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Introduction

Motivation

As the technology becomes more advanced, compact and also much more accessible, areas
of science in which only research institutes and laboratories could work started to become
accessible to almost everyone interested in.

One of the main goals of present computing technology is facilitating the Human-Computer
Interaction beyond the standard technologies that are commonly used. Interaction based on
gestures and speech is much more natural and intuitive, although one major advantage is that
it can provide disabled people to ineract with computers easier, significantly improving the
quality of life as computers are now used in most daily activities.

Electromyography is a technique that involves human-computer interaction based on elec-
trical activity of the skeleton muscles. Human body muscles are controlled by small electrical
signals transmitted through nerves. The muscles by themselves are generating electrical signals
during contractions, which can be acquired and interpreted by electronic systems in order to
identify the gesture performed and turn it into a command for a computer, or even a bionic
prothesis.

EMG equipment used to be accessible only in medical applications, being expensive and
requiring consistent knowledge of operating it. In time, as the embedded systems like Arduino
began to gain popularity in the makers’ space, various modules were becoming available as well,
enhancing the possibility of adding more funtionality to a project.

Surface ElectroMyography became much more popular thanks to the available sensors that
can be directly connected to any microcontroller which includes an ADC. This way, signal
acquisition can be achieved by any hobbyist easily.

Objectives

An EMG acquisition module should be able to communicate with a host computer, and, at
the same time, it should be also a wearable device connected through a wireless channel to the
computer.

One accessible interface that accomplishes most of the requirements is Cyton from OpenBCI.
It is an acquisition module that comes with a bluetooth dongle, which inserts into the PC’s
USB port. It is created to be used with gelled EMG electrodes (the classic type of surface EMG
sensors), which comes with some disadvantages:

• They are hard to reposition, as the electrodes lose some of the adherence with every
movement;
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• They are not reusable. Most Gelled EMG sensors are cheap, altough for repeated mea-
surements new pairs must be used, which does add up to the cost.

Last disadvantage is related to the OpenBCI module by itself. It was not designed to be
fully attached to the subject’s limb, rather it sits on a table while the electrodes are sticked to
the muscles, which does limit the overall mobility of the subject.

The thesis focuses on the following objectives:

• testing a newer type of EMG sensor, commonly known as ”Dry Surface EMG”;

• designing a compact acquisition module that can be interfaced with the sensors;

• creating a computer Python script that can plot the data acquired by the module;

• compare the results with an existent EMG analysis solution.

The mentioned Dry EMG sensors are made with electrodes which overcome the two major
issues of gelled electrodes, as they only consist of stainless steel or Ag contacts that are placed
directly on the skin. The do allow easy reposition and can be always reused.

Applicability

One of the main applications of electromyography is the control of bionic prothesis for disabled
persons. One acquisition module would be used on the remaining part from the amputee limb.
This would be used in combination with a gesture classification procedure in order to transform
the acquired signals into commands for the prothesis. Other applications may involve remote
control of a robotic arm based on the gestures of the hand, as well as a means of controlling
a computer. EMG gesture recognition may be used as well in entertainment application, in
conjuction with the Virtual Reality technologies.

2



CHAPTER 1. BASICS OF ELECTROMYOGRAPHIC SIGNALS

Chapter 1

Basics of ElectroMyographic Signals

In order to be able to do a proper acquisition, it is mandatory to understand the origins of the
signal, as well as some of its properties. The muscle hierarchical structure will be presented in
order to understand what is the source of these signals.

The basic idea behind Electromyography, putting aside the type of sensor used, is that any
muscle contraction does produce electrical currents. The human body, from the electrical point
of view, is neutral. This does not mean that there are no positive and negative charges at
cellular and macrocellular level[1].

Skeleton muscles are the major group of interest, as many EMG applications are focused
on rehabilitation of persons whose body integrity was severely affected by diseases or accidents.
Most bionic arm or leg extensions acquire raw signals from the limb muscles and replicate the
movement of the natural limb.

Skeleton muscles, also know as stray muscles, have the greatest proportion of the human
body weight. Analysis of a single muscle group will not reveal all the details regarding the
specific movement, since it is the result of coordination of multiple muscle groups. Apart from
the groups which are directly involved in the specific movement, body’s postural muscles are
involved as well. Even for a simple action, such as forearm raising, the body’s center of mass
changes, and the postural muscles need to adjust their contractions in order to bring the body
back into the balance state [2].

For every movement, the muscle groups will be assigned 3 main roles:

• The agonist - it is responsible for the power of the movement;

• The synergist - it assists the agonist in the movement by performing fine corrections;

• The antagonist - it opposes to the movement of the agonist, stabilizing the move per-
formed.

The roles briefly described above are not permanently assigned to each of the muscle groups
that are involved in a movement. For example, for a typical palm extension, some groups will
be agonists and synergists, while the others will be the antagonists. For the opposite movement,
the roles will swap. [3]

1.1 Muscle Anatomy

The muscles are by themselves a hierarchical structure. A muscle group is composed of several
compartments, known as fascicles. Each fascicle has in its componency multiple muscle fibers,
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CHAPTER 1. BASICS OF ELECTROMYOGRAPHIC SIGNALS

which are isolated one from each other by means of a membrane named sarcolemma. Inside
the sarcollema are found the myofibrils which are covered by Sarcotubules and Sarcoplasmatic
reticulum These are channels that contain ions of Calcium with strong positive charges. The
release of ions is controlled by neurons located near them.

The muscle fibers are also composed of smaller threads known as myofibril. It is a structure
that is further decomposed into smaller interlacing myofilaments, which are composed of two
types: myosin and actin. The muscle structure is accurately described in Figure x.x, showing
the hierarchical structure of a typical skeleton muscle group.

Figure 1.1: Hierarchical Structure of Muscles.

Myosin and actin structures are special due to the fact that their degree of overlapping
determines the force generated by the muscle. The existence of dark and light bands on a
myofibril is justified by the overlapping of thin filaments (actin) over the thicker ones (myosin).
Dark regions represent the areas where actin and myosin filaments are connected. Also, actin
filaments are interconnected other groups by means of ”Z” disks. A region delimited by two
such Z-disks is named Sarcomere. One special section inside the Sarcomere, as the figure
illustrates, is the ”A” region, where myosin and actin overlap. A-region is the active area of
the muscle. The figure does illustrate it in two dimensions, although the overall myofibril is
a three-dimensional structure, with complex interlacing [4]. The muscle contraction can be
compared, to a certain extent, with the action of hydraulic piston, in which only the piston
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CHAPTER 1. BASICS OF ELECTROMYOGRAPHIC SIGNALS

pulling force does produce useful mechanical work. The actin filaments are equivalent to the
piston axis.

1.2 Electromyographic signal source

Another important aspect that must be known is the chemical process that determines a muscle
contraction. The overlapping of myosin and actin fibers determines the force of contraction.
When muscle is in the relaxed state, both types of filaments are weakly negative charged, so
there is a reciprocal repel force between them. When a triggering signal arrives from the brain,
the neurons located nearby give a command to the sarcoplasmatic reticulum, which releases the
Calcium ions to the myofilaments. Since a positive and a negative charge attract to each other,
the Calcium ions will be attracted in the space between the actin and myosin. The myosin will
be attracted to the Calcium, and the Calcium will be attracted to the actin. In this manner,
a contraction is generated, and the charge movement inside the muscle fiber will generate an
electric current [4].

1.3 Noise in signal acquisition

Noise in EMG signals can be caused by a variety of factors, and its presence is an issue as
the EMG signals have a peak-to-peak amplitude of about 10mV, centered around 0V. In many
cases, noise can be greater than the signal. Some of the most common causes of noise are:

1. Intrinsec noise of the equipment.

This kind of noise is the result of the functioning of equipment. All components generate
a form of noise. The noise can come from both analog or digital circuits, especially the
last one as most modern digital circuits use higher frequency clocks. There is also noise
generated by the components themselves[5].

2. Static electricity.

As the electrodes are placed directly on the skin, part of the noise present on it will be
received as well. Static electricity is mostly generated by friction forces, friction with
objects, even from friction with air. Human body is a small battery of static electricity,
and this aspect may cause issues with the acquisition.

3. Movement artefacts.

The sensors are positioned on the skin and they are mostly rigid. Skin is elastic and, as a
consequence of some moves, the sensors may move as well from their position, generating
movement artefacts which appear as high amplitude spikes in the recorded signal[5].

