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Introduction 
 

Motivation 
In the recent years, a significant amount of research has been focused on increasing the quality of 

images. Medical images, in particular, could benefit enormously from this rise in interest, as they 

can assist medical doctors to give a better diagnostic to patients. The goal is to process the input 

image in such a way as to obtain a very high quality output. Indeed, one of the challenges the 

applications in the medical field rise is the intolerance to mistakes.   

Although good results were obtained using mathematical implementations, the lack of flexibility 

poses major problems. Indeed, studies have shown the difficulty in mapping a large database using 

traditional approaches. Still, the robustness of such methods makes them desirable, at least in the 

preprocessing step.  

The Artificial Intelligence techniques changed the approach regarding image processing. In present 

time, neural networks (NN) are used in object detection, face recognition, gesture recognition, 

image restoration with state-of-the art accuracies of over 95%. Since these results are promising, 

today’s tendency is to use such solutions also for medical images. Despite that, almost all these 

high-performance classifiers are very resource-consuming, using very complex architectures as 

DNNs (Deep Neural Networks) or CNNs (Convolutional Neural Networks). This complexity makes 

them difficult to integrate in real-time applications. 

An important aspect that should be considered when working with neural networks for developing 

applications on medical images, is the robustness to malicious data that can completely change the 

outcome. The challenge is to design a system robust to such situations. 

 

Applications and Challenges 
The design of a system that reconstructs medical images plays an important role in clinical trials. 

The goal is to have a system that works on any kind of medical image, such as X-ray, computed 
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tomography (CT), positron emission tomography (PET) or magnetic resonance imaging (MRI). 

This imposes some flexibility to the system, as it should give the same high quality output 

regardless of the input image. 

Using deep learning models for such tasks could introduce some problems that should be taken into 

account, as they could limit the applicability of this solution. Some of the most important challenges 

that appear when working with neural networks are [1]: 

 The lack of labeled data – This problem of data labeling is incredibly time-consuming and, 

unfortunately, it requires an expert. As opposed to other applications, where data could be 

easily labeled by a non-expert, in the case of medical images, correct labeling is crucial. 

 The number of observations – The most pressing problem for this kind of applications is 

the lack of data. Due to privacy concerns on non-disclosure agreements, the obtaining of 

medical images could prove problematic. 

 Human expertise – Any medical doctor takes into account a number of factors, not just the 

image. So, the decision should be made considering more information than just the one 

offered by an image. This expertise is usually acquired by doctors in time, and it would be 

difficult to include these aspects in the neural network’s decision.  

Despite these major drawbacks, deep learning models are extremely attractive to solve image 

reconstruction problems. 

 

Thesis objectives and outline 
This thesis aims to develop a system that, when fed with a medical image affected by noise, a good 

quality reconstruction will be returned. The task will be fulfilled by using a neural network and the 

results will be compared with state-of-the art techniques. 

When developing the algorithm, a public dataset will be used. The chosen data should contain a 

large enough number of samples such that the system offers satisfactory results when new scans are 

desired to be reconstructed. Several tests will be carried out in order to verify the dependence of the 

reconstruction quality with the variation of training parameters. 

The objective is to obtain high quality reconstructions of the input image. The quality of the output 

is judged both in terms of noise removal and preservation of structural integrity.  

The rest of the paper is structured as follows: in Chapter 1, state-of-the-art solutions are presented, 

along with some theoretical background that will be necessary in the next sections. Chapter 2 

briefly introduces magnetic resonance images, presenting the challenges imposed by working with 

them and a detailed exposition of the database employed in this thesis. Chapter 3 introduces some 

basic image segmentation techniques in the first part and in the second part, the algorithm used is 

described and the results are shown. The network design, details of implementation and 

experiments are presented in Chapter 4. In the end, conclusions are drawn, emphasizing the 

personal contributions and indicating possible future work directions. 
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Chapter 1 

 

Theoretical Background 

1.1 Image reconstruction – general aspects 
Medical imaging plays a decisive role in medical doctors’ lives by assisting them put the correct 

diagnosis. Image reconstruction is crucial in the medical field, as the acquired data may be lacking 

the quality necessary to draw conclusions regarding the patient’s state. The objective of image 

reconstruction is to have high quality results with minimum cost and risk for the patient. Traditional 

methods make use of some mathematical models and their main advantage is robustness. A 

disadvantage they present is their reduced flexibility, this aspect making them not suitable for large 

datasets. Modern approaches take advantage of the increased computation power and relay on deep 

learning techniques. This way, the human assistance in the restoration process is reduced to a 

minimum. Deep learning models are efficient in extracting information from large datasets, making 

them attractive from this point of view. Their disadvantage is the lack of theoretical foundation.  

Image reconstruction can be modeled as it follows: 

f = Au⊕η              (1.1) 

where A is the operator modeling the physical system, u represents the desired image to be 

reconstructed, f is the measured data and η models the noise with known or unknown distribution. 

With ⊕ was denoted the addition operation in case of Gaussian distributed noise and some other 

nonlinear operator in case of Poisson, Rayleigh, Rician etc. noise. [1] 

Depending on the application, A takes different forms. In the medical field for example, in case of 

magnetic resonance imaging (MRI) A is a sub-sampled Fourier transform [2]. For X-Ray based 

computed tomography (CT), A is a sub-sampled Radon transform [3]. 
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It is difficult to solve the problem raised by 1.1 directly so, in general, the following solution is 

commonly accepted: 

      ( )   (    )     (   )                                            (1.2) 

having the solution u* = arg        ( ). In 2.2, F(.) denotes the fidelity term, that shows how 

well the approximated solution fits the measured data, f. It depends on the noise statistics, taking 

different forms [1]: 

 Gaussian: F(Au,f) = 
 

 
‖    ‖ 

    ,where ‖ ‖2  is the notation for Euclidean norm and gives 

the ordinary distance from X to the origin 

 Poisson: F(Au,f) = 〈    〉  〈     (  )〉 , where 〈   〉   ∑        

 Impulse: F(Au,f) =‖    ‖   ,where ‖ ‖   ∑ |  |
 
    is the Manhattan norm 

Φ(W,u) is the regularization term that maps the prior knowledge. Parameter λ gives the 

contribution of the prior knowledge to the final result. The W term from the prior knowledge is a 

transform used to extract features from the image, such as a differential operator or a wavelet 

transform. Starting with 1990 such mathematical approaches were used for image reconstruction, 

their main advantage being the theoretical background and so the high interpretability [1]. Some of 

the most successful models based on mathematical characterization include total variation model 

[4], shock-filters [5], wavelet [6].  

Deep learning models use nonlinear mapping to change the input data f to a high quality output u. 

The nonlinear mapping is defined as  (  Θ) :     . Θ is trained on the dataset  x . 

Parameter Θ is obtained from the following relation: 

    (       )   
 

 (  )
 ∑ ( (   )  )  ( )

(   )   
                 (1.3) 

(   ) is an appropriately chosen metric to compute the difference between the approximated image, 

(f, Θ) and the ground truth, u.  (  ) is the cardinality of the data set and ( ) is the 

regularization term, that is recommended to be introduced in order to prevent the overfitting. It can 

be chosen as the Manhattan or Euclidian norm [1]. 

 With the introduction of various types of convolutional neural networks (CNN), more parameters 

can be taken into account when working with images. These parameters are trained on large 

datasets which is also the main advantages of such models, making them state-of-the-art in the 

present time [1]. 

 

1.2 Image reconstruction models 
A problem that occurs with large datasets is the latency of response. This issue makes optimization 

a crucial step when designing a system. Some algorithms that proved efficient in this direction are 

presented in the following paragraphs. 

1.2.1 The primal-dual algorithm 

The optimization problem proposed in this algorithm is: 
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     ( )    (  )                                 (1.4) 

where  ( ) is the fidelity term and  (  ) is the regularization term, both introduced in the 

previous paragraphs. Assuming convexity for both these functions, the problem can be alternatively 

posed as: 

         ( )   〈    〉     ( )           (1.5) 

Starting from (1.5), the primal-dual gradient is used. 

      (      )  (         ) 

           (     )  (       
     )            (1.6) 

   and    are tuning parameters [1]. 

 

1.2.2 Iterative shrinkage-thresholding algorithm (ISTA) 

This algorithm proposes the following solution to the problem posed by (1.2): 

              
(       (      ))            (1.7) 

In the above relation,    is the decoding operator,    is the code at step k which needs to be 

decoded,    is the step size,  ( ) is called the soft-thresholding operator and is defined as  

 ( )     ( )   (| |      ) [1]. 

 

1.2.3 Stochastic gradient descent (SGD) 

SGD is an iterative method for optimization that replaces the gradient with its estimate. The general 

form is: 

            ( )   
 

 
∑   ( ) 

              (1.8) 

Parameter Θ that minimizes   ( ) needs to be estimated,   ( ) is the i-th observation and N is the 

total number of observations in the dataset. As N increases, the evaluation for   ( ) poses 

problems, as the time needed for it increases. As a consequence, the relation used to determine Θ is:  

                 
 

|  |
 ∑     ( 

 )
    

                                       (1.9) 

where    is the learning rate,   is a random subset from the dataset. 
 

|  |
 ∑     ( 

 )
    

 is an 

approximation of the gradient [1].  

