

Multimodal audio-video person recognition using Deep Neural Networks

Thesis advisor:

Conf. Dr. Ing. Horia Cucu Student: Gabriel

Sandu Marian

Table of contents

- Introduction
- CDEP Dataset Development
- Neural network architectures
- Face and speaker recognition results
- Multimodal results
- Personal contributions
- Conclusions

- Motivation
- Objectives
- Implementation steps
- Initial data specifications

- Motivation
- Objectives
- Implementation steps
- Initial data specifications

Introduction

- Motivation
- Objectives
- Implementation steps
- Initial data specifications

- Motivation
- Objectives
- Implementation steps
- Initial data specifications

- Videos
- *HTML files* corresponding to each video
- Audio files, each corresponding to a speech
- Text file which contains every *speaker* in the database with an associated unique *ID*

Examples of faces

Similarity matrix

Bad cases

- Bad images
- More persons in a folders

Database Development conclusions

Image histogram

# audio files range	# persons
3 - 5	2
6 - 10	23
11 - 20	15
21 - 50	39
51 - 100	250

Audio histogram

Database Development conclusions

Dataset	No. of samples / class	No. of classes	No. of training samples	No. of evaluation samples	No. of test samples
lmage10	10	257	1542	514	514
lmage50	50	132	3960	1320	1320
lmage100	100	84	5040	1680	1680
Audio_3s_10	10	257	1542	514	514
Audio_3s_50	50	132	1542	514	514

Derived datasets configuration

Neural network architectures - Face recognition

Softmax	
Dropout	
Average pool	
2 x Inception	
Max Pool	
4 x Inception	
Max Pool	
2 x Inception	
Max pool	
Convolution	
Input	
GoogLeNe	et

VGG16

Neural network architectures - Speaker recognition

Softmax
Fully connected
Average pooling-over-time
Fully connected
Max pool
3 x 3 conv, 256
3 x 3 conv, 384
3 x 3 conv, 256
Max pool
5 x 5 conv, 96
Max pool
7 x 7 conv, 1
Input

VGGVOX [5]

Face recognition results

Database	No. of classes	Architecture	Test accuracy
Image10	257	FaceNet	93.2%
Image10	257	VGG16	81.3%
Image10	257	GoogLeNet	67%
Image50	132	FaceNet	98.3%
Image50	132	VGG16	95%
Image50	132	GoogLeNet	95%
Image100	84	FaceNet	99.2%
Image100	84	VGG16	97%
Image100	84	GoogLeNet	97%

Speaker recognition results

Database	No. of classes	Test accuracy
Audio_3s_10	257	98.24%
Audio_3s_50	132	99.23%

Multimodal recognition. Results

Multimodal architecture

Results

Database	Number of classes	Batch size	Optimizer	Test accuracy
Image10 Audio_3s_10	257	32	SGD	99.82%
Image50 Audio_3s_50	132	32	SGD	99.92%

- Final results
- Further validation of the model
- Personal contributions
- Further development

	rest accuracy		
	Face recognition vs Multimodal recognition	Speaker recognition vs Multimodal recognition	
10 samples / class	+ 6%	+ 1.58 %	
50 samples / class	+ 1.6 %	+ 0.7 %	

- Final results
- Further validation of the model
- Personal contributions
- Further development

VidTIMIT Database examples

- Final results
- Further validation of the model
- Personal contributions
- Further development

- Developing an algorithm for face database creation and validation
- Developing an algorithm for audio database creation and validation
- Fine-tuning three state-of-the-art neural networks for face recognition and choosing the best option, and one state-of-the-art network for audio recognition
- Creating and evaluating a multimodal architecture for person identification

- Final results
- Further validation of the model
- Personal contributions
- Further development

Model optimization

- Multimodal parameter tuning
- Training on a larger dataset
 - Cloud computing for a higher data volume
- Live recognition
 - API support for video upload
 - Automatic database update
- Website integration
 - User-friendly interface for identification

POLITEH NO.

Bibliography

- [1] Salishev, Sergey & Barabanov, Andrey & Kocharov, Daniil & Skrelin, Pavel & Moiseev, Mikhail. (2016). Voice Activity Detector (VAD) Based on Long-Term Mel Frequency Band Features. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9924. 352-358. 10.1007/978-3-319-45510-5_40.
- [2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9
- [3] Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition
- [4] Florian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering
- A. Nagrani*, J. S. Chung*, A. Zisserman, VoxCeleb: a large-scale speaker identification dataset, INTERSPEECH, 2017

Thank you!

Source code

 $\underline{https://git.speed.pub.ro/diploma/multimodal-person-identification}$