4. EMG intrinsec instability.

There are multiple groups of muscles involved in a specific movement. As the muscle
fibers are split into categories, depending on the force and speed of contractions, the
same movement can be generated in a number of ways. This is one of the reasons for the
random nature of an EMG signal[5].
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Chapter 2

Acquisition Interface

The acquisition interface involves usage of two modules:

1. The EMG Acquisition Module, which is the wearable device placed on the forearm

2. The Adapter, which connects to the Host PC.

2.1 Sensors

The type of sensor used in any data acquisition application determines directly the quality of
the acquired signals. The choice of a sensor is strongly influenced by the application purpose.
EMG acquisition sensors are classified in:

• Invasive;

• Non-Invasive.

The Invasive type of sensors consist mainly of needles inserted into the muscle, and inside
a needle can be a single electrode or a group of them. Depending on the technique involved, the
needle can contain the electrode and remain inserted during the acquisition, or it can be used
to insert an electrode (a wire) and then taken out, leaving the standalone electrode inserted
into the muscle.

The major advantage of invasive sensors is that they offer the highest signal quality. Having
the sensor placed close to the signal source, a single muscle group can be accurately monitored
in different regions, thus avoiding the overlapping of signals generated by other nearby muscles
and also the noise from the skin surface. An advantage of wire electrodes is that they are
comfortable for the subject and allows strong contractions over extended periods of time. Being
easy to analyse, the EMG signals acquired by means of invasive sensors are suitable to medical
applications such as diagnosis. The only downside of the invasive sensors are the inability to
change position across different groups of muscles and the necessity of qualified personnel to
implant them.

The Non-Invasive sensors, commonly referred as Surface EMG sensors (or sEMG), come as
a complement for the drawbacks of the previously discussed type. They are easily placed on the
skin, the subject can single-handedly equip them, but their placement position does influence
the acquisition results, since the signal is a combination of signals collected from multiple muscle
groups, over which noise from the skin surface is added, making the classification more difficult
in comparison with the invasive method[1].
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CHAPTER 2. ACQUISITION INTERFACE

The surface EMG sensors split up into two categories as well, as they are: gelled EMG and
dry EMG sensors.

Gelled EMG sensors consist of an Ag electrode which is placed on the skin by the help
of AgCl sticky gel pads. They do have the advantage of a greater stability as the sticky gel
prevents them from moving and generating artifacts in the acquired signal.

Dry EMG sensors have wider Ag electrodes which are placed directly on the skin without
any gel. They do have the advantage of easy relocation and reusability, which make them the
preferred choice for the presented application.

This aspect does not exclude the possibility of doing a side-to-side comparison of both types
of surface electrodes.

As there are many vendors of EMG sensors on the market, some decisions must be taken
regarding the characteristics and features they have. Many sensors come with a signal condition-
ing circuit on the electrode board, while others have the electrode and the signal conditioning
circuit as separate modules, linked together by a cable. Other types of sensors (mostly gelled
EMG) come only as standalone electrodes. Other issue is the output signal. The EMG signals
can be raw or a simple transformation can be applied to it.

The first prototype for the acquisition unit was a sensor that comes with a signal condition-
ing circuit. This approach will have increased costs, but it will ensure a certain degree of signal
quality, especially if the physical distance between the electrode and the circuit is smaller. This
way, less additive noise will be present in the raw EMG signal.

One option of dry EMG sensors would be OyMotion Gravity from DfRobot. They do
include both the electrode board and the signal conditioning circuit. It only needs an ADC (or
a microcontroller with A/D capabilites). One OyMotion Gravity sensor is illustrated in Figure
2.1.

Figure 2.1: OyMotion Gravity Dry EMG Sensor.
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CHAPTER 2. ACQUISITION INTERFACE

Other options may be Advancer MyoWare, which is a gelled EMG sensor that comes under
the form of a single board which contains all the necessary circuit. It has the advantage of
providing both the raw EMG signal and the processed signal. Just like OyMotion, it needs an
external ADC to work. An example of MyoWare sensor is illustrated in Figure 2.2.

Figure 2.2: Advancer MyoWare EMG Sensor (without gel pads).

2.2 Analog to Digital Converter

In order to create a complete acquisition module, a number of 4 or 8 sensors would be needed
to record the entire activity of the forearm muscles. Since each of the presented sensors has
one channel of analog output, an ADC with 8 channels is mandatory in this situation.

There are many ADCs with multiple channels on the market, with different architectures.
Before choosing a specific device, it is important to know the properties of the measured signal,
which can be: single-ended or differential, the bandwidth, the amplitude and the signal-to-noise
ratio.

Usually, an EMG signal has:

• amplitude up to 10mV (in case of strong contractions);

• useful bandwidth up to 250Hz;

The signal parameters will determine which ADC architecture shall be chosen.

The resolution of the ADC determines directly the quantization noise, which cannot be
eliminated, but it can be brought to a tolerable level so that it won’t affect the measurement.
Both sEMG sensors discussed in the previous section provide single-ended output signal between
0 and 3.3V, with 1.5V offset. For a typical reference voltage of 3.3V, the integrated 10 bit ADC
of a microcontroller would achieve a resolution of 3.22 mV/bit, sufficient for a coarse acquisition.
If more precision is desired, an ADC with 12 bits or more would be ideal.

The sampling rate is another factor that determines the quality of acquired signal. Consid-
ering that up to 8 channels must be supported, each having an analog bandwidth of about 150
Hz, up to 250 Hz maximum, this translates into a sampling rate of at least 300 Sa/s for one
channel. Combined for all channels, the ADC must be able to acquire at least 2400 Sa/s for 8
channels, or 1200 Sa/s for 4 channels.

Considering these specification, the EMG module would require an ADC that is capable of
providing good resolution and a moderate acquisition speed. The most suitable architecture of
ADC that would fulfil the requirement is the Sigma-Delta Modulator.
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If it was required to design an acquisition module that can capture raw EMG signal directly
from the electrodes and convert it into digital, the circuit would need to have:

• bipolar supply;

• differential input amplifier;

• analog filter.

The market offers ADCs which are actually fully integrated analog front end, meaning that
they are equipped with amplifiers and filters by default.

For a beginning prototype, having a fully integrated analog front-end allows for a greater
design flexibility, as well as a more compact circuit. These are the reasons for choosing AD7124-8

from Analog Devices.[6]. For easier prototyping, a breakout board like the one from Figure 2.3
will be used.

Figure 2.3: AD7124-8 on ADC-6 Click Board.

Key features of the device are:

• Sigma-Delta Architecture, suitable for low frequency signal sampling;

• max. 24 bits precision;

• 8 channels, differential or single-ended;

• internal temperature-compensated 2.5V reference;

• external reference, either on dedicated input pins or analog VDD.

2.3 Microcontroller

The EMG module performs one action: acquiring signals from sensors and transmitting them
by means of a Bluetooth transceiver to an external device, such as PC or laptop computer,
which can optionally perform classification on it.

The microcontroller choice and the programming interface influence the following aspects:

• core features of the CPU;

• processing power;

• peripheral set;

• number of I/Os;

9
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• physical size and power consumption;

• programming and debugging support;

• the required development tools.

There are many microcontrollers and development board manufacturers. There are devices
that excel at price-to-performance ratio, while others have the advantage of extensive support
thanks to the communities of developers, as well as organised and documented development
tools. The following sub-chapter will present and analyse a few options available on the market,
as well as which one will be included in the project.

1. Arduino

Arduino is a widely spread concept in the embedded computing. It is a popular platform
with support for most of the embedded modules found on the market. Arduino offers the
possibility of assembling a project quickly and with a good learning curve. Arduino also offers
a simple and user-friendly IDE. There are Arduino Boards that suit most requirements for
prototyping. Any Arduino compatible development board can be programmed in Arduino
C++. An Arduino Nano board is shown in Figure 2.4.

Figure 2.4: Arduino Nano Board.

2. Espressif

Espressif is a chinese manufacturer of wireless SoCs that use a 32 bit RISC CPU archi-
tecture named ”Tensilica” and can be equipped with both Wi-Fi and Bluetooth technologies,
making them suitable for wireless communications. They are Arduino compatible, but the
manufacturer does offer some packages for other IDEs such as VisualStudio or Eclipse based
IDEs. Some of their SoCs come as dual core devices, which have more processing power in a
compact package. There is support offered for both C/C++ and MicroPython. One ESP32
avaliable as a breakout board is shown in Figure 2.5.

Figure 2.5: ESP32 Development Board.