 

1.2.4 Alternating direction method of multipliers (ADMM) 

The optimization problem from (1.2) can be equivalently written as [1]: 
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      (   )   
 

 
‖    ‖ 

    ‖ ‖           (1.10) 

In the above relation, d = Wu. The augmented Lagrangian function with the multiplier b is: 

(     )   
 

 
‖    ‖ 

    ‖ ‖   〈      〉   
 

 
‖    ‖ 

              (1.11) 

In (1.11),   is the tuning parameter. Then, the ADMM takes the form: 

     (         )  (        (      )) 

      
 ⁄
(         )  

               (           )                (1.12) 

 

1.3 Deep Neural Networks (DNN) used for medical images 
While the traditional methods have the advantage of a solid theoretical foundation, they are not very 

flexible, making them hard to describe large datasets. Deep learning models are much more flexible 

if designed correctly and thus can make use of larger datasets. These major advantages come, 

however, with major drawbacks regarding the model’s interpretability. Still, deep neural networks 

are powerful tools, especially when working with complex data, as they extract features very 

efficiently. They can be used for medical image reconstruction [1]. 

1.3.1 General Aspects 

Although not a new concept, neural networks were not very popular until recently, when the 

computation power has increased to such heights that the complexity of such a structure does not 

pose any problem.  

The model for NNs was the human nervous system: the parallel was traced between biological 

neurons and cells interconnected in a network, in a similar way to synapses. 

 

Figure 1.1 Neuron [7] 
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A neuron functions according to the following principle: the input is taken from multiple other 

neurons that are linked to its dendrites. After all processing is done, the output is sent through the 

axon terminals to other neurons. An artificial neuron functions on the same principle, taking the 

input information from all neurons that are connected to it, perform some operation and then pass 

the result to the neurons from the next layer that are connected to it. 

 

Figure 1.2 Mathematical model for the neuron [8] 

In Figure 1.2 is presented the general structure of an artificial neuron.    represents the input data, 

having the corresponding weights   . The bias is denoted with b, the transfer function is     

 ∑        , the activation function is out = f(net) and the error is computed using the relation: 

     
 

 
(          ) .  

There are three types of layers in a NN: 

 input layer – represents the input in the network and is fed with the training data 

 hidden layers – they are intermediate layers that take the information from the input layer 

and process it by creating relationships between data 

 output layer – it’s the final layer, where the decision is made 

In Figure 1.3 the architecture of a neural network can be observed. In this case, each neuron is 

connected to all others, so the network is fully connected. 

 

Figure 1.3 Neural Network Architecture [9] 
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1.3.1.1 Activation functions 

 Binary step 

It is one of the earliest activation functions introduced, used for binary classifications, as it has only 

two possible states for the neuron to be in: either activated or deactivated. The mathematical 

representation of the binary step is: 

 ( )   {
           
            

                       (1.13) 

The plot is presented in Figure 1.4: 

 

Figure 1.4 Binary step activation function [8] 

 

 Sigmoid function 

It is used for non-binary classification, when it is desired to prioritize the neurons depending on 

how much information they carry and have different outputs accordingly. The main advantage of 

the sigmoid function is that it is smooth, so differentiable. It takes values in the interval [0, 1] and is 

defined as it follows: 

 ( )   
 

                             (1.14) 

The graphical representation of the sigmoid function is offered below: 

 

Figure 1.5 Sigmoid function [10] 
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 Hyperbolic Tangent 

The hyperbolic tangent has a similar shape with the sigmoid’s, but the results are in the interval [-1, 

1]. Its introduction was necessary to solve backpropagation problmes that appear due to the values 

close to zero that the sigmoid outputs for strongly negative numbers. In this case, the parameters 

won’t be updated and the network will not converge. The hyperbolic tangent offers negative results 

for negative inputs, so this situation is avoided. The definition of the hyperbolic tangent is: 

 ( )   
 

                    (1.15) 

 

Figure 1.6 Hyperbolic tangent [8] 

 Rectified linear unit (ReLu) 

It is a popular activation function, as it involves only basic mathematical concepts. However, the 

function is not differentiable in 0, where a random value should be assigned. Much like the sigmoid 

function, for negative inputs the output will always be zero, so there could be problems at 

backpropagation.  

 ( )   {
             
             

                 (1.16) 

The graphical representation of ReLU function is shown in Figure 1.7. 

 

Figure 1.7 Rectified linear unit function [11] 
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 Leaky ReLU 

To overcome the backpropagation problem that can occur if the output of ReLU is constant zero, 

leaky ReLU was introduced. The vanishing gradient is solved by applying leaky ReLU instead of 

the classical approach. 

 

 ( )   {
       
      

            (1.17) 

  ( )

  
  {

      
     

  

 

In relation (1.17),   is a constant. The representation of leaky ReLU is given in Figure 1.8: 

 

 

Figure 1.8 Leaky ReLU 

 

1.3.1.2 Loss function 

The training is done by minimizing a conveniently chosen function, called loss function. It 

represents the difference between the obtained output and the desired one. To have good accuracy, 

the differences of the two should be minimal, that is the loss function should be at its minimum. 

 Mean Square Error (MSE) is one of the most common functions used as loss functions. Its 

minimization means finding the line that minimizes the distance from each point to the line, 

called regression line. It is defined as: 

      
 

 
 ∑ (               )

  
                                                (1.18) 

 

 Mean Absolute Error (MAE) is similar to MSE, but an advantage it presents is the 

robustness to outliers. The definition of MAE is: 

      
 

 
 ∑ |               |

 
                       (1.19) 
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 L2 is similar to MSE, the only difference being that the result is not divided to the number 

of observations: 

      ∑ (               )
  

               (1.20) 

 

 L1 is similar to MAE, but for the division to the number of observations: 

      ∑ |               |
 
              (1.21) 

 

 Negative Logarithmic Likelihood (NLL) is commonly used to express mathematically the 

confidence score: 

       
 

 
 ∑     (       )

 
               (1.22) 

 

1.3.2 DNNs used in image reconstruction 

Some of the most commonly used DNNs that were successfully used for medical image 

reconstruction are residual network, autoencoder and U-net. 

1.3.2.1 Residual Network (ResNet) 

Network’s depth plays a major role in the quality of results, as proven by tests done on ImageNet 

dataset [12]. It was shown that better results are obtained when using deeper models. However, 

sometimes, as the network’s depth increases, the results seem to degrade. This phenomenon appears 

as a cause of vanishing gradient during back propagation. Vanishing gradient emerges when the 

weights of the network stop updating. Adding more layers increases the effect, so the solution is to 

skip some layers, as not all systems are similar from the optimization point of view [13]. 

 

Figure 1.9 ResNet architecture [14] 

In Figure 1.9, x represents the input feature, the weight layer could be convolutional, ReLu is the 

rectified linear unit, defined as  ( )      (   ). (x) is the nonlinear residual block. So, the 

output of the block can be written as             (  ) , where with k was denoted the current 

layer. Shortcut connections are used to solve the vanishing gradient problem. The identity shortcuts 

have no parameters. Tests done by Kaiming He et al. in [13] proved that using such architecture the 

error rate decreases as compared to any other method. On ImageNet dataset, they obtained 3.57% 

error rate, while if using GoogLeNet, for example, the error was 6.66%. All results are public and 

can be verified on ImageNet Large Scale Visual Recognition Challenge website. 
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1.3.2.2 Autoencoder (AE) 

Autoencoder is used to learn data representation in an unsupervised manner. The representation is 

nonlinear, being learned from the input dataset. Christopher Poultney et al. proposed in [15] a 

model based on three components: 

 The encoder that consists of a set of fed-forward filters, used to compute a code from the 

input image 

 The sparsifying logistics, consisting of a module that transforms the code vector into a 

sparse one, taking sub unitary values 

 The decoder, that reconstructs the image from the sparse vector 

 

Figure 1.10 Autoencoder – general representation [16] 

 

In [17], Hu Chen et al. proposed a combination of autoencoder and convolutional neural network, 

using convolutional layers instead of the fully-connected ones that were typically used for encoding 

and decoding. Their proposed method also includes residual learning with short-circuits that are 

used to improve the learning process. They managed to increase the peak signal-to-noise ratio 

(PSNR) at 39.159, as compared to 38.9907, as obtained using a 10 layer CNN. The testing was done 

on a real clinical database, authorized by Mayo Clinics. 

  

1.3.2.3 U-Net 

The U-Net proved to be successful in image segmentation. In [18] such architecture was proposed 

for medical images. It consists of a contracting path, following the typical CNN architecture, and an 

expansive path. It consists of 3*3 convolutions, followed by ReLu and a 2*2 max pooling 

operation. The number of feature channels is doubled at every downsampling step. On the other 

hand, in the expansive path, the upsampling of the feature map is followed by 2*2 convolutions; 

this way the number of feature channels is reduced with a 2 factor. Then, the output is concatenated 
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with the corresponding feature map obtained in the contracting path. Their result is then passed 

through 3*3 convolution blocks, each followed by ReLu. At the final layer, a 1*1 convolution is 

used. The graphical representation of the U-Net proposed by Olaf Ronneberger et al. in [18] is 

presented in Figure 1.11. The number of channels is written at the top of the box, while the x-y 

dimensions are presented at the bottom. Blue boxes correspond to multi-channel feature map, white 

boxes to copied feature maps. It can be noted that skip connections were also used.  

 

Figure 1.11 U-Net architecture [18] 

 

1.4 Medical image reconstruction using DNNs 
Taking as an example of medical image a computer tomography (CT) scan, studies have shown that 

classical image reconstruction models are efficient, but at the same time sensitive to noise. In the 

recent years, it was desired to introduce also deep models to help traditional reconstruction methods 

be more robust. This combination of classical modeling and deep modeling can be divided into two 

major categories: post-processing and raw-to-image [1].  

 

1.4.1 Post-Processing 

This method requires the estimation of the mapping between the input, low quality image and the 

high quality output. This kind of approach is preferable when the input and output do not differ in a 

very drastic measure. One of the problems this method presents is the presence of artifacts in the 

output image that are caused by the presence of noise. If these artifacts are complex enough, they 

cannot be removed by the deep network. So, this approach has limited performances and is suitable 

only some particular situations, when it gives high quality results [1]. 
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In [17], it was proposed to use a residual encoding-decoding CNN to approximate the mapping 

between the input and output image. This approach proved efficient in removing the noise from the 

filtered back-projection (FTB) reconstructed CT scans.  

