1.3, 1.4).

• I reviewed the existing literature up to date on spiking neural networks, and various
spiking neuron models.

56

CHAPTER 4. CONCLUSIONS AND FUTURE STEPS

• I simulated using various libraries examples of neurons and their response to multiple
types of inputs for the Leaky Integrate-and-Fire model (fig. 2.3, 2.4, 2.5, 2.6), the
Hodgkin-Huxley model (fig. 2.8) and the Izhikevich model (fig. 2.10, 2.11).

• I simulated a simple synaptic behaviour between two spiking neurons (fig. 2.13).

• I implemented and simulated the STDP function (fig. 2.14) and the weight change as a
function of local variables for the online STDP function (fig. 2.16).

• I designed the method of analyzing the two databases (histograms, statistical parameters,
autocorrelation and partial autocorelation functions).

• I analyzed the stationarity of the datasets by implementing the Dickey-Fuller Test and
interpreting its results.

• I simulated multiple AR, MA and AMRA models by varying their parameters and
calculated the accuracy of their prediction.

• I applied an existing neural network architecture for financial time series to the two
databases and did many simulations for di↵erent batch size and number of epochs.

• I developed a new neural network architecture for financial time series (with a better
performance than the existing one) and applied it to the two databases.

4.3 Future Work

As with every emerging technology, there is still a great amount of work to be done regarding
artificial neural networks. In thei context of financial time series analysis, I would like to
introduce a financial analysis of the data before training a neural network. Market events and
the economy also needs to be taken into account when forecasting time series.

I would also like to find out the correlation between di↵erent time series and trying to
make a forecast based on how dependent on each other they are. In addition to these, I would
implement an algorithm which would buy or sell a stock based on the predictions made by the
neural networks.

Likewise, further exploring new architectures and training spiking neural networks on more
powerful CPUs and GPUs is also a step to be done in the future.

57

CHAPTER 4. CONCLUSIONS AND FUTURE STEPS

References

[1] Current COVID-19 situation - COVID 19 graph —& data. Available from: https://

covidgraph.com/ [Accessed 15th May 2020].

[2] P. L. Bernstein. Against the Gods: The Remarkable Story of Risk. (John Wiley & Sons.
Inc., United States of America, 1998).

[3] History of The Stock Market. How to Model Volatility with ARCH and GARCH for Time
Series Forecasting in Python. Available from: https://bebusinessed.com/history/

history-of-the-stock-market/ [Accessed 31st May 2020].

[4] D. C. Montgomery, C. L. Jennings, M. Kulahci. Introduction to Time Series Analysis and
Forecasting. (John Wiley Sons. Inc., Hoboken, New Jersey, 2008).

[5] USGS. ComCat Documentation - Event Terms . Available from: https://earthquake.

usgs.gov/data/comcat/data-eventterms.php#time [Accessed 15th May 2020].

[6] NIST/SEMATECH. e-Handbook of Statistical Methods . Available from: http://www.

itl.nist.gov/div898/handbook/ [Accessed 15th May 2020].

[7] Ed Cohen and Andrew Walden. Lecture Notes for Course MATH96053 Time Series
Analysis, Autumn term 2019.

[8] Daily-Min-Temperatues.csv . Available from: https://github.com/selva86/datasets/

blob/master/daily-min-temperatures.csv [Accessed 15th May 2020].

[9] Shay Palachy. Stationarity in time series analysis . Available from: https:

//towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322

[Accessed 16th May 2020].

[10] Tavish Srivastava. A Complete Tutorial on Time Series Modeling in
R. Available from: https://www.analyticsvidhya.com/blog/2015/12/

complete-tutorial-time-series-modeling/ [Accessed 16th May 2020].

[11] Jason Brownlee. How to Check if Time Series Data is Stationary
with Python. Available from: https://machinelearningmastery.com/

time-series-data-stationary-python/ [Accessed 16th May 2020].

[12] Gaussian White Noise. Available from: https://onlinelibrary.wiley.com/doi/pdf/

10.1002/9780471679370.app2 [Accessed 16th May 2020].

58

https://covidgraph.com/
https://covidgraph.com/
https://bebusinessed.com/history/history-of-the-stock-market/
https://bebusinessed.com/history/history-of-the-stock-market/
https://earthquake.usgs.gov/data/comcat/data-eventterms.php%23time
https://earthquake.usgs.gov/data/comcat/data-eventterms.php%23time
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://github.com/selva86/datasets/blob/master/daily-min-temperatures.csv
https://github.com/selva86/datasets/blob/master/daily-min-temperatures.csv
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://machinelearningmastery.com/time-series-data-stationary-python/
https://machinelearningmastery.com/time-series-data-stationary-python/
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780471679370.app2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780471679370.app2

CHAPTER 4. CONCLUSIONS AND FUTURE STEPS

[13] Air Passengers . Available from: https://www.kaggle.com/abhishekmamidi/

air-passengers [Accessed 16th May 2020].

[14] R. Ya↵ee, M. McGee. Introduction to Time Series Analysis and Forecasting with
Applications of SAS and SPSS. (ACADEMIC PRESS, INC., San Diego London Boston
New York Sydney Tokyo Toronto, 1999).

[15] R. AdhikariR. K. Agrawal. An Introductory Study on Time Series Modeling and
Forecasting .

[16] Jason Brownlee. How to Model Volatility with ARCH and GARCH for Time Series
Forecasting in Python. Available from: https://machinelearningmastery.com/

develop-arch-and-garch-models-for-time-series-forecasting-in-python/

[Accessed 30th May 2020].

[17] H. Adeli S. Ghosh-Dastidar. SPIKING NEURAL NETWORKS. International Journal of
Neural Systems, 19(4):295–308, (2009).