3. STM32

STM32 microcontrollers are Arduino Compatible as well, but they are based on ARM
Cortex 32 bit RISC architecture. They can be programmed in Keil MDK, Atollic, ARM Mbed
and more. ST Microelectronics does provide the users with Cube IDE, a powerful and free
development toolset that is used for both standalone microcontrollers and development boards.
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Figure 2.6: STM32 Nucleo Board.

ST offers a series of development boards named Nucleo (Figure 2.6), whose main feature is that
they come equipped with STLink-V2 along with the microcontroller, being also budget-friendly.

4. Raspberry Pi Pico

The name ”Raspberry Pi” is usually associated with single board computers, which are not
microcontrollers. The perception changed when RP2040 was introduced. RP2040 is the first
microcontroller designed by Raspberry Pi and features dual Core ARM, together with a faster
Programmable Input Output peripheral. Raspberry Pi offers SDKs for larger IDEs, just like
Espressif, and the microcontroller can be programmed in C/C++, as well as MicroPython.
Raspberry Pi Pico can be debugged by means of JTAG/SWD compatible debuggers, or by
another Pico (Figure 2.7) programmed as debugger.

Figure 2.7: RP2040 on Raspberry Pi Pico Board.

The microcontrollers presented above are just a few popular options offered in the embedded
industry. Choosing a microcontroller for a project is influenced both by the capabilities of
the device itself and also by their support, such as available IDEs, frameworks, libraries and
updates. Although the project will focus on only one microcontroller, the options listed here
may be reconsidered again in a future revision of the EMG Module.

Considering all the presented options, the family chosen for the development of EMG acqui-
sition module is STM32, which offers reasonable performance, support across the entire range
of microcontrollers and two C/C++ frameworks that facilitate firmware development.

STM32 splits up into several sub-families, depending on their characteristics and power
optimization. For the first stage of prototyping, a Nucleo-32 Board is used. The module itself
does not require a large number of I/O pins, and, for a wearable device, microcontroller should
have a small footprint.

The specific part used in the project is STM32L432KC[7], whose key features are:
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• ARM Cortex M4 with floating point unit

• 256 KB of flash memory, expandable through QSPI interface

• 64 KB of RAM

• 26 I/O

• 2 × USART, 1 x SPI, 1 x USB 1.1

• DMA controller

2.4 Bluetooth Module

Bluetooth by itself is a complex wireless communication protocol, with multiple layers. Al-
though simpler transceivers can be used with microcontroller as well, the final purpose of the
project is to have a device capable of sending the acquired data to a computer that can display
it under the form of multiple plots.

As listed above, there are many SoCs on the market that integrate both programmable
microcontroller and wireless capabilities. As a starting point, a Bluetooth transceiver that is
easy to configure and capable of offering a simple communication with a PC will be enough.

Considering these aspects, the module chosen is HC-05, from Itead Studio. HC-05 is well
known in combination with Arduino Systems, thanks to its ease of operation with the existent
libraries. The module has the following characteristics:

• transparent UART Communication between microcontroller and other Bluetooth device;

• Bluetooth Master/Slave capabilities;

• UART Baud Rate up to 921600 bits per second;

• encryption and authentication by default;

• configurable by AT commands through UART;

A typical Bluetooth module on breakout board is shown in Figure 2.8

HC-05 implements Bluetooth 2.0 + EDR (Enhanced Data Rate) and it is available in many
electronic parts stores. It can be mounted on breakout module with LEDs and voltage regulator,
or as standalone module[8].
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Figure 2.8: HC-05 on Breakout Board.

2.5 Power Supply

The EMG module will be powered by a Li-Ion 3.7V battery. A fully charged Li-Ion battery
can have a voltage of maximum 4.2V.

Due to the fact the HC-05 module needs more than 3.5V on the supply line, it can be
directly connected to Li-Ion voltage. The microcontroller and the ADC are 3.3V systems,
meaning that a voltage regulator must be used. The noise on the power supply must be kept at
low values, reason for which a linear voltage regulator will be used. The chosen LDO regulator
is MCP1801 [9], from Microchip, which has a fixed output of 3.3V.

The final aspect worth mentioning here is the battery charging circuit. The acquisition
module will have the possibility of charging by micro-USB connection. The USB standard uses
a 5V power supply, meaning that a dedicated charger circuit must be included. Also, it is
considered best practice to allow the microcontroller to control the charging operation of the
circuit, when needed. The choice in this case is MCP73830L from Microchip [10]. It is a single-
cell Li-Ion charger with programmable current limit, a status LED indicator and an On/Off
charge control input, available in a compact TDFN-6 package.

2.6 The complete block diagram

Figure 2.9 describes the summary of the EMG acquisition chain, starting from the analog raw
EMG output of the sensors to the plot of the time domain signal.
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Figure 2.9: HC-05 on Breakout Board.

The EMG acquisition interface is made out of two major blocks:

1. The acquisition module itself

2. The Bluetooth adapter module

The acquisition module is built around a few main components: sensors, multi-channel
ADC, microcontroller and transceiver. In this case, the data acquisition starts from left to right.
The EMG sensors give an amplified raw signal, which is then converted into numerical form by
ADC. The samples are further transmitted to the microcontroller in order to be encoded for
UART transmission. Then the samples are transmitted over UART to the Bluetooth module,
which further encapsulates and transmits them to the adapter module.

The adapter module is made out of two components connected together: a Bluetooth HC-05
module and a UART-USB converter. The two Bluetooth modules are configured so that they
form a permanent, fixed wireless link, in order to decrease latency. As mentioned before, HC-05
communicates through UART, and since the Serial Port on most user machines is non-existant,
a USB-UART converter such as CH340G (Figure 2.10) is used.

The complete Setup of the EMG Bracelet soldered on custom PCB, together with the
Adapter Circuit, is shown in Figure 2.12.

Both schematic and the PCB of the project were developed in KiCAD, a free and Open-
Source design suite that allows projects of any size to be developed without limitations. The
manufacturer of the Circuit Boards is OSHPark.

The PCB was manufactured on FR4 substrate, having a number of 2 conductive layers with
2 oz. copper. The Copper surface has ENIG finish. For the passive components, it was chosen
the dimension 0805 (or 2012 in metric) as the components are small enough to achieve a greater
component density, yet large enough to be easily soldered by hand. The overall dimensions of
the board are 62 × 22 mm, with an overall thickness of 6 mm (excluding the pin headers). The
complete schematic of the module is listed in Appendix A.
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Figure 2.10: CH340G UART-USB Converter

(a) Bluetooth adapter board (b) The EMG Module (without battery
and sensors)

Figure 2.11: EMG module

Figure 2.12: The Complete Prototype.

15



CHAPTER 3. FIRMWARE AND SOFTWARE

Chapter 3

Firmware and Software

This chapter focuses on two important sides regarding the programmable part: the firmware
on the microcontroller, which acquire digital samples and converts them into a format suitable
for Bluetooth transmission, and the software, which takes all the samples from Bluetooth and
displays them as scrolling plots. The software part will run on an x86/x64 platform with
Windows Operating System.

3.1 Firmware

STM32 microcontrollers are based on ARM Cortex architecture, which is optimized for C/C++
programming. Regarding the firmware development, ST provides the users with two frameworks
created for 32-bit family:

1. Hardware Abstraction Layer (HAL);

2. Low Level Framework (LL);

HAL is best known for the high-level functions that allow for quick and easy prototyping with
the microcontroller’s advanced core features and peripherals. Only basic knowledge about the
device and its peripherals is needed in order to be able to develop a firmware for it. HAL is also
a practical introduction to the 32 bit microcontrollers. Just like other higher-level frameworks,
HAL utilizes more resources and it is not recommended for applications where performance
and memory efficiency are critical.

LL drivers are the complementary part of HAL, since they operate at a level much closer
to the actual hardware. As expected, they require more knowledge about the hardware’s
associated registers. However, the advantage of using LL over HAL is the enhanced flexibility
and efficiency of the firmware. LL drivers are basically register access functions that are labeled
in a much more user friendly manner, removing the need of knowing absolutely all the details
about the involved registers, such as bit positions, all configuration values and addresses. Low
Level drivers also allow for direct register manipulation without any issues.

Development of the firmware for the EMG module is done by using CubeIDE software,
whose most useful feature is CubeMX code generator, which allows for easy peripheral and
functions setup. The remaining code will be written by LL drivers.
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Figure 3.1: CubeMX code configuration tool.

3.1.1 STM32 Operation

The basic flowchart of the code is presented above. The first step of code execution is the
initialization of STM32’s clock for core and peripherals, followed by the initialization of the
peripherals.