Recently, as it was desired to reduce the radiation dose, the number of projections was decreased, 

this way resulting sparse view CT. As the measurements are incomplete this way, artifacts appear in 

the reconstructed image. A DNN can be used in such situations to learn the pattern of unwanted 

items and later remove them. In [19], a U-net was used with such a purpose, the output image being 

obtained from the subtraction of the artifacts that were learned by the U-net, from the input image. 

 

1.4.2 Raw-to-Image 

In this approach, it is desired to directly estimate the mapping between the reconstructed image and 

raw data. Using directly a DNN to solve the problem is not feasible because the data distributions of 

the two images of interest are very different. A traditional approach, based on differential equations, 

would not have this problem. In this case, usually a traditional technique is first used and then the 

results are passed to the DNN, in this way benefiting from the advantages of both [1]. 

 

1.4.2.1 ADMM-Net 

In classical ADMM approach, it is difficult to determine the tuning parameters. This motivated the 

authors of [17] to introduce a deep model that solves this problem. In their proposal, the tuning 

parameters are learned from the training data. The regularization term, Φ is approximated with a 

piecewise linear function, whose parameters can also be learned. They tested the functionality on 

magnetic resonance (MR) images from a database provided by CAF Project: Segmentation 

Challenge and they obtained a 37.17 PSNR for images having 20% as a sampling factor. They 

report an outperformance of their solution over the state-of-the art by 0.71dB, at the same time the 

processing time decreasing with 2 magnitude orders [17].  

 

Figure 1.12 Reconstruction results [17] 

 

In Figure 1.12 there are presented the reconstructed images using different solutions. From left to 

right, they are obtained using ADMM-Net, reconstruction from partial Fourier data (RecPF), patch-

based nonlocal operator (PANO), block matching 3D (BM3D-MRI). The rightmost image 

represents the ground truth. 
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1.4.2.2 Primal-Dual network (PD-Net) 

In [21], the authors used primal-dual hybrid gradient (PDHG) to design a new model for CT image 

reconstruction. Their idea was to approximate each operator from PDHG with a neural network, and 

using this approach they reported a 38.8 PSNR, as opposed to 19.75 obtained when using filtered 

back projection (FTB) and 28.06, when using total variation (TV). Using FBP and U-net for 

denoising increases the PSNR to 29.20 and when using residual denoising instead of U-net, to 

32.38. Still, the results obtained by [17] are by far better than all other presented approaches. 

 

Figure 1.13 Results obtained using different methods [21] 

 

1.4.2.3 Joint spatial-Radon (JSR-Net) 

In [22] a JSR model was proposed, whose purpose was to reduce the artifacts that appeared in noisy 

images or when the database contained incomplete data. In this approach, the data fidelity term is 

defined as: 

(     )   
 

 
‖   (   )‖   

 

 
‖  (    )‖   

 

 
‖   (    )‖      (1.23) 

The regularization term takes the following form: 

(   )   ‖      ‖    ‖      ‖              (1.24) 

 In the above relations,    is a restriction operator that indicates the missing data from the region Γ. 

   is the complement of Γ, as it indicates the region of available data. The discrete form of Radon 

transform is mapped by A and Y is the measured projection data.   and    are tight wavelet frame 

transforms and    and    denote the regularization parameters. The CT image is u and the restored 

one is f [1]. 
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Tests done in [22] show that the relative error decreases as compared to models using total 

variation. The relative error for TV-based model is 3.8% while for both anisotropic and isotropic 

wavelet based models the results are better, being 3.5% and 2.7% respectively.  

The authors of [23] proposed an improved version, where the tight frame transforms are learned 

from data. They used neural networks to approximate the proximity operators. Using their model on 

head CTs, they obtained the relative error 3.58%.  

 

1.4.3 Tasks 

There are two major directions when it comes to medical images. The first one refers to image 

reconstruction, such that the results are satisfactory when analyzing their quality. The second step 

consists of the analysis of the high-quality image, being this way able to draw some conclusions 

regarding the health of the patient. These two steps can be combined using a convolutional neural 

network (CNN). The simplest solution would be to connect the network doing the reconstruction to 

the one that analysis the image and do an end-to-end training [1]. 

 

Figure 1.14 Workflow [1] 

This idea was implemented in [24]. The authors first converted the raw data to images using a 

reconstruction sub network. The results were fed to a three-dimensional CNN that was in charge of 

detecting lung nodules in images. The two sub networks were trained individually, but the last step 

was to perform some tuning on the whole network, with the purpose of increasing the detection 

accuracy. Their tests were done on The Lung Image Database Consortium image collection. The 

metric of choice was the free-response receiver operating characteristic (FROC) and it is defined as 

the plot of sensitivity versus the average number of false-positives per image [25]. In case of images 
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that were not affected by noise, the FROC score for end-to-end training was 0.608 as compared to 

0.560 that was obtained when the two networks were trained individually. When there was 

introduced a noise of level 5x10
-4

, the FROC score was 0.587 for end-to-end training and 0.512 for 

individual training, which suggest a more rapid deterioration in the second case.  
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Chapter 2 

 

Magnetic Resonance Imaging 

2.1 Principles 
The nuclear magnetic resonance (NMR) was described by Purcell and Bloch in 1946 and it 

introduced lots of benefits especially in the organic chemistry area. The typical NMR spectrometer 

consists of a magnet, a radio-frequency oscillator and the corresponding receptor. The introduction 

of wire-bore superconducting magnets allowed a new approach in clinical applications [26].  

The nucleus of any atom consists of protons and neutrons. Protons have a positive charge, while 

neutrons have no electric charge, this leading to a positive net charge for the whole nucleus. Some 

atomic nuclei present the ―spin‖ property, depending on the number of protons. Spin angular 

momentum is the property presented by nuclei that allows the magnetic interactions to occur [27].  

If an external magnetic field    is applied, the nucleus will be aligned parallel or perpendicular to it. 

The nuclear spins will be either parallel to the external magnetic field and thus in a low-energy 

state, or perpendicular to it and in a high-energy state. To excite nuclei that are already placed in a 

magnetic field   , a radiofrequency magnetic field    is applied in pulses.    is perpendicular on 

  . This has as effect the transition from a low-energy state to the high-energy state and the other 

way around. These transitions induce a voltage that can be measured and amplified, known as the 

―free-induction decay‖. Placed in the same magnetic field, each nucleus will resonate at a 

characteristic frequency [26].  

To obtain a magnetic resonance image, multiple radio-frequency pulses are applied, this way 

obtaining a time-domain signal. By applying the Fourier transform, biochemical information can be 

acquired. Gradients are applied in the three directions of the orthogonal coordinate system, this way 

the reconstruction of three-dimension images being possible [26]. 
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Figure 2.1 In the absence of a magnetic field    , hydrogen nuclei are aligned as in (a). When a 

strong magnetic field is applied, they align with it as in (b). The radio-frequency pulse causes the 

tilt of the nuclei (c) [28] 

The   field is applied by the transmitter magnetic coil which surrounds the region of interest. The 

receiver coil may be separate or included in the transmitter. To increase the signal-to-noise ratio 

(SNR), phased array coils are used for the transmitter, each connected to a different receiver, so the 

noise between coils is uncorrelated. Data is collected from the receivers and combined to form the 

resulting image [26].  

Up until recently, the MRI scanners used magnets in the range 0.5 – 1.5 Tesla (T). Today, 3T 

magnets are widely available, some of the advantages introduced by the higher magnetic field being 

the increased SNR and the higher spectral, spatial and temporal resolution. The tradeoff is made in 

terms of magnetic field stability and magnetic susceptibility. The artifacts introduced by the 

magnetic susceptibility increase with the increase of the magnetic field strength; in the presence of 

an external magnetic field, the susceptibility shows the magnetization degree presented by any 

material as a response to the magnetic field [26]. 

When a nuclear spin returns in the equilibrium state, after the application of a magnetic field, it is 

said that the relaxation phenomenon occurs. The relaxation can be of two types: longitudinal or 

transversal, and, to differentiate between them, time constants are used. The first time constant, 

denoted by   , is also known as the ―spin-lattice relaxation‖.    represents the time interval that is 

needed for the system to return to the equilibrium by 63% after the excitation. Energy is dissipated 

in the surrounding nucleus environment during this longitudinal relaxation. The relaxation time 

differs depending on the tissue: for water and cerebrospinal fluid,     typically takes values between 

3 – 5 seconds, the result being that these areas appear dark in the image. Fat, for example, has much 

lower relaxation time, around 260 ms, and thus appears brighter [26]. Table 2.1 shows the 

representation differences that appear in an MRI scan, depending on the type of image. 

When a pulse is applied, most nuclei align with the applied energy. Dephasing of the orientation 

occurs at relaxation as the energy is transferred between nuclei. This is the transverse relaxation and 

measures the exchange energy time of spins in the xy plane. The time constant is denoted by    and 

is also known as ―spin-spin relaxation‖ [26].  

 

(a) (b) (c) 

𝐵  
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Table 2.1 Differences in representation of    and    images [29] 

 

MRI scans can be obtained in three different anatomical views: sagittal, coronal and axial. Figure 

2.2 exemplifies the possible options for brain MRI. 

 

Figure 2.2 Main views obtained for brain MRI: (a) sagittal, (b) coronal, (c) axial [29] 

 

Diffusion-weighted imaging is the technique that allows the measurement of a water molecule’s 

movement. The water molecule movement is isotropic, that is random in all directions. In a 

structured environment, the molecules’ movements are constrained: the gray and white matter in the 

brain restricts the movement, water molecules positioning parallel to the white matter in their 

majority. This motion in an anisotropic environment is described by the diffusion tensor. Three 

eigenvalues and their corresponding eigenvectors are used to define the ellipsoid, describing the 

magnitude and directions of the diffusion on three coordinates [26]. 