[18] W. Gerstner, W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations,
Plasticity. (Cambridge University Press, 2002).

[19] E. M. Izhikevich. IEEE TRANSACTIONS ON NEURAL NETWORKS, 14(6):1569–1572,
(2003).

[20] Chinmay Chiplunkar. An Introduction to Spiking Neural Networks
(Part 1). Available from: https://medium.com/analytics-vidhya/

an-introduction-to-spiking-neural-networks-part-1-the-neurons-5261dd9358cd

[Accessed 22th May 2020].

[21] H. Adeli S. Ghosh-Dastidar. A new supervised learning algorithm for multiple spiking
neural networks with application in epilepsy and seizure detection. Neural Networks,
(22):1419–1431, (2009).

[22] Brian authors. Introduction to Brian part 2: Synapses . Available from: https://brian2.
readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.

html [Accessed 25th May 2020].

[23] Hebbian theory . Available from: https://en.wikipedia.org/wiki/Hebbian_theory

[Accessed 25th May 2020].

[24] Spike-timing-dependent plasticity . Available from: https://en.wikipedia.org/wiki/

Spike-timing-dependent_plasticity [Accessed 25th May 2020].

[25] J. Sjöström and W. Gerstner. Spike-timing dependent plasticity. Scholarpedia, 5(2):1362,
2010. revision #184913.

[26] D. Waitzman. Standard for the transmission of ip datagrams on avian carriers, 1990.

[27] AKHILESH GANTI. Foreign Exchange Market . Available from: https:

//www.investopedia.com/terms/forex/f/foreign-exchange-markets.asp [Accessed
7th June 2020].

[28] CompareRemit. 8 Key Factors that A↵ect Foreign Exchange Rates .
Available from: https://www.compareremit.com/money-transfer-guide/

key-factors-affecting-currency-exchange-rates/ [Accessed 7th June 2020].

59

https://www.kaggle.com/abhishekmamidi/air-passengers
https://www.kaggle.com/abhishekmamidi/air-passengers
https://machinelearningmastery.com/develop-arch-and-garch-models-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/develop-arch-and-garch-models-for-time-series-forecasting-in-python/
https://medium.com/analytics-vidhya/an-introduction-to-spiking-neural-networks-part-1-the-neurons-5261dd9358cd
https://medium.com/analytics-vidhya/an-introduction-to-spiking-neural-networks-part-1-the-neurons-5261dd9358cd
https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.html
https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.html
https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.html
https://en.wikipedia.org/wiki/Hebbian_theory
https://en.wikipedia.org/wiki/Spike-timing-dependent_plasticity
https://en.wikipedia.org/wiki/Spike-timing-dependent_plasticity
https://www.investopedia.com/terms/forex/f/foreign-exchange-markets.asp
https://www.investopedia.com/terms/forex/f/foreign-exchange-markets.asp
https://www.compareremit.com/money-transfer-guide/key-factors-affecting-currency-exchange-rates/
https://www.compareremit.com/money-transfer-guide/key-factors-affecting-currency-exchange-rates/

CHAPTER 4. CONCLUSIONS AND FUTURE STEPS

[29] Fares Sayah. Stock Market Analysis + Prediction using LSTM . Available from: https:

//www.kaggle.com/faressayah/stock-market-analysis-prediction-using-lstm

[Accessed 8th June 2020].

[30] PRABLEEN BAJPAI. Top Factors That A↵ect the Price of Oil . Available
from: https://www.investopedia.com/articles/investing/072515/

top-factors-reports-affect-price-oil.asp [Accessed 18th June 2020].

60

https://www.kaggle.com/faressayah/stock-market-analysis-prediction-using-lstm
https://www.kaggle.com/faressayah/stock-market-analysis-prediction-using-lstm
https://www.investopedia.com/articles/investing/072515/top-factors-reports-affect-price-oil.asp
https://www.investopedia.com/articles/investing/072515/top-factors-reports-affect-price-oil.asp

	List of Figures
	List of Tables
	List of Abbreviations
	Thesis Motivation

	Time Series
	 Introduction
	Covariance and Correlation
	 Seasonality
	 Stationarity
	White Noise Process
	 Non-stationary Processes

	Stochastic Processes
	 Moving Average (MA) Processes
	 Autoregressive (AR) Processes
	 Autoregressive Moving Average (ARMA) Processes
	Autoregressive Integrated Moving Average (ARIMA) Processes
	Seasonal Autoregressive Integrated Moving Average (SARIMA) Processes
	Autoregressive Conditionally Heteroskedastic (ARCH) Processes
	Generalized Autoregressive Conditionally Heteroskedastic (GARCH) Processes

	Spiking Neural Networks
	Introduction
	Mechanism of Spike Generation in Spiking Neurons
	Spiking Neurons
	Leaky Integrate-and-Fire Model
	Hodgkin-Huxley Model
	Izhikevich Model

	Spiking Neural Networks
	Learning Rules in Neural Networks
	Synapses
	Hebbian Learning
	Spike-Time Dependent Plasticity

	Design, Implementation and Experimental Results
	Foreign Exchange Rate
	Foreign Exchange Market
	Database
	ARMA Based Forecasting
	ACF and PACF of the Foreign Exchange Database
	Dickey–Fuller Test for Stationarity
	ARMA Forecasting Results

	Neural Networks Forecasting
	Proposed Architecture – 1
	Proposed Architecture – 2

	Crude Oil Stock Price
	Market Overview
	Database
	ARMA Based Forecasting
	ACF and PACF of the Crude Oil Adjusted Close Price
	Dickey-Fuller Test for Stationarity
	ARMA Forecasting Results

	Neural Networks Forecasting
	Proposed Architecture – 1
	Proposed Architecture – 2

	Conclusions and future steps
	General Conclusions
	Personal Contributions
	Future Work

	References