The second step involved is waiting shortly after startup so that ADC has time to initial-
ize its function, then the MCU will send the configuration bytes. Bluetooth does not need
initialization here since it is preconfigured separately with commands presented in Appendix 4.

After initialization, it comes the part where it is checked if the Bluetooth module is paired
with a computer. If yes, proceed to next step, otherwise wait until connection is established.

The next step is the sampling itself, where the microcontroller continuously polls the ADC
for finished conversions, then it creates the packet that will be further transmitted through
UART. Flowchart from Figure 3.2 shows the microcontroller execution.

The code of the firmware is found in Appendix B.

3.1.2 ADC Operation

As presented in the previous chapter, the AD7124-8 offers a significant configuration flexibility,
which makes it suitable for a wide range of low-bandwidth signals applications. It is important
to know which ones are the features of interest and how should they be configured in order to
obtain the desired results.

The EMG Module configuration uses the following settings:

• full power mode, for high sampling rate

• internal 2.5V voltage reference

• programmable gain of 1

• no filtering, for lower latency

• up to 8 channels activated, all of them sharing the same filter and gain settings.

To begin with, the communication with ADC is done by means of SPI interface. The ADC
is a half-duplex device that works in SPI Mode 3, which means that SPI clock is idle HIGH
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Figure 3.2: STM32 code flowchart.

and the data is clocked out on the second edge. The maximum serial clock frequency that can
be applied to the serial interface is about 1 MHz. There are 4 pins to be mentioned in this
situation:

1. Chip Select - CS ;

2. Serial Data In - DIN (MOSI);

3. Serial Data Out - DOUT (MISO);

4. Serial Clock - SCK;

AD7124-8 is a device whose operation is controlled by means of registers implemented as
Static RAM. Most of them are readable and writable, while others are only readable or writable.

The datasheet includes a map of all the registers used by ADC and which are accessible to
the user, as well as their corresponding addresses(Figure 3.3).
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Figure 3.3: AD7124-8 register map. Source: Analog Devices AD7124-8 datasheet

The Register Map can be accessed only by means of a ”Communications Register”(Figure
3.4). It is write-only and it has 3 major fields:

• WEN - Write ENable: When a zero is written, the next 7 bits will be clocked in;

• R/W - Read/Write: It specifies if a read or write operation will be performed on the
ADC registers;

• RS[5:0] - Register Select: The address of the requested register is contained in this field.

Figure 3.4: Communication Register.

The registers that need to be modified in order to achieve the desired settings are:

• Channel Registers (Figure 3.5)

• Filter Registers (Figure 3.6)

• Configuration Registers

• ADC Control Register (Figure 3.8)

19



CHAPTER 3. FIRMWARE AND SOFTWARE

The device has all 8 channels connected to a CrossBar Network to the Sigma-Delta Modu-
lator, enhancing the flexibility of input configurations. There are 16 input pins, starting with
AIN0 (Analog INput 0), up to AIN15, which justifies the existence of 16 Channel Registers.
Each channel has 2 terminals called AINP (AIN Positive) and AINM (AIN Negative), which
can be connected to any of the 16 pins mentioned, or to a fixed potential such as GND.

Figure 3.5: Channel Register.Source:Analog Devices

The register presented above has a field for Enable, another filed specifying one of the 8
possible configuration settings, as well as selecting which one is AINP and which one is AINM.

Next step in configuration of the ADC is writing to the configuration register. There are 8
such registers, but since all the EMG sensors involved are the same, one configuration for all
active channels is enough. Here are the most important settings:

• Bipolar or Unipolar Conversion;

• Reference Voltage Selection;

• Programmable Gain;

It will be selected Unipolar Conversion on all channels, with Internal 2.5V reference and
Programmable Gain of 1.
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Filter registers are the ones that determine the type of filter applied, as well as the conversion
rate. Filter word will be set to 1, while other bits in the registers will be set to zero to achieve
a higher sampling rate.

Figure 3.6: Filter Register. Source:Analog Devices

The last register to be configured is ”ADC Control”. It enables the most important functions
of the device. The functions that can be selected are:

• Operation Mode;

• Continuous Read Enable;

• Data Status Output;

• Power Mode.

The operation mode for the ADC will be Continuous conversion. The device will convert
samples with a steady rate, as long as it is powered.

Continuous Read Enable is not required for the moment, but it can be used in a further
revision of the project. It basically allows reading of a sample just by setting CS LOW and
apllying the required number of SPI SCK pulses, without any prior read command. The only
disadvantage is that available data can be read only once until the next conversion result.

Data Status Output is a useful feature for multi-channel conversion, as the Status Register
contains the number of the converted channel and it will be sent together with the conversion
result when a Read Command is issued.

Figure 3.7: Status Register.Source:Analog Devices

The last option determines the conversion rate, as well as the power consumption of the
converter. There are three power modes: Full Power, Middle Power and Low Power. The first
one will be selected since the conversion rate is more important for the EMG Module.

Figure 3.8: ADC Control Register.Source:Analog Devices
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Once the AD7124 has been configured, the only details to be mentioned in its functioning
are verifying when an A/D conversion is finished and the effective number of bits. There are
two possible methods:

1. Read the Status Register’s RDY Flag. Reading the Status Register is pretty straight
forward. A specific byte is sent to the Communications register, and the ADC returns the
Status Register content. A mask with the requested byte is applied to see if a conversion
is ready. The only drawback of this method is that it is time inefficient, because there
are a total of 16 Clock Pulses applied for the polling alone, not to mention the effective
transfer of conversion result, which requires another register read.

2. Poll for the DOUT/RDY pin transition. DOUT pin has a double role in the communi-
cation with the microcontroller. It is used to output the content of the requested ADC
register, as well as indicating the end of a conversion. High emphasis is put on this fea-
ture, as it significantly increases the output data transfer rate on the SPI interface. When
the CS Pin is Logic LOW, the DOUT line stays HIGH during a conversion, then it is set
to logic LOW to mark the end of conversion. This method is much faster compared to
the Status register Polling, and it is the recommended approach if Continuous Reading
is enabled.

The conversion result is composed of 3 bytes, transmitted from most significant byte to
the least significant byte, as well as from most significant bit to least significant bit. The
Read Command, which is 1 byte, plus the conversion result, 3 bytes, plus the Status Register
Contents appended after every second, this would result 5 bytes/sample.

There is one final detail about the conversion result. The datasheet from Analog Devices
specifies what effective resolutions can be achieved with different filter settings and sampling
rates. The filter type used is the default one.

Figure 3.9: Resolution (in bits) as function of output data rate (in Sa/s).Source:Analog Devices

Considering the Fig 3.9 from ADC datasheet, it results that conversion rates greater than
4000 Sa/s, at a gain of 1, with default filter enabled, result in an effective peak-to-peak resolution
of only 17 bits.
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This leads to the conclusion that the third bit from the conversion result will be mostly
noise, and if taken into account the fact that the EMG signal is already amplified by the sensor,
a resolution greater than 16 bits would not improve significantly the results. In order to save
bandwidth, the third bit will not be further encoded in the UART data frame.

From the number of bytes per sample and the number of samples per second, there can
be established the optimal SPI operating speed for the ADC. For an optimal sampling rate of
4000 Sa/s, the ADC would give a throughput of 4000 samples × 4 bytes/channel = 16 KB/s.
Translated into bits, this means 16KB/s × 8 = 128 kbps. Although it appears that a SPI
clock speed of 250 kbps would be more than enough, the signal sample passes through SPI
transmission, followed by signal encoding, then a UART transmission. The data sent from
MCU is then encapsulated in the Bluetooth Protocol stack, which is then sent to the Adapter
module, which decodes the radio packet, converts into UART and transmits it through USB
to the PC program. All these elements from the chain do increase the overall latency of the
acquisition module, without taking into account the latency introduced by the Script running
on the host PC.

In order to minimize the latency, both SPI and UART interfaces will use the maximum
transmission rates allowed by the involved components. The SPI will have a clock frequency of
1 Mhz.

3.1.3 Sample Encoding

At first glance, it may seem pretty straight-forward to send the received data from ADC directly
to the Bluetooth transceiver through UART. There are some issues which need to be addressed,
though.