The cells in a human body are not aligned homogenously, which means a direction-dependent 

measure of water diffusion. To obtain an estimate of isotropic diffusion that is invariant at rotation, 

several measurements should be made. To obtain reliable data, the minimum number of diffusion 

directions should be around 20-30 [26].   

Even if all nuclei are under the influence of the external magnetic field applied to the subject, the 

electrons in their immediate vicinity induce a local magnetic field which is dependent on the 

chemical structure. In the magnetic resonance spectrum one can identify different resonance 
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frequencies for different nuclei. Hydrogen and Phosphorus are the nuclei that present special 

interest in clinical applications [26]. 

A voxel within an organ is defined using gradients, its size being defined by the user. This data 

acquisition technique offers good signal to noise ratio. If spectra are acquired from a matrix of 

voxels, the process is called chemical shift imaging and it offers a better anatomical coverage [26].  

The accuracy of data depends both on the hardware equipment, and also on the water suppression 

and voxel localization. If water is used as a reference for quantification, it should be taken into 

account the fact that its concentration may vary in different tissues, so the computations will be 

affected. An important aspect that should be considered when interpreting magnetic resonance data 

is that identical spectra analyzed by different investigators will produce different results for the 

metabolite [26]. 

Visible peaks on the cerebral MR spectrum are: 

 N-acetyl aspartate is used in the study of multiple sclerosis, its presence indicating a 

neuronal dysfunction.  

 Choline is associated with membrane activity. If the choline resonance is elevated, 

inflammatory diseases are present, while its decrease marks osmoregulatory in hepatic 

encephalopathy [26]. 

 Creatine can be taken as reference level, since it is constant, regardless of the brain health. 

 Myo-inositol is involved in cerebral osmoregulatory process and an increased level marks 

microglial activation and astrogliosis [26]. 

 Glutamate is taken from the capillaries and combined with ammonia, resulting glutamine. 

Glutamine is converted by neurons in glutamate, which is a neurotransmitter [26]. 

The metabolite peaks are obtained using special software solutions which analyze the Fourier 

transform of the signal. If a prior-knowledge approach is used, the accuracy increases, as the user- 

dependent input is much reduced. If the analysis is done also in time domain, the artifacts 

introduced by a wide band signal could easily be eliminated [26]. 

 

2.2 Usage and Challenges of MRI Scanning 
The main usage of MRI scans is to visualize soft tissues within the body, so they play a special role 

in tumor detection and bleeding localization, making them vital in early diagnosis. The images 

obtained with an MRI scanner are of high quality and detail. The most notable advantage MRI 

scanning presents is the absence of radiation exposure for the patient. Another important aspect the 

MRI scan possesses is the ability to see organs that are typically obstructed by bones. However, to 

achieve good quality images, an increased time interval is necessary, this aspect being a drawback 

MRI presents in trauma applications. Another disadvantage it presents is the cost, this type of scans 

being the most expensive imaging techniques [29]. 

MRI scanning has no adverse effects and it doesn’t radiate the patients. However, it is not 

recommended to patients having cardiac peacemakers or heart monitors [29]. Although there are no 
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studies showing it can affect the fetus, pregnant women are recommended to avoid it unless 

otherwise instructed.  

Table 2.2 outlines the advantages of MRI scanning, by comparing them with other types of medical 

images, such as CT and X-ray. 

 

Table 2.2 Comparison between CT, X-ray and MRI scans [29] [31] 

 

The quality of MRI scans is directly influenced by the ability of patients to remain as still as 

possible during the procedure. Since the duration of a complete scan lasts around 30 minutes, this is 

a factor that should be considered, especially when dealing with infants or patients suffering from 

anxiety. Implants and other metallic objects will have the same influence on the overall resulted 

image as the movement of the patient, so it is recommended to remove all unnecessary items. For 

chest and abdomen MRIs, breathing will cause image distortions. Another factor that should be 

taken into account is the weight of the patient, since very large individuals may not enter the 

machine [30].   

MRI scans are affected by Rician, Gaussian and Rayleigh noise. Intensive studies have been carried 

out for the elimination of Rician noise; however, not so many articles discuss the decrease of 

Gaussian or Rayleigh noise in MRIs. When the SNR value is greater than 2, the Rician distribution 

can be approximated by a Gaussian distribution and if the SNR is 0, it converges to a Rayleigh one. 

The noise sources are: electronic interferences in the circuits and the measurement chain in the 

process. The noise will reduce the image quality, sometimes increasing the difficulty of putting an 

early diagnosis [31].  

 

2.2.1 Noise in MRI 

Discarding the phase information is the preferred method to eliminate the artifacts phase introduces. 

This way, magnitude images are obtained, which are assumed to be affected by Gaussian noise. By 
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applying the Fourier transform to the data, the characteristics of the noise are left unaltered. The real 

and imaginary images are obtained, having uncorrelated noise in the corresponding voxels [32].  

The real and imaginary images are used to compute the magnitude image, pixel by pixel. Magnitude 

computation is non-linear, meaning that after this operation, the noise will not be Gaussian anymore 

[32]. 

If by A is denoted the pixel intensity in the clean image and by M the measured one, the probability 

distribution for M is given by [32]: 

              ( )   
 

   
 

(     )

     .
   

  /            (2.1) 

By    was denoted the modified zero-order Bessel function and   is the standard deviation of the 

Gaussian noise. The formula given by (2.1) is the Rician distribution, Figure 2.3 mapping it for 

different SNRs, with   = 1. 

 

Figure 2.3 Rician distribution of M for different SNRs [33] 

 

A special case of the Rician distribution is obtained for the regions where there is only noise 

present, meaning that A = 0. This special case is known as the Rayleigh distribution and formula 

(2.1) reduces to: 
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When the SNR value is increased, (2.1) can be approximated with: 

        ( )   
 

√    
  

 
(  √     ) 

                  (2.3) 

As it can be observed also from the graphical representation, for values of the signal to noise ratio 

larger than 2 dB, Rician distribution can be well approximated by a Gaussian distribution, having 

the variance    and the mean √      . The errors introduced by the approximation decrease as 

the SNR increases [32]. 

The phase image is obtained by computing the arctangent of the ratio of corresponding pixels from 

the imaginary and real images. This operation is non-linear, so the noise characteristic is not 

preserved. However, for SNR values high enough, the noise distribution in the phase image can be 

considered Gaussian with zero mean. It was empirically determined that starting with a SNR value 

of 3 dB, the Gaussian approximation is realistic [32]. 

 

2.3 Dataset 
For the development of this thesis, all tests were done on a public dataset, fastMRI. The data was 

obtained through collaboration between Facebook AI Research and NYU Langone Health. Their 

goal was to obtain MR images 10 times faster than the classical approach, improving this way the 

user experience.  

The dataset contains raw and DICOM data, which have been manually inspected, such that to 

eliminate any inconsistencies. All images containing unexpected information were disregarded [34]. 

This dataset is contains MRIs for both knee and brain: 

 Knee MRI contains ―coronal proton density-weighted with and without fat suppression 

axial proton density-weighted with fat suppression, sagittal proton density, and sagittal T2-

weighted with fat suppression‖ [34]. These MRIs were obtained using 3 or 1.5 Tesla 

magnets. There are 1398 raw data scans in total. 

 Brain MRIs are obtained using also 3 or 1.5 Tesla magnets. This dataset contains axial T1 

weighted images, T2 weighted and FLAIR scans. The total number of scans reaches 7002 

[34]. 

Four types of data can be found in each of these categories [35]: 

 Raw multi-coil k-space data: in this category, unprocessed measurements are found. 

 Emulated single-coil k-space data: it is derived from the multi-coil space data, such that to 

emulate a single coil. The introduction of emulated data was necessary for situations when 

single-coil reconstruction algorithms needed to be tested. 
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 Ground-truth images: this category is used as reference and it contains images reconstructed 

from fully-sampled multi-coil data. 

 DICOM images: this category was introduced to map different machines and settings for 

them, such that to have a larger variety of data. They are obtained using several scanners, 

different acquisition techniques and reconstruction methods. Obviously, the quality differs 

from image to image.  

In this thesis only the brain MRIs were taken into consideration. From all types of brain data from 

fastMRI dataset, the DICOM images were considered, the rationale behind this choice being the 

variety of scanners used, making this way the approach machine-independent. Data was collected in 

five different laboratories, using 3T and 1.5T magnets. Only axial 2D-images were taken for this 

dataset. All images were reconstructed in DICOM format and then each was visually checked by 

certified MR technologists. This last step was necessary in order to ensure the anonymity of the 

patients, as well as to eliminate distorted data. The resulted images were cropped to further 

eliminate inconsistencies across the dataset. All these images contain a broad set of pathologies; 

none of them contains tumors [35].    
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Chapter 3 

 

Image Segmentation 

3.1 Principles 
Image segmentation is one of the first steps taken towards image processing. It is an operation that, 

if done properly, will ease the following processing steps. Image segmentation is a process by 

which all pixels are classified as belonging or not to an object. The image is divided into a number 

of regions such that the pixels inside the region exhibit high similarity and the pixels from different 

regions present high contrast. Over the years, multiple approaches have been developed: threshold 

based, clustering, graph based, neural network approach and others, the most efficient at the present 

time being the clustering technique [36].   

 Thresholding segmentation is the simplest developed technique. It is used to differentiate 

between background and foreground. This method makes use of the intensity histogram and 

aims to determine the threshold value that best divide the classes. Due to its simplicity it is 

very fast and efficient from a computational point of view, but, on the other hand, it is 

sensitive to noise and intensity inhomogeneity [36]. 