1. First issue is about UART interface and the data received by the host PC. In the com-
munication between an embedded device and a PC, through UART interface are sent
alpha-numeric characters that compose the messages that are commonly seen in a ter-
minal emulator. A byte can take 256 values. The ASCII table uses first 128 values for
message transmissions. The issue is that the first 32 characters are actually ”control char-
acters”, which are interpreted differently by the PC, compared to normal characters which
are simply displayed. If it is taken into consideration the fact that a 3 byte conversion
result can take any value in the range 0-255 for each byte, it results that, in some cases,
control characters can be sent instead of normal alpha-numeric symbols, which may lead
to unexpected results on the receiving end. When encoding the data, it must be taken
into account how it will be decoded by the host program. A simple solution to encode
the signal samples is to convert them into plain text hexadecimal numbers. For example,
the byte with hexadecimal value 0x27 would be translated into two bits, which hold the
alpha-numeric characters ’2’ and ’7’. In case of channel conversion, this would translate
into encoding the number into its corresponding character, since it can take value between
1 and 8, so half a byte can be converted into a single character.

2. The second issue is related to the separation of data frames that contain signal samples.
Both Bluetooth modules involved in the transmission chain are communicating through
UART, which is by default an asynchronous interface. Since the module is sending sam-
ples from multiple channels, it is mandatory for the data frame to contain at least the
signal sample and the corresponding channel number. In order to delimit a frame, the
simplest solution is to add a special character at the end of it. The choice of the delimiter
character is dependent on the program running on the PC. The most common character
for introducing new strings from a UART console is the new-line character, commonly
referred as ’\n’.

23



CHAPTER 3. FIRMWARE AND SOFTWARE

The two concerning issues were addressed, and now the data frame fields can be defined.

Figure 3.10: SPI to UART data conversion example.

3.1.4 Bluetooth Operation

Unlike the ADC, Bluetooth has a different method of configuration, as all the settings are
stored in a flash memory. In order to describe the configuration procedure, the Pinout will be
presented in Figure 3.11.

Figure 3.11: HC-05 Pinout.

Although the module presents a high number of pins, only a few of them will be used. These
are the Power supply pins, UART TX and UART RX, PIO8 and PIO11.

PIO8 is an output which indicates the working state of the module by the blinking frequency:

• Unpaired - flashes at 2Hz;

• AT Configuration -flashes at about 2 seconds.

PIO11 is input. It will be used during AT configuration.

Entering the AT command mode with a HC-05 involves usage of a USB-UART converter
connected to it. The necessary steps are the following:

1. Keep pressed the AT switch/jumper and, then, power on the module. The LED will flash
slowly indicating AT mode is ON;

2. Open Terminal Emulator and select the appropriate COM Port (or dev tty, if Linux is
used). Select the baud rate of 38400, with one stop bit and no parity check selected;
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3. Open the Port.

4. Issue the command “AT ”, followed by the Enter character, or ”\r \n”. Each command
that is sent must begin with “AT+” and end with the “\r\n” characters;

5. If the Bluetooth responds with “OK”, the configuration mode is working properly;

6. Send the desired configuration commands;

7. When the configuration is complete, power off the module, or issued the command
“AT+RESET \r\n”. The module will reset and the LED will flash fast, meaning that is
ready to be paired.

The method applies every time when it is desired to modify some of the Bluetooth settings,
and it is the easiest one since both the commands and the responses from the device can be
seen. If a command is not recognised, or wrong parameters are set, the error can be corrected
immediately.

In the Bluetooth communication, there is one device with the role of ”master”, and one
device with the role of ”slave”. A master device is able to initiate a communication with a
slave device, and it must know the address of the slave. A slave device can only respond to
the request of a master. The adapter module will have the master role assigned, and the EMG
module will be slave.

The last detail to be mentioned is the baud rate for UART transmission. HC-05 supports
baud rates up to 921600 bps. The maximum value will be chosen in order to minimize the
latency as much as possible Configuration Commands are found in Appendix C.

3.2 The Software

The software part is focused on displaying the signals in the time domain, in the form of a
rolling plot.

The flowchart of Python Program is described as follows (Figure 3.12).

The program described in the flowchart will start by attempting to connect to the adapter
module’s corresponding COM Port on Windows, with the specific UART parameters. Then it
will request the user to input the number of channels to be visualised in the plot. When the
number of channels is provided, the program creates a new plot with one subplot per channel.
All subplots start with a zero-line signal, in order to define the line that will be continuously
updated.

When the above steps were performed, the program enters in a permanent loop in which a
batch of samples is acquired, then the plot is updated with the newly acquired samples.
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Figure 3.12: Main Program Execution.

The software written on the host PC will be based on Python 3.8 and the associated libraries:

• Matplotlib [11] - the library for displaying different types of plots;

• Numpy [12] - the numerical library used in Python;

• PySerial [13] - the library required to communicate with the virtual COM ports.

3.2.1 Matplotlib

Matplotlib is a well-known library used to create high quality plots, and it is flexible enough
to be adapted to the requirements of the project. By default, Matplotlib favors plot quality,
rather than plot speed, which means that some workarounds must be performed in order to
obtain results closer to a real-time plot. The library does include some animation function, but
they will not be used in the project due to the following issues:
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1. the functions do update the plot after every single sample collected, which can translate
into poor optimization on the running platform. The issue consist in the fact that,
for an optimal acquisition on 8 channels, about 4000 samples per second needs to be
plotted. Updating the plot by 4000 times per second is computationally intensive, as well
as pointless, since a typical display achieves 60 Hz refresh rates. A custom animation
function will be used.

2. it is desired to achieve a scrolling plot effect, and most Matplotlib tutorials found in
documentation are focused on slower animations, which append a point at a time, while
the older points from the graph are not removed. If the scrolling is from right towards
left, it results in a visual compression of the graph towards the left of the plot.

The desired effect can be obtained in a much simpler manner, avoiding excessively complex
code and achieving a greater plot refresh rate (Figure 3.13).

Figure 3.13: Plot refresh method.
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The idea is simple: the program needs to acquire a number of samples into a buffer of
determined size, and then it must append it to the buffer of the plot (the part which is seen on
the screen). In order to obtain the ”roll” effect, as seen on a typical digital storage oscilloscope,
it is necessary to remove the old samples from the plot buffer. The last step is to plot the new
buffer and the code repeats into an infinite loop.

3.2.2 PySerial

PySerial is a Copyright library created by Chris Liechti for serial communication in Python. It
can work on Windows, Linux and macOS, but for the purpose of the work it will only be used
on Windows.

The library provides the users with easy to use functions, that can establish a software
connection with the adapter module, as it appears listed as a ”COM” port when plugged into
an USB port. The code written with it is simple and easy to understand. Strings of any length
can be read from UART if they end with the new-Line character.

One critical subroutine in the code is the acquisition and decoding. In order to plot multiple
graphs on a single plot, it is mandatory that the buffers of the channels have exactly the same
number of samples to be displayed. It is necessary to create a code that ensures all the activated
channels buffers are filled before updating the plot. Basically, every channel will have its own
buffer, together with a buffer counter which will be incremented after every received character.
When a channel has the buffer completely filled, the program will fill the remaining buffers.
When all the channel buffers are complete, the program updates the plot. The next flowchart
describes the procedure (Figure 3.14).

Another important aspect is the acquisition reliability. In case of incorrect decoding of a
sample, or a sample that is corrupted, it is not desirable for the execution to be stopped by an
error. Loss of one sample out of 1000 is not a major issue, but if this occurs, a program without
error handling mechanisms would have to be restarted, leading to discontinuous operation.

Python does offer a simple mechanism that can provide the code with a degree of relia-
bility, which is known as ”try-except”. The interpreter executes the code found in the ”try”
subroutine until an error occurs. When error state is detected, the execution is redirected to an
error subroutine where the ”exception” can be handled accordingly. In the case of acquisition
subroutine, the error subroutine simply resumes the acquisition, which is continued until all
the activated channel buffers are filled.

3.2.3 Numpy

Numpy is the standard numerical library included in any Python version. It is required, as
the samples that come from the EMG acquisition module are homogeneous, and all the data
plotted is also homogeneous. Numpy allows for more efficient vector manipulation.

The combination of all the techniques presented above into a single Python script represents
the program that handles the stream of data from sensors. An example of a running program
is shown below (Figure 3.15).

The screenshot presented here shows a typical Matplotlib window, in which multiple plots
are stacked in order to efficiently use the screen space. It is the proof that the EMG acquisition
chain is complete, from the sensor signal, up to the running program result. From this point,
experiments on the prototype EMG module can be performed.
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Figure 3.14: Sample acquisition and decode.

Figure 3.15: Example of signal acquisition.
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Chapter 4

Experimental Results

In order to see if the acquired data is correct, a comparison with a reference EMG acquisition
interface will be performed. The comparison device used is the OpenBCI from Cyton [3],
together a few gelled electrodes for EMG signal acquisition. A few common hand gestures will
be performed in order to be able to compare the signals. Also, a comparison between a dry
EMG sensor and a gelled EMG sensor will be performed in order to test the performance of
each type.

Placement of the sensors on the forearm is crucial, as combined signals from different muscle
groups will be recorded, which is the main disadvantage of surface EMG sensors. The highest
quality of signal can be achieved in the areas where muscle has the greatest thickness, as the
areas closer to the arm joints will have lower peak-to-peak potentials. The experimental results
can be influenced to a small degree by the positioning of the sensors, without taking into
consideration the type used.

4.1 The Acquisition Modules

4.1.1 The Prototype

The bracelet attached to the custom module has only 4 sensors for the experiment, which are
sufficient in order to see some forearm muscle activity. Interpreting and classifying the data
is a more complex project for the moment. The 4 sensors are placed at approximately equal
distances on the forearm, on the thickest region of the forearm. Placing is important, as it
dictates the quality of the measured signal.

The module has 4 Indicator LEDs. Their corresponding functions are:

• D1 - Charging state;

• D2 - Bluetooth Connected;

• D3 - Bluetooth Ready;

• D4 - Status LED;

When Boot-up, the Status LED will flash 4 times, then the Bluetooth Ready LED will
indicate EMG Module is ready for pairing with the Adapter. When the Adapter Module is
inserted into the USB port of a PC, the Bluetooth module will blink fast a few times. When the
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synchronisation is complete, both the EMG module and Adapert will signal that the wireless
channel is established and the acquisition can begin.

From this moment, the Multi-Channel Data Plotter program can be run in the interpreter.
When run, it will ask the user for the number of channels to be displayed on the plot. The
module is set to output samples for 4 channels, so in this situation, any number from 1 to 4
can be written.

The program will automatically adjust the plot sizes, so that the signal can be easily visu-
alized.

4.1.2 The OpenBCI Module

OpenBCI is well known for being an open-source sollution for acquiring different types of
biometric signals, such as EEG or EMG signals. The module is used together with a complete
acquisition software, which can display the selected channels, as well as interpreting the results
and displaying the Fourier Transform.

Figure 4.1: Cyton and the Prototype.

The Figure 4.1 illustrates on the left side the Cyton board and the USB dongle, while in
the right is illustrated the prototype custom device.

4.2 Hand Gestures

In order to be able to determine if the prototype acquisition system is capable of correctly
sampling and displaying the signal, reference signals are needed. These reference signals can
be acquired with OpenBCI, as it is a commercially available device, meaning that it was thror-
oughly verified. Once the gestures’ reference signals are acquired, the custom EMG module will
be tested in the same manner, with electrodes in the same positions. Figure 4.2 shows some of
the most common gestures that can be performed in order to test an acquisition system.
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(a) Hand Rest (b) Wrist Extension (c) Wrist Flexion

(d) Open Hand (e) Fist (f) Pronation

(g) Supination

Figure 4.2: Simple Hand Gestures
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4.3 Experimental Results

The testing begins with the measurements of EMG potentials begins by acquiring the reference
data with OpenBCI. The test setup is shown below (Figure 4.3).

Figure 4.3: OpenBCI Test Setup.

Figure 6.3 illustrates that the electrodes should be placed so that the signal is sampled in
the thickest muscle region, like in the case of dry EMG sensors described in Chapter 3. Also,
in case of gel electrodes, there is one electrode whose purpose is to offer a reference point in
signal measurements. That electrode is Reference Ground and it is placed on the forearm bone
end, due to the fact that EMG action potential in that spot is close to zero.

To easily compare the signals acquired from both devices, the acquisition results, which are
under the form of screenshot, will be placed together.
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Figure 4.4: Hand Rest (OpenBCI).

Figure 4.5: Hand Rest (Prototype).

As expected, in Figures 4.4 and 4.5, since the arm is resting, its EMG action potentials will
be close to zero.
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Figure 4.6: Wrist Extension (OpenBCI).

Figure 4.7: Wrist Extension (Prototype).

Figures 4.6 and 4.7 illustrate the Wrist Extension gesture, captured on both devices (con-
secutive testing was performed).
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Figure 4.8: Wrist Flexion (OpenBCI).

Figure 4.9: Wrist Flexion (Prototype).

The Figures 4.8 and 4.9 illustrate the Wrist Flexion, and as a consequence, muscle groups
from the opposite side start to contract in order to perform the movement (they are also aided
by gravitational force).
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Figure 4.10: Open Hand (OpenBCI).

Figure 4.11: Open Hand (Prototype).

Figures 4.10 and 4.11 show how the finger extension gesture is reflected as an EMG signal.
As mentioned in Chapter 2, even small movements of the body are a coordinated sequence of
larger muscle groups as well.
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Figure 4.12: Fist (OpenBCI).

Figure 4.13: Fist (Prototype).

In Figures 4.11 and 4.12, the Fist gesture is shown. As expected, it is a gesture that
generates higher EMG signals, as the contraction is more powerful.
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Figure 4.14: Pronation (OpenBCI).

Figure 4.15: Pronation (Prototype).

Figures 4.14 and 4.15 show the pronation gesture.
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Figure 4.16: Supination (OpenBCI).

Figure 4.17: Supination (Prototype).

Lastly, Figures 4.16 and 4.17 show the supination gesture.

It is quite hard to replicate exactly the same gestures, as the condition of human body may
vary depending on the intermediary activites performed.

40



CHAPTER 4. EXPERIMENTAL RESULTS

Conclusions

Results

As seen in the screenshots from the previous chapters, the signals look pretty similar, but they
cannot be called ”identical” due to the following considerations:

• It is almost impossible to reproduce exactly the same movement when two acquisition
systems are tested sequentially, as the muscles can achieve the same movement in different
ways. Muscles cannot be analysed separately from the rest of the body, since what
is happening in other body areas can influence directly their activity. Neither brain
activity, which is the source of commands for the muscle movement , is the same in
different moments of time, as the muscular activity of the body is deeply influenced by
the emotions of the person during the measurements. As an example, an anxious person
would have a higher average tone, in comparison with a person that feels relaxed. The
muscular activity can also be influenced by breathing, as neither breathing activity is
always the same.

• Positioning is critical when recording EMG signals, since one of the major disadvantages
of this technique is that it records the activity of multiple muscle groups, and it may
accumulate noise from the skin surface as well. The signals generated by muscular fascicles
can propagate and, thus, the final result is a mixture of signals, whose classification does
involve advanced techniques.

• Lastly, there were two types of sensors involved in comparison. Gel sensors and dry
surface sensors are different in many aspects. Some of these aspects include the area of
contact between the pads, the covered length of the muscle, as well as the amplification
of signals, which have a significant influence over the quality of the acquired signal, as
well as its characteristics.

For the OpenBCI Cyton module, the sensors are based on solid gel electrodes, with wires
that connect directly to the module’s ADC. The gel electrodes are thicker, sticky and have
a larger contact area with the skin, as well as covering a larger muscle length. Despite the
fact that their placement is rather difficult in some cases, they do allow greater flexibility in
positioning. Another aspect to consider is that OpenBCI displays the signal as it is, without
any amplification, or filtering applied (although filtering can be enabled). Considering the
length of the electrode wires, this may result in a much noisier operation in some cases, but
the exact raw waveforms can be precisely viewed. Also, OpenBCI has the major advantage of
using a more sophisticated ADC, which is specifically designed for biopotential measurements.
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For the Prototype EMG module, the sensors are dry electrodes, as they are stainless steel
pieces mounted on a PCB. Compared to gel electrodes, their placement is easy, but the flexibility
of positioning is limited. One important feature of the used sensors is that each of them comes
as a pair of boards, one holding the dry electrode, which would normally connect to a signal
amplifier and conditioner circuit, linked through a male-to-male 3.5mm Jack. The output signal
comes amplified and also single ended, since an offset of 1.5V is added. This has the advantage
that it simplifies the overall complexity of the acquisition module, as well as limiting the noise
that is picked up, because the weak EMG signal is amplified close to its source, then, as it
travels to the ADC, it has already a greater SNR, which improves the signal quality.

Personal Contributions

The project I worked at is mainly focused on building a simple, complete EMG acquisition
system, which does allow for the muscle signals to be viewed in real time on a computer.