 

 Region growing segmentation extracts a region of pixels having similar intensities. A seed 

point is defined and then all neighboring pixels which have the same intensity as the seed 

are tagged as belonging to the same region. This method is recursively applied until no other 

pixel is added to the region [36]. 

 

 

 Region splitting segmentation considers a big region and, instead of adding to it as in the 

case of region growing approach, pixels which do not fulfill the condition are removed from 

the region. This way the image is divided into unconnected regions [36]. 
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 Clustering is an unsupervised image classification method. It is used to classify the image 

into a number of clusters which can be user-defined or found by another algorithm. The 

main advantage is the lack of training. The pixels which fulfill some conditions are grouped 

together to form a cluster. A disadvantage of this technique is the need for good initial 

values, which plays an important role in the quality of results [36]. 

 

 Edge detection is the method that tries to find pixels from different regions by applying a 

gradient to the image, to detect rapid changes in intensity. The pixels from each region are 

grouped together and mark as belonging to the same object [36]. 

 

 Classification methods use labeled data to derive characteristics from images and then 

partition the space into regions with similar features [36].  

 

3.1.1 Clustering techniques 

Clustering can be defined as the partition of given data into subsets having some common 

properties, without any prior knowledge about the data. The similarity between two images is hard 

to define, yet is obvious for the human brain. To quantify this similarity between descriptors, 

distances are computed [37]. 

Being given two feature vectors    ,                - and    ,                -, some of the 

most common metrics used to compute the similarity between them are [37]: 

 Minkovski distance: 

     (     )   √∑ |          |
  

   

 

                    (3.1) 

By | | was denoted the modulus and      with k=1, … ,n is the attribute of the    instance. If 

r = 1, a particular case is obtained, the distance being called Manhattan. If r = 2, the 

Euclidian distance formula is obtained. 

 

 Canberra distance: 

           (     )   ∑
|          |

|    | |    |

 
                (3.2)  

 

 Distance between histogram values: 

        (     )   ∑     *         +
 
                      (3.3) 

In this instance,      represents the values from the histogram, n is the total number of bins 

and the     * + operator returns the minimum value. 
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 Distance between histograms: 

             (     )   √(      )     (      )            (3.4) 

Here,    represents a histogram, 
T
 is the transposition operation and A = ,    ] is a square 

matrix showing the correlation between bins l and k. 

More complex formulae can be used to compute the distance between descriptors, the choice 

depending on the input data and the desired application. At some higher level, structural or even 

semantic similarity can be searched. In this case, a formal representation of prior knowledge should 

be made; also, relationships between concepts are needed in order to facilitate the structural 

representation of data.   

In the following subchapters, some of the most common clustering methods will be briefly 

presented, highlighting the advantages and disadvantages of each of them. 

 

3.1.1.1 K-means 

K-means is one of the most popular clustering algorithms and it is used to partition the input data 

into k clusters. Each such cluster is characterized by a centroid, defined as the point for which the 

sum of distances between it and any data belonging to the cluster is minimized. The algorithm is 

iterative, repeating until no instance changes the cluster it belongs to.  

Having an image of resolution x*y, by p(x,y) are defined the pixels in this image. k denotes the 

number of clusters, c the cluster centers and Γ a partitioning matrix: 

            [    ]           {
                

            
                  (3.5) 

The k-means algorithm steps are as follows [36][37]: 

 

p1. The value for k is chosen 

p2. The centroids for each cluster are initialized 

p3. For each pixel from the image a distance (e.g. Euclidian distance) is computed with 

respect to all centroids 

p4. The pixels are assigned to the nearest centroid 

p5. The partitioning matrix is computed,   

p6. After all pixels have been assigned, the centroid is updated as the mean of all pixels 

belonging to that class 

p7. The process is repeated until no pixel changes its class, that is until   from two 

successive operations does not change 
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Among the advantages presented by k-means algorithm, the most important are its implementation 

simplicity and efficiency, having a reduced complexity [37]. 

From the drawbacks this algorithm presents, the most notable one is the dependence of results from 

the proper choice of number of classes and initial values for the centroids. It also is sensitive to 

atypical data and it’s not suitable for all distribution types of data, causing problems especially for 

non-convex shapes [37]. Several optimization methods have been proposed in order to eliminate 

these disadvantages. In [38] the authors proposed the use of the flower pollination algorithm in 

order to eliminate the trapping of centroids in local minima.  

Outliers will have a high contribution to the centroid choice and in this case, some information 

might be classified as belonging to a wrong class. A simple solution is that instead of taking the 

mean when updating the centroid position to consider as centroid the data nearest to the mean. This 

way, the outliers’ effect is eliminated [37].  

For clusters with non-convex shape, the problem is solved by transforming the data using a kernel, 

such that in the new representation space data is linearly separable. Kernels that can be used for this 

operation are the Gaussian kernel or the polynomial kernel [37]. 

 

Figure 3.1 Non-convex clusters (a) before applying kernel function (b) after the application of a 

kernel function [37] 

 

3.1.1.2 Gaussian Mixture Model 

This approach is using models to classify data. Each class is considered to have a distribution that is 

mapped as a sum of Gaussian functions. The parameters of Gaussians are optimized such that to 

best fit the data [37]. 

The n-dimension Gaussian probability density function is defined as: 

    (      )        (        )   
 

√(  )      ( )
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                     (3.6) 
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In the (3.6) formula,   ,       - represents a random variable having k dimensions, that is 

characterized by   ,       -, the vector containing the mean values for each dimension, and Σ, 

the covariance matrix. With 
T
 is denoted the transposition operation, 

-1
 is used to mark the invers of 

a matrix and the operator     ( ) returns the determinant of a matrix [37]. 

To apply this method, it is assumed that a source generates normal distributed data, of mean    and 

covariance matrix   . The classifier determines the optimal parameters that best match the input 

data repartition in the feature space, after that, some optimization algorithm is applied [37]. 

The main advantage of this method is that a model of the data is offered and it can be used to 

generate new data. It is of relatively low complexity and the principles can be applied to other types 

of distributions. The disadvantages it has are connected to the optimization algorithm and to the fact 

that the number of classes should be determined a priori [37].  

 

 3.1.1.3 Fuzzy c-means algorithm 

In this approach, each pixel from the image belongs to more than one class. A membership matrix is 

defined; its purpose is to show the percent by which a pixel belongs to a class. Data is divided into 

clusters by applying a specified condition. A cost function is defined, the algorithm stops when a 

minimum value for this function is reached [38]. 

The first step in this algorithm is to initialize the number of clusters and the membership matrix. 

After that, the center for each of the clusters is found and the cost function is computed. The 

obtained value is compared with a previously set threshold. If the condition is not fulfilled, the 

membership matrix is updated, otherwise the data is clustered and the algorithm reaches its end. 

This method was improved by introducing weights such that the members who have higher 

probabilities of belonging to a cluster have a more significant contribution when determining the 

center of the cluster [38]. 

 

3.1.1.4 Subtractive Algorithm 

This clustering technique is making use of the density of surrounding points when computing the 

centroids. Having defined   ,         -, the subtractive method gives weights, called potentials, 

to each point in accordance with their probability of being centroids for each cluster, according to 

the formula [38]: 

    ∑  
  ||      || 

  
  

                  (3.7) 

In the formula,    is the radius of a hyper sphere that defines the neighborhoods, so it should be a 

positive constant. The Euclidian distance is defined using ||  ||. After all these potentials are found, 

the point having the maximum value is chosen as centroid. If    having the potential    is the new 

cluster center, all other potential values should be updated as follows [38]: 

           

  ||      ||
 

  
 

           (3.8) 
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The newly introduced parameter,   , is the radius of the penalty hyper sphere. The points in the 

immediate vicinity of the centroid will lose more potential, this way ensuring they are not chosen as 

other cluster’s centers. The whole process is repeated until the number of desired clusters is 

reached. This method can be used to determine the initial centroids in other clustering techniques 

[38].  

 

3.1.2 Classification techniques 

Classification techniques involve supervised classification, meaning that data is clustered based on 

previously learned examples [37].  

 

3.1.2.1 k-NN  

The input data is classified based on a majority vote. The number of neighbors, k, to be taken into 

account should be chosen in the beginning. The training part of the algorithm involves storing the 

labeled data. For classification, the distance between the data to be classified and all training data is 

computed. After that, the first k neighbors are retained and the new instance is considered to belong 

to the class having majority votes. In the voting process only the k neighbors resulting in the 

previous step are taken into consideration. This process repeats until all input data is classified [37].  

When choosing the number of voting instances, several aspects should be taken into account. First 

of all, a small k will make the class choice sensitive to noise. On the other hand, if the value for k is 

too high, data from a considerable distance may influence the vote. As an improvement, the vote 

may be weighted with a value inversely proportional to the distance between the input data and the 

k voting neighbors [37]. 

The advantage of such an approach, besides its simplicity, is the fact that it can be applied to any 

data, regardless of their distribution. It was proven that with the increase of the training data, its 

efficiency increases [37]. 

A major drawback this approach presents is the selection of k, since the classification result is 

highly dependent on it. Another disadvantage is represented by the elevated mathematical 

complexity [37]. 

 

3.1.2.2 Support Vector-Machine (SVM) 

The input data is divided into two classes by a hyperplane, whose equation is optimized such that 

the distance between the two classes is maximized [37]. 

Being given the training data, the vector normal to the hyperplane and the shift from the origin 

should be found. Data nearest to the hyper plane is called support vectors, and the distance between 

the support vectors and the class separating plane defines a margin. So, the optimal hyper plane to 

differentiate between classes will maximize this margin. If the classes are not linearly separable, 

data is represented in a different space, using a suitably-chosen kernel [37]. 
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For multi-class classification, the number of SVM classifiers used is equal to the number of desired 

classes. The approach is one-vs-all, that is data belongs either to the j-th class or to any other one, 

without caring which one. Another possible solution is to employ a number of SVM classifiers 

equal to the number of combinations between any two classes. The classifiers are trained using only 

the data from the two corresponding classes. After the test data passes through the system, a 

majority vote is cast and the class having most votes will be considered [37]. 