For the hardware side, I did illustrate the reasons behind component choices, as well their
configuration procedures and settings. The choices were made so that parts would fulfill the
requirements of the project, and also made sure they are easy to find and to have support when
debugging was necessary. Also, different stages of prototyping were illustrated, in order to
make sure the circuit works properly, as PCB designing and manufacturing stage is performed
only after a circuit is thoroughly verified.

For the software, I focused on creating a code based on Python, an easy to understand
and powerful language, which includes stable and well documented libraries for the functions
required by the acquisition chain.

I focused on incorporating all the elements presented above into a system that is comparable,
to a certain extent, with an already existent product, built for the same purpose. The advantage
of the Prototype EMG module is that it is much easier to equip, allowing for easier and more
natural movements of the forearm.

Further Improvements

Further improvements can be brought to the acquisition chain, starting with the actual hard-
ware, continuing with the firmware, up to the PC script that displays the data.

For the acquisition hardware, a significant upgrade would be the replacement of the Blue-
tooth Transceiver and the microcontroller with a SoC that performs both functions. This
modification would decrease the overall dimensions of the PCB, as well as increasing the per-
formance by eliminating the sample encoding technique presented in Chapter 3.

The firmware on the STM32 can be upgraded as well by using DMA transfers with pe-
ripherals. It is a technique that allows the CPU to perform both ADC sample acquisition and
encoding, while the DMA Controller performs Bluetooth transmission of the previous signal
sample. Both the processes would be performed in a pipeline-like stage.

Lastly, the Python script could be rewritten to use multiprocessing technique, as all modern
computers are equipped with multi-core processors. One core would perform the update of the
time plow while another core would perform signal reception and decoding.

Lastly, and the most useful feature that can be implemented, is the addition of classification
methods in order to extract the useful information from the raw EMG signals and transform
them into commands for a computer.
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Appendix A

Complete Electrical Schematic
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Appendix B

Microcontroller Firmware

1

2 #include "main.h"

3 #include "spi.h"

4 #include "usart.h"

5 #include "gpio.h"

6

7 void SystemClock_Config(void);

8

9 uint8_t ADC_Get_ID ();

10

11 uint8_t ADC_Get_Status ();

12

13 void ADC_Reset ();

14

15 void ADC_Init( uint8_t channel_number );

16

17 void SPI_COMM( uint8_t * tx_buffer , uint8_t * rx_buffer , uint8_t size);

18

19 void UART_TX( uint8_t *tx_buffer , uint8_t size);

20

21

22 int main(void)

23 {

24

25 /* USER CODE BEGIN 1 */

26

27 uint8_t active_channels = 8 ;

28 uint8_t index = 0;

29 uint8_t upper_half , lower_half;

30

31 uint8_t sample [] = {0x42 , 0x00 , 0x00 , 0x00 , 0x00};

32 uint8_t packet [] = {’0’, ’x’, ’0’, ’0’, ’0’,’\r’, ’\n’};

33

34 /* USER CODE END 1 */

35

36 /* MCU Configuration --------------------------------------------------------*/

37

38 /* Reset of all peripherals , Initializes the Flash interface and the Systick. */

39

40 LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG);

41 LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);

42

43 NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);

44

45 /* Initialize the System Clock with the requested settings */

46

47 SystemClock_Config ();

48

49 /* Initialize all configured peripherals */

50 MX_GPIO_Init ();

51 MX_SPI1_Init ();

52 MX_USART2_UART_Init ();

53
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54 /* USER CODE BEGIN 2 */

55

56 LL_SPI_Enable( SPI1); // Enable SPI1 Peripheral for communication with ADC

57 LL_USART_Enable( USART2); // Enable USART2 Peripheral for communication with Bluetooth

transceiver

58

59 ADC_Reset (); // Send the ADC Reset Command

60 LL_mDelay (5); // wait 5 ms for the ADC to initialise and settle.

61 ADC_Init( active_channels); // Initialize the ADC for 4 Channel conversion

62 LL_mDelay (5); // wait 5 ms for the ADC to initialise and settle.

63

64 GPIOA ->BRR = SPI1_CS_Pin; // CS Low to begin Transactions with ADC

65

66

67 /* USER CODE END 2 */

68

69

70

71 /* Infinite loop */

72

73 while (1)

74 {

75

76

77 /* USER CODE BEGIN 3 */

78

79 GPIOA ->BRR = SPI1_CS_Pin; // This time CS is held LOW to monitor MISO line.

80 // If a conversion is available , MISO line is pulled LOW

81

82 while( GPIOA ->IDR & LL_GPIO_PIN_6); // Wait here until MOSI line is pulled Low by

ADC

83

84 SPI_COMM( (uint8_t *) sample , (uint8_t *) sample , 5); // Get the Conversion result by

sending the Read command

85 sample [0] = 0x42; // Reinitialize the Read Command

86

87

88 packet [4] = (sample [4] & 0x07) + 49; // put an AND mask on bits to extract the

channel number.

89 // Add 48 to convert the number into the corresponding

character value.

90

91

92 // This part is doing the Sample Encoding

93 for(index = 0; index < 2; index ++) // Encode only the first 2 Most Significant

Bytes from the conversion result

94 {

95 upper_half = ( sample[index + 1] & 0xF0 ) / 16; // get the upper nibble from the

converted byte and shift it Right 4 positions

96 lower_half = sample[index + 1] & 0x0F; // get the lower nibble from the converted

byte , no shift needed here

97 if(upper_half < 10) // As the conversion is Hexadecimal

98 packet [2 * index] = upper_half + 48; // Getting the corresponding symbol for the

converted upper nibble is done by adding an offset

99 else

100 packet [2 * index] = upper_half + 55; // if the number is greater than 9, it means

hexadecimal characters are used , so the offset changes.

101

102 if(lower_half < 10) // same encoding goes for the lower nibble

103 packet [2 * index + 1] = lower_half + 48;

104 else

105 packet [2 * index + 1] = lower_half + 55;

106

107

108 }

109

110 UART_TX( (uint8_t *) packet , sizeof(packet)); // transmit the encoded sample through

UART

111

112 sample [1] = 0;

113 sample [2] = 0;

114 sample [3] = 0;

115 sample [4] = 0;

116

117 }

118 /* USER CODE END 3 */
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119 }

120

121 /**

122 * @brief System Clock Configuration

123 * @retval None

124 */

125 void SystemClock_Config(void)

126 {

127 LL_FLASH_SetLatency(LL_FLASH_LATENCY_1);

128 while(LL_FLASH_GetLatency ()!= LL_FLASH_LATENCY_1)

129 {

130 }

131 LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);

132 LL_RCC_HSI_Enable ();

133

134 /* Wait till HSI is ready */

135 while(LL_RCC_HSI_IsReady () != 1)

136 {

137

138 }

139 LL_RCC_HSI_SetCalibTrimming (16);

140 LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI , LL_RCC_PLLM_DIV_1 , 8, LL_RCC_PLLR_DIV_2);

141 LL_RCC_PLL_EnableDomain_SYS ();

142 LL_RCC_PLL_Enable ();

143

144 /* Wait till PLL is ready */

145 while(LL_RCC_PLL_IsReady () != 1)

146 {

147

148 }

149 LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);

150

151 /* Wait till System clock is ready */

152 while(LL_RCC_GetSysClkSource () != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)

153 {

154

155 }

156 LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);

157 LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);

158 LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);

159

160 LL_Init1msTick (32000000);

161

162 LL_SetSystemCoreClock (32000000);

163 LL_RCC_SetUSARTClockSource(LL_RCC_USART2_CLKSOURCE_PCLK1);

164 }

165

166 /* USER CODE BEGIN 4 */

167

168 uint8_t ADC_Get_ID () // A simple subroutine that tests the communication with the

ADC

169 {

170 uint8_t comms[] = {0x45 , 0x00}; // This is the "read ID" command

171

172 SPI_COMM( (uint8_t *) comms , (uint8_t *) comms , 2); // Send the command

173 return comms [1]; // return the ID byte

174

175 }

176

177 uint8_t ADC_Get_Status () // A subroutine used to return the contents of Status

Register

178 {

179 uint8_t comms[] = {0x40 , 0x00};

180

181 SPI_COMM( (uint8_t *) comms , (uint8_t *) comms , 2);

182 return comms [1];

183

184 }

185

186 void ADC_Reset () // A simple subroutine in order to reset the ADC , by writing at

least 64 bits of 1 on DIN

187 {

188 uint8_t dummy [10] = { 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF };

189 uint8_t empty [10];

190

191 SPI_COMM( (uint8_t *) dummy , (uint8_t *) empty , sizeof(dummy) );
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192

193 }

194

195 void ADC_Init( uint8_t channel_number ) // Configuration Subroutine

196 {

197

198 uint8_t i = 0; // iterator for the number of channels

199 uint8_t buffer [3]; // this vector will hold the configuration bytes

200 uint8_t dummy [4]; // this vector is used as a reception end for SPI routine

201

202

203 // channel configuration bytes , depending on the number of channels selected

204 uint8_t channels [24] = { 0b00001001 , 0b10000000 , 0b00010011 ,

205 0b00001010 , 0b10000000 , 0b01010011 ,

206 0b00001011 , 0b10000000 , 0b10010011 ,

207 0b00001100 , 0b10000000 , 0b11010011 ,

208 0b00001101 , 0b10000001 , 0b00010011 ,

209 0b00001110 , 0b10000001 , 0b01010011 ,

210 0b00001111 , 0b10000001 , 0b10010011 ,

211 0b00010000 , 0b10000001 , 0b11010011 };

212

213

214

215 uint8_t config_0 [3] = { 0b00011001 , 0b00000000 , 0b00010000 }; // unipolar supply for

the analog channels , gain of 1.