The authors in [39] successfully used the SVM classifier to segment tumors in MRI scans. A 

Gaussian kernel was used to map data into a different representation space, where separation is 

possible. In their article, the SVM was used to classify regions from the brain as being tumors or 

healthy cells. 

 

3.2 Setup 
The chosen dataset, fastMRI, contains brain scans affected by different maladies, but without any 

tumors. In the early stages of the project, it was discussed to use proprietary software from 

Laboratoire d’Imagerie Biomédicale Multimodale Paris Saclay to add some tumors on the clean 

scans and then focus on reconstructing images of cancer patients. In order to position the tumor 

realistically, segmentation of the brain was needed.  

The number of classes is known, since the requirement was to differentiate between white matter, 

gray matter, cerebrospinal fluid, skull (if visible) and background. The proposed clustering 

algorithm was k-means, the value of k being fixed to five.  

The steps from subchapter 3.1.1.1 were followed for the classification. First, the DICOM image is 

loaded and the pixel array is saved in a two dimensional array. The centroids are initially chosen 

randomly. All pixels from the image are assigned to the centroid closest to them; the distance 

considered was the Euclidian distance. After this, the centroids are updated by computing the mean 

of all values assigned to it. The process is repeated until convergence or, as proven by experiments, 

a certain number of iterations passed. Since the centroids are randomly initialized, the convergence 

may never occur and in this case, a new initialization is required. Convergence is reached when the 

centroids do not change their position or the change is insignificant [40]. As a last step, median 

filtering was applied to eliminate salt-and-pepper noise. 

By analyzing the data, an important aspect could be observed: there are scans where the skull or 

cerebrospinal fluid is not visible. Since for those scans the number of classes should be smaller, it 

was thought to not force the algorithm to always return five different classes. Instead, if for two 

consecutive runs a smaller number of clusters resulted, the image was supposed to lack one of the 

classes defined in the hypothesis and the segmentation result was accepted as it was.  

The workflow is presented in Figure 3.2. 
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Figure 3.2 Workflow 

 

3.3 Results 
The algorithm was tested on a subset from the database, containing 335 images. Each image was 

segmented and the results saved. The reason for working on a smaller set of images was that results 

should be validated by MR specialists. Also, data annotation should be done by trained personnel. 

Since this database is not segmented and no similar projects were conducted on it, the quality of 

results cannot be mathematically proven, as for any metrics that can be computed, ground truth 

information is needed. However, the SSIM between the segmented image and the original one was 

computed and the value obtained was 0.62, this way proving that some improvements should be 

considered. 

Considering that any operation on an image may introduce distortions that translate into noise, a 

median kernel of dimension 3*3 was used. This way, impulse noise was removed from the 

segmented scans. The low dimension of the kernel is motivated by the desire to keep as much as 

possible the information unaltered. A median filter having a higher dimension would have been 

faster, but some details might have been lost. After applying the filter, the PSNR values were 

computed for the segmented image reported to the initial one. The lowest value obtained was 
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57.188 dB and the best one 67.009 dB. The high value of this parameter indicates good quality 

images, that can be further used without concerns regarding the noise.  

 

 

Figure 3.3 Segmentation results 

 

MRI segmentation plays an important role in brain analysis, as it enables visualizing the anatomical 

structure. More than that, if segmentation is applied to scans taken at different time intervals, 

possible brain changes may become easily observed. The most notable aspect, however, that 

motivates the development of good segmentation algorithms is the desire to have a good 

delimitation for pathological regions, being this way of crucial importance in image-guided 

interventions [41]. 
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Chapter 4 

 

MRI Reconstruction 

4.1 Data Acquisition  
Since the MR scans offer good image quality, it is safe for the patient and non-invasive, its 

popularity has grown tremendously over the years. However, its major drawback is the long 

acquisition time, making it unpractical for some categories of people like young children, people 

suffering from claustrophobia and other such affections, or for trauma patients, where time is of the 

essence. In order to make it accessible to more people, it is desired to reduce the time needed to 

obtain good quality images. The reduced acquisition time introduces artifacts, so image 

reconstruction techniques should be used to obtain the final scan as close as possible to the original 

image, taken if the whole period of time necessary to obtain state of the art quality with today’s 

technology is considered [42]. 

For the development of this thesis, fastMRI dataset was considered. The reason behind this choice 

is motivated by the desire to have a sufficient number of images of high quality, taken with different 

scanners. As briefly mentioned in Chapter 2, the DICOM images were obtained using five different 

scanners, making them ideal for the proposed task. In this thesis only the brain scans were 

considered, both T1 and T2 weighted. The database contains axial slices of the brain, at different 

positions in the 3-dimension scan.  

All processes were run on a GPU cluster consisting of two Cuda Tesla M2070 devices and having 

32GB RAM. 
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4.1.1 Training data  

The data selected from the whole fastMRI database was divided into training and testing data as 

follows: 80% for training and 20% for testing the algorithm. Multiple tests were carried out, varying 

the training parameters, but also the database’s dimension, as it is desired to have good results even 

for a small number of images in the database.  

Since the acquired images are of high quality, they were considered the ground truth. Noisy images 

were not provided, so the need to choose the type of noise to apply to them emerged. After 

extensive research, it was decided to introduce Gaussian noise in the images. As discussed in 

Chapter 2, MR images contain noise that is Rician distributed. However, as the signal to noise ratio 

increases, this distribution can be well approximated by a Gaussian one. Intensive research has been 

conducted on eliminating Rician noise form MRIs, but only few articles concentrate on Gaussian or 

Rayleigh noise in this type of scans. So, in this thesis, the accent was placed on reconstructing MRI 

scans from images affected by Gaussian noise. To obtain the complete database necessary to 

perform the training task, the images were corrupted by adding standard normal noise. The 

Gaussian distribution which characterizes the introduced noise is described by the parameters     

and    . The amplitude of the noise was also varied in order to test the effects a lower initial 

SNR has on the reconstruction result.  

 

Figure 4.1 MRI scan (a) clean (b) Gaussian noise, noise factor = 0.1 (c) Gaussian noise, noise factor 

= 0.9 

Another test that was carried out was the reconstruction of scans affected by Rayleigh distributed 

noise. As mentioned before, Rayleigh distribution is a particular case of the Rice one that occurs 

when only noise is present in the scan. Figure 4.2 shows an example of MRI scan before and after 

applying Rayleigh distributed noise over it. 

Test dataset contains 20% of the total data. The same type of noise at the same amplitude as the 

ones for the train data was used to distort the test images. In the ideal case, a network trained to 

reconstruct images from their noisy representations should be able to remove different levels of 

noise, but practical applications demonstrate that this task is of elevated complexity if good results 

are desired.   
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Figure 4.2 MRI scan (a) clean and (b) affected by Rayleigh noise 

 

4.2 Network 
To complete the task, a convolutional autoencoder was used. An autoencoder is a feed-forward 

network that tries to copy the input at the output. The input data is compressed and then 

reconstructed at the output. The reduced dimensions decrease the runtime and the memory used, 

making autoencoders attractive in applications involving large datasets [43]. 

The autoencoder consists of two parts: 

 Encoder: compresses the input information and is represented in the following by h = f(x) 

 Decoder: reconstructs the input and is represented by r = g(h) 

The whole autoencoder is described by the relation r = g(f(x)). By x is denoted the input in the 

network and by r the reconstructed image. Function f is used to map the input into a latent 

representation h and is called encoder, while function g is the decoder and it is using the 

information offered by h to create a reconstruction of the input data, denoted by r [43]. 

In order for the autoencoder to learn, h should have smaller dimensions than x. This way, the 

autoencoder is forced to learn the most important features from the available data. If this would not 

be the case, the output would be very similar to the input, as the network extracts little useful 

information from the data [44]. An autoencoder having this property is called undercomplete [43]. 

A denoising autoencoder is fed with corrupted data, forcing the network to learn features from the 

image rather than the image itself. In order to learn about the input data, it will try to remove the 

noise so that it will be able to correctly reconstruct the image [43].  

An autoencoder containing also a convolutional layer is called convolutional autoencoder. In deep 

learning, the desired operation is commonly the cross-correlation, as it involves fewer operations 

[43]. This type of autoencoder proves advantageous in image processing since the convolution 

operation exploits the image structure [45]. 

Figure 4.3 presents the structure of the autoencoder. 
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Figure 4.3 Autoencoder  structure [46] 

Having the training input x, the autoencoder maps it to a latent representation by applying a non-

linear function to it, s: 

          (    )             (4.1) 

The latent representation obtained after the application of s to the input x is then used to obtain the 

reconstruction r: 

          (       )             (4.2) 

The reconstruction has the same shape as the input. By               were denoted the model 

parameters [45]. 

 

4.3 Design and implementation  
A good implementation of a network depends on the optimal choice of some design parameters. In 

this thesis, the variation of image quality with the variation of such parameters is studied.  

Stochastic gradient descent is the optimization algorithm generally used in the training phase. Adam 

optimization algorithm is an extension of the stochastic gradient descent. The mean and the 

uncentered variance of the gradient are used in computing each weight from the network, by 

adapting the learning rate [47]. 

                     (    )              (4.3) 

                         (    )  
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          ,  -   ,  -             (4.4) 
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In formulae (4.3), m and   represent the moving averages,          are the hyper parameters of the 

algorithm and g is the gradient on the current batch. Because m and   are estimates for the first, 

respectively second moments, the relations in (4.4) should be fulfilled. As t increases, the effect the 

earliest estimates have becomes less and less important. An equivalent, more compact writing of 

(4.3) is: 

   (    )∑   
    

                  (4.5) 

    (    )∑   
     

  
    

By imposing the condition from (4.4), to obtain the correct estimator, bias correction should be 

done. So, the formulae for the estimator are: 

            ̂   
  

    
              (4.6) 

  ̂   
  

    
  

The values obtained are used to update the weights, w. In this operation, the step size η should be 

also taken into account [47]: 

               η
  ̂

√  ̂  
            (4.7) 

 

A sample is an instance of the data that contains both the input and the output that should be 

compared to the input in order to obtain the error [48]. 

The batch size is the hyperparameter that shows how many samples should be considered before 

making an update to the parameters. The number of epochs is a hyperparameter whose task is to 

mark the number of times the entire input dataset passed through the algorithm [48]. An iteration is 

defined as the number of batches that form an epoch.  

If the batch size is low, the update operation will be more frequent, increasing this way the 

complexity. On the other hand, if the batch size is too big, the updates will not occur with a 

frequency that allows the algorithm to actually learn something. A compromise between the two 

should be made [43]. 

The learning rate should also be carefully chosen. If this parameter is too small, the optimizer might 

remain stuck in a local minima. If the value considered for it is, on the contrary, too big, the global 

minima might be missed [43]. 

In this thesis, the optimizer used was Adam. For its hyperparameters it was decided to take the 

learning rate 0.001,        ,          and       . The batch size parameter was varied; 
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the values taken for it were 2, 4, 16 and 32. The number of epochs considered was 50,100, 200 and 

500. 

The autoencoder developed consists of the following layers: convolutional layer, using a kernel 

with dimension 3*3 and stride 2. After that, leaky ReLU was used, with parameter alpha = 0.2. The 

results were normalized and scaled. In the end, the dimensions are flattened and a wholly connected 

layer is added. For the decoder part, deconvolution layer with a kernel of dimension 3*3 and stride 

2 is applied, then leaky ReLU with alpha = 0.2 and normalization. Another deconvolution layer is 

added, to bring the image at the original depth. In case of gray scale scans, as in this application, 

this layer is not necessary, but it was still introduced in case colored maps should used. In the end, 

the activation function used is the sigmoid [49].  

 

4.4 Experimental results 

4.4.1 Performance metrics 

In order to measure the performance of the algorithm, the performance metrics used are: PSNR and 

structural similarity index (SSIM).  

PSNR is a quality measurement between two images: as its value increases, the quality of the 

reconstruction increases. In order to compute it, the MSE is needed. The mean square error 

represents the cumulative error between the reconstructed image and the original. Being given two 

images           having the dimensions (M,N): 

     
∑ ,  (   )    (   )-    

   
            (4.8) 

            .
  

   
/             (4.9) 

In the PSNR formula, by R was denoted the maximum variation of the input data. 

SSIM is a measure of similarity between images and to obtain its value, the luminance, contrast and 

structural terms should be computed: 

 (   )   
         

  
     

     
           (4.10) 

 (   )   
         

  
     

     
            (4.11) 

 (   )   
       

        
           (4.12) 

In the expressions above,                      represent the local means, variances and covariance 

for the two images and              are regularization constants. Exponents are given for the 

luminance, contrast and structural terms and so the SSIM is obtained using the formula: 

    (   )    (   )   (   )   (   )           (4.13) 
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4.4.2 Results 

The quantitative results prove a good quality of the reconstructed images. This quality is dependent 

on the chosen hyperparameters and the noise factor used to distort the images. As mentioned before, 

multiple tests were carried in order to verify the dependence of reconstruction on various 

parameters.   

Initially, a subset from the database was considered, containing both           weighted scans. The 

subset consisted of 339 scans, divided into training and testing images. 

For the first test, the scans were not distorted at all. The chosen batch size was 32 and the number of 

epochs was 100. The PSNR value obtained was 21.57 and the SSIM was 0.726, so a serious 

degradation is suggested. As it can be observed in Figure 4.4, presenting the original and the 

reconstructed scans, details are lost in the reconstruction process. 

 

Figure 4.4 Reconstruction for scans unaffected by noise 

All images in the subset were distorted using Gaussian noise of mean zero, variance equal to one 

and a noise factor of 0.1. Keeping the number of epochs to 100, the batch size was varied, taking 

the values 2 and 32. Results are reported in Table 4.1. 

 

Table 4.1 Quality variation with the variation of the batch size 

 

As it can be seen in Figure 4.5, the reconstructed image preserves the structural integrity of the 

original one. However, the noise is not completely removed. If the batch size is increased to 32, the 

quality of the reconstruction decreases. 
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Figure 4.5 Reconstruction results for batch size = 2, 100 epochs 

 

 

Figure 4.6 Reconstruction results for batch size = 32, 100 epochs 

 

For the next test, the noise factor was increased to 0.9. The same noise distribution was kept, the 

number of epochs considered was 100 and the batch size was 32. In this case, PSNR = 18.957 dB 

and SSIM = 0.694.  

 

Figure 4.7 Reconstruction results for batch size = 32, 100 epochs, noise factor=0.9 
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As proven by Figure 4.7, the results obtained if the input image is distorted by such a powerful 

noise are of poor quality. The PSNR for the distorted image is 6.650 dB and the SSIM between the 

noisy input and the reference image is 0.060. However, even if the quality greatly improved in 

comparison with the input, most details are not preserved in the reconstruction, making the output 

unusable in real life applications.  

To further test the quality of results, the noise factor was decreased at 0.5. Also, the batch size was 

decreased to 4. In this case, the PSNR was 24.719 dB and the SSIM was 0.799. As it can be seen in 

Figure 4.8, structural details are preserved. However, some noise is still present in the reconstructed 

scan, suggesting that for an input distorted by a significant noise the quality of results will slightly 

decrease. 

 

 

Figure 4.8 Reconstruction results for batch size = 4, 100 epochs, noise factor=0.5 

 

In order to verify the effect that the increase of the number of epochs will have on the results, the 

batch size was maintained at 4 and the noise factor at 0.5. The number of epochs was increased to 

200 and the results obtained are: PSNR = 25.653 dB and SSIM = 0.827. 

 

Figure 4.9 Reconstruction results for batch size = 4, 200 epochs, noise factor=0.5 
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The same dataset was distorted using a Rayleigh distribution. The number of epochs was kept to 

200 and the batch size at 4. The SSIM between the original image and the reference one was 0.196. 

After passing the scan through the network, the SSIM was 0.698, while the PSNR remained quite 

low, at only 18.856 dB. 

 

Figure 4.10 Reconstruction results for scans affected by Rayleigh noise, batch size = 4, 200 epochs 

 

The very poor quality of the input increases the difficulty for the task of reconstruction. Little detail 

is reconstructed, proving that this approach is not suitable if the task involved Rayleigh noise. 

To test the results for the whole database, the network was trained for 100 epochs, having the batch 

size 4. The input scans were distorted using Gaussian noise of mean 0 and variance 1, having the 

noise factor 0.3. In this case, the PSNR obtained was 31.818 dB and the SSIM was 0.820. 

 

Figure 4.11 Reconstruction results for batch size = 4, 100 epochs, noise factor 0.3 

 

Even though the PSNR obtained in this case competes with state-of-the-art results, the structural 

similarity could be improved. For this test, both           weighted scans were used. In an effort to 

increase the similarity between the reconstructed and reference scan, the training was repeated with 

the same parameters, but this time considering only the    weighted scans. In this case, the PSNR 

obtained was 31.788 dB and the SSIM slightly increased as compared to the previous case, reaching 

a value of 0.843. 
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Figure 4.12 Reconstruction results for batch size = 4, 100 epochs, noise factor 0.3, only     

weighted scans 

 

The following graph represents the learning curves for this last case.  

 

Figure 4.13 Learning curvess 

 

For the subset containing only T1 weighted scans, affected by Gaussian noise of mean 0, variance 1 

and noise factor 0.3, another test was conducted. Keeping the batch size at 16, the training was 
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repeated for 50, 100 and then for 500 epochs, to see the effect it has on the overall result. The 

obtained values are reported in Table 4.2. 

 

 

Table 4.2 Quality variation with the number of epochs 

 

 

Figure 4.14 Reconstruction results for batch size = 16, 50 epochs, noise factor 0.3, only     

weighted scans 

 

 

Figure 4.15 Reconstruction results for batch size = 16, 100 epochs, noise factor 0.3, only     

weighted scans 
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Figure 4.16 Reconstruction results for batch size = 16, 500 epochs, noise factor 0.3, only     

weighted scans 

 

A degradation of results can be observed. This is the caused by underfitting, respectively overfitting 

of the model. An underfit model occurs when the network did not learn sufficiently from the 

training data, while an overfit model will have a reduced capacity to generalize to the new data.  

The authors of [42] conducted experiments on the same database, but on both knee and brain scans. 

They tested their algorithm against state-of-the art approaches for MRI reconstruction. Their results, 

along with the ones obtained in this thesis are presented in Table 4.3. Since they considered the 

whole database, regardless of the weight of the scans, the results considered are for the same 

approach. 

 

 

Table 4.3 Comparison between methods [42] 

As it can be seen, the proposed method manages to offer the highest SSIM. The PSNR is not as 

high as the one obtained by other methods, but the value is close enough to be considered of similar 

quality. 

The last experiment performed involved the image reconstruction from the segmented scans. 

Gaussian noise of mean 0, variance 1 and noise factor 0.1 was considered the distorting factor. The 

network was trained for 100 epochs, the batch size being chosen 16. In this case, the average SSIM 

obtained was 0.564. Figure 4.17 presents the reconstruction result for this special case.  
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Figure 4.17 Reconstruction result for segmented scans, batch size = 16, 100 epochs 

 

The reconstruction results obtained are worse than the ones obtained for the gray scale images, 

having the same training parameters. A factor that leads to this case is the dimension of the training 

dataset; as mentioned in Chapter 3, the segmentation was applied on a reduced number of scans.  
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Conclusions 
 

General conclusions 
In the last few years, the utilization of deep learning strategies for medical applications increased 

dramatically. A focus on increasing the image quality has been observed and medical images 

benefit enormously from this rise in interest. Indeed, a better quality for such scans can assist 

medical doctors to give a better diagnostic to patients. The goal is to process the input image in such 

a way as to obtain a very high quality reconstructed output. However, in the medical filed the 

challenge with applications that involve putting a diagnosis is the intolerance for mistakes.   

Although good results were obtained using mathematical implementations, the lack of flexibility 

poses major problems. Indeed, studies have shown the difficulty in mapping a large database using 

traditional approaches. Still, the robustness of such methods makes them desirable if the input data 

allows their use.  

The Artificial Intelligence techniques changed the approach regarding image processing. Since 

results in present time for object detection, face recognition, gesture recognition, image restoration 

applications are promising, offering state-of-the art accuracies of over 95%, today’s tendency is to 

use such solutions also for medical images. Despite that, almost all these high-performance 

classifiers are very resource-consuming, using very complex architectures as DNNs or CNNs. This 

complexity makes them difficult to integrate in real-time applications. 

 

Contributions 
Among the author’s contributions, the most notable are: 

 Selection of a suitable database and analysis for the most realistic corruption mechanism in 

such images. 

 

 Implementation of a segmentation algorithm that can be used to obtain the interest regions in 

the brain. The requirement for this task was to have the smallest complexity possible. 
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 Implementation for the Autoencoder  

 

 Analysis for quality variation with some parameters 

 

Future work   
This work has proven that neural networks with a simple structure can be successfully used in the 

image reconstruction task. However, as shown in the thesis, the results could be further improved to 

reach medical image imposed standards. 

An important part of the future work consists in analyzing the segmentation results and improving 

the method such as to obtain the best classification. The justification for continuing with this task is 

represented by the important applications it could have, as it enables visualizing the anatomical 

structure of the brain and also brain changes which can be a lot easier detected than from the whole 

image. Also, another direction for the future work that requires a good segmentation for the brain 

scan is represented by the classification of regions depending on the presence of a tumor. A good 

classification with this regard can be of invaluable help to medical doctors. 

Another objective is to optimize the method and propose new approaches. Different neural 

networks can be considered for this task, each introducing its own benefits that should be further 

exploit in order to have the best reconstruction results. 

In the end, the principles from this thesis could be used for applications involving other types of 

medical images, the goal being to have minimum changes in the workflow. 
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Annex 

Segmentation: 

def converged(centroids, old_centroids): 

  

 epsilon = 1 

     

 for i in range(0, len(centroids)): 

  cent = centroids[i] 

  old_cent = old_centroids[i] 

 

  if ((int(old_cent[0]) - epsilon) <= cent[0] <= (int(old_cent[0]) + epsilon)) and 

((int(old_cent[1]) - epsilon) <= cent[1] <= (int(old_cent[1]) + epsilon)) and ((int(old_cent[2]) - epsilon) <= 

cent[2] <= (int(old_cent[2]) + epsilon)): 

   continue 

  else: 

   return False 

 

 return True 

 

     

def getMin(pixel, centroids): 

 minDist = 1e5 

 minIndex = 0 

 

 for i in range(0, len(centroids)): 

  d = np.sqrt(int((centroids[i][0] - pixel[0]))**2 + int((centroids[i][1] - pixel[1]))**2 + 

int((centroids[i][2] - pixel[2]))**2) 

  if d < minDist: 

   minDist = d 

   minIndex = i 

 

 return minIndex 

 

     

def assignPixels(centroids): 

 clusters = {} 

 

 for x in range(0, img_width): 

  for y in range(0, img_height): 

   p = px[x, y] 

   minIndex = getMin(px[x, y], centroids) 

   clusters[minIndex].append(p) 

 

 return clusters 

     

def adjustCentroids(centroids, clusters): 

 new_centroids = [] 

 keys = sorted(clusters.keys()) 

 

 for k in keys: 

  n = np.mean(clusters[k], axis=0) 
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  new = (int(n[0]), int(n[1]), int(n[2])) 

  new_centroids.append(new) 

 

 return new_centroids 

 

     

def startKmeans(K): 

 centroids = [] 

 old_centroids = [] 

 

 for k in range(0, K): 

  cent = px[np.random.randint(0, img_width), np.random.randint(0, img_height)] 

  centroids.append(cent) 

 

 i = 1 

 while not converged(centroids, old_centroids) and i <= 20: 

  i += 1 

 

  old_centroids = centroids          

  clusters = assignPixels(centroids)        

  centroids = adjustCentroids(old_centroids, clusters)   

 

 return centroids 

 

     

def drawWindow(result): 

    // save segmented image 

    

     

k_input = 5 

path = os.getcwd() 

path = path +'/db' 

subdir = os.listdir(path) 

 

path_results = path+'/results_filt' 

results = os.mkdir(path_results) 

 

for subdirectory in enumerate(subdir): 

 new_path = path+"/"+subdirectory[1] 

 files = os.listdir(new_path) 

 for file in enumerate(files): 

  file = file[1]  

  filename = new_path+'/'+file 

  ds = dicom.dcmread(filename) 

  im = ds.pixel_array 

  img_height, img_width = im.shape 

  im = im/np.max(im) 

  px = Image.fromarray(np.uint8(cm.gray(im)*255)) 

  px = px.load() 

  result = startKmeans(k_input) 

  max_count = 0 

  while((len(result) != k_input) and max_count<=1): 

   result = startKmeans(k_input) 
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   print(max_count) 

   max_count = max_count+1 

 

  if(max_count > 1 and (len(result) != k_input)): 

   print("Couldn't make ", k_input, "classes, only ", len(result), "could be found." ) 

             

  drawWindow(result) 

    

 

Autoencoder: 

class Autoencoder: 

  

 def build(width, height, depth): 

  inputShape = (height, width, depth) 

  filters=(32,64) 

  filter_dim = (3,3) 

  latentDim=16 

  chanDim = -1 

 

  inputs = Input(shape=inputShape) 

  x = inputs 

   

  for f in filters: 

   x = Conv2D(f, filter_dim, strides=2, padding="same")(x) 

   x = LeakyReLU(alpha=0.2)(x) 

   x = BatchNormalization(axis=chanDim)(x) 

 

  volumeSize = backend.int_shape(x) 

  x = Flatten()(x) 

  latent = Dense(latentDim)(x) 

 

  encoder = Model(inputs, latent, name="encoder") 

 

  latentInputs = Input(shape=(latentDim,)) 

  x = Dense(np.prod(volumeSize[1:]))(latentInputs) 

  x = Reshape((volumeSize[1], volumeSize[2], volumeSize[3]))(x) 

 

  for f in filters[::-1]: 

   x = Conv2DTranspose(f, filter_dim, strides=2,padding="same")(x) 

   x = LeakyReLU(alpha=0.2)(x) 

   x = BatchNormalization(axis=chanDim)(x) 

 

  x = Conv2DTranspose(depth, filter_dim, padding="same")(x) 

  outputs = Activation("sigmoid")(x) 

  decoder = Model(latentInputs, outputs, name="decoder") 

 

  autoencoder = Model(inputs, decoder(encoder(inputs)),name="autoencoder") 

  return (encoder, decoder, autoencoder) 

 

 



 

 

74 

 

Evaluation: 

 

def compute_psnr(original, compressed): 

    mse = np.mean((original - compressed) ** 2)  

    if(mse == 0):  

        return 100 

    max_pixel = 255.0 

    p = 20 * log10(max_pixel / sqrt(mse))  

    return p 

 

PATH = os.getcwd() 

path = PATH+'/k-means.py-master/result' 

imgs = os.listdir(path) 

 

psnr = [[] for i in range(int(len(imgs)/3))] 

i = 0 

f = open(path+'/../result.txt', 'w+') 

f.write("PSNR [dB] and SSIM\n") 

while i<int(len(imgs)/3): 

    pos1 = imgs.index(str(i)+'.jpeg') 

    pos2 = imgs.index(str(i)+'_orig.jpeg') 

    pos3 = imgs.index(str(i)+'_recon.jpeg') 

    img1 = Image.open(path+'/'+imgs[pos1]) 

    img2 = Image.open(path+'/'+imgs[pos2]) 

    img3 = Image.open(path+'/'+imgs[pos3]) 

     

    img1 = (img1.resize((256,256), Image.ANTIALIAS)) 

    img2 = (img2.resize((256,256), Image.ANTIALIAS)) 

    img3 = (img3.resize((256,256), Image.ANTIALIAS)) 

     

    psnr[int(i)].append(imgs[pos2]+" & "+imgs[pos3]) 

    f.write("\n") 

    f.write(str(imgs[pos2]+" & "+imgs[pos3]+": psnr = ")) 

    p = compute_psnr(img_to_array(img2), img_to_array(img3)) 

    psnr[int(i)].append(p) 

    f.write(str(p)) 

     

    s = compare_ssim(img2,img3) 

    psnr[int(i)].append(s) 

    f.write(" || ssim = "+str(s)) 

    f.write("\n") 

    psnr[int(i)].append(imgs[pos1]+" & "+imgs[pos2]) 

    f.write(str(imgs[pos1]+" & "+imgs[pos2]+": psnr = ")) 

    p = compute_psnr(img_to_array(img2),img_to_array(img1)) 

    psnr[int(i)].append(p) 

    f.write(str(p)) 

    s = compare_ssim(img2,img1) 

    psnr[int(i)].append(s) 

    f.write(" || ssim = "+str(s)) 

    f.write("\n\n") 

 

    i = i+1     

f.close() 