216 uint8_t filter_0 [4] = { 0b00100001 , 0b01000000 , 0b00000000 , 0b00000000 }; // Filtering

at mininum to ensure maximum sampling rate

217 uint8_t adc_control [3] = { 0b00000001 , 0b00000101 , 0b11000000 }; // Internal

Reference , Full Power , output status reg with each conversion

218

219

220

221 for(i = 0; i < channel_number; i++) // send the channel configuration bytes ,

depending on the number of active channels

222 {

223 buffer [0] = channels[ 3 * i + 0];

224 buffer [1] = channels[ 3 * i + 1];

225 buffer [2] = channels[ 3 * i + 2];

226 SPI_COMM( (uint8_t *) buffer , (uint8_t *) dummy , sizeof(buffer));

227 }

228

229 // send the other configuration bytes

230

231 SPI_COMM( (uint8_t *) config_0 , (uint8_t *) dummy , sizeof(config_0));

232 SPI_COMM( (uint8_t *) filter_0 , (uint8_t *) dummy , sizeof(filter_0));

233 SPI_COMM( (uint8_t *) adc_control , (uint8_t *) dummy , sizeof(adc_control));

234

235

236 }

237

238 void SPI_COMM( uint8_t * tx_buffer , uint8_t * rx_buffer , uint8_t size)

239 {

240 int i = 0;

241

242 GPIOA ->BRR = SPI1_CS_Pin; // CS Low to begin Transaction

243

244 for(i = 0; i < size; i++)

245 {

246

247 LL_SPI_TransmitData8( SPI1 , *( tx_buffer + i)); // place the data in the buffer

248 while( LL_SPI_IsActiveFlag_BSY( SPI1)); // wait until transmission complete

249 *( rx_buffer+i) = LL_SPI_ReceiveData8( SPI1); // simultaneously with transmission ,

read the input data

250 }

251

252 GPIOA ->BSRR = SPI1_CS_Pin; // CS High to end transaction

253 }

254

255 void UART_TX( uint8_t *tx_buffer , uint8_t size)

256 {

257 int i = 0;

258

259 for(i = 0; i < size; i++)

260 {

261 LL_USART_TransmitData8( USART2 , *( tx_buffer + i)); // place the data in the buffer

262 while( !LL_USART_IsActiveFlag_TC( USART2)); // wait until transmission is complete
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263 }

264 }

265

266

267 /* USER CODE END 4 */

268

269 /**

270 * @brief This function is executed in case of error occurrence.

271 * @retval None

272 */

273 void Error_Handler(void)

274 {

275 /* USER CODE BEGIN Error_Handler_Debug */

276 /* User can add his own implementation to report the HAL error return state */

277 __disable_irq ();

278 while (1)

279 {

280 }

281 /* USER CODE END Error_Handler_Debug */

282 }

283

284 #ifdef USE_FULL_ASSERT

285 /**

286 * @brief Reports the name of the source file and the source line number

287 * where the assert_param error has occurred.

288 * @param file: pointer to the source file name

289 * @param line: assert_param error line source number

290 * @retval None

291 */

292 void assert_failed(uint8_t *file , uint32_t line)

293 {

294 /* USER CODE BEGIN 6 */

295 /* User can add his own implementation to report the file name and line number ,

296 ex: printf (" Wrong parameters value: file %s on line %d\r\n", file , line) */

297 /* USER CODE END 6 */

298 }

299 #endif /* USE_FULL_ASSERT */

300

301 /* *********************** (C) COPYRIGHT STMicroelectronics ***** END OF FILE ****/
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Multi-Channel Acquisition Script

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import serial

4 import time

5

6 #-----------------------------------------------------------------------------

7 # Acquisition Module Software Instance

8 #-----------------------------------------------------------------------------

9

10 stm32 = serial.Serial( port = "COM6", #

select communications port;

11 baudrate = 921600 , # baud

Rate;

12 bytesize = 8, # byte

size;

13 timeout = 2, #

timeout in seconds;

14 stopbits = serial.STOPBITS_ONE ) # one

stop bit;

15

16 stm32.set_buffer_size( rx_size = 16384, tx_size = 16384 ) # some

large enough buffers for our acquisition;

17 # for

a max of 8 channels simultaneously activated

18 # and

for a sampling freq. of 500Sa/s/channel

19 #

about 4000 samples of signal will arrive ,

20 # each

sample containing 6 bytes.

21 # 4

bytes for the sample , 1 byte for the channel number , one for ’\n’.

22

23 print( "Acquisition Module Paired" )

24 print( "Time for some data exchange" )

25

26 #-----------------------------------------------------------------------------

27 # Subroutines Space

28 #-----------------------------------------------------------------------------

29 # Acquisition Subroutine - it receives the number of channels and buffer size1

30 #-----------------------------------------------------------------------------

31

32 def acquire( channel_number , max_buffer_size ): # the

number of active channels and the size of the buffer must be known;

33

34 max_16b_unipolar_value = 65536 # Only

16 bits out of 24 are useful data , the remaining LSB is noise;

35

36 ADC_V_Ref = 2.5 # The

ADC uses 2.5V reference;

37

38 sample_count = np.zeros( channel_number , dtype = ’uint16 ’ ); #

Initialize the multi -channel counter variable;

39

40 max_samples = max_buffer_size * np.ones( channel_number ) # this

variable represents the maximum capacity for each channel;

41

42 buffer_dimensions = tuple( [ channel_number , max_buffer_size ] ) #

Express the buffer dimensions as tuple for the next instruction;

43

44 channel_buffers = np.zeros( buffer_dimensions ) #

Define the channels buffers;

45

46 active_channel = 0; # This

variable indicates to which channel the sample belongs to;

47

48 error_count = 0; # In

case of failure , error count can be valuable information;

49

50

51 while( not np.array_equal( sample_count , max_samples ) ): # as

long as not all the channel buffers are full , acquire data;

52

53 try: # "Try

" statement is used to ignore any reception errors and continue acquisition
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54

55 if( stm32.in_waiting > 0 ): # if

there is any data in the buffer

56

57 serial_data = stm32.readline () # read

until ’\n’ character store it in program variable;

58

59 active_channel = serial_data[ len( serial_data ) - 2] - 49 # Get

the corresponding channel of the received sample;

60

61 if( sample_count[ active_channel ] < max_buffer_size ): # if

the max_buffer for a channel was not reached , continue acquisition on that channel;

62

63 channel_buffers[ active_channel ][ sample_count[active_channel ] ] = \

64 ( int( serial_data [0:2], 16) * 256 + int( serial_data

[2:4], 16) )/ max_16b_unipolar_value * ADC_V_Ref

65

66 #

convert to voltage values;

67

68 sample_count[ active_channel ] += 1; #

increment the count on that channel;

69

70 except:

71 error_count += 1; #

Increment the error count in case of failed reception

72

73 return channel_buffers

74

75 #-----------------------------------------------------------------------------

76 # MAIN PROGRAM

77 #-----------------------------------------------------------------------------

78 # interrogate for the number of channels first

79 #-----------------------------------------------------------------------------

80

81 #

82 window_size = 1000 # This

states how many samples are displayed on the screen for all channels;

83

84 sliding_window_size = int( window_size / 20 ) # This

variable defines how fast the scroll rate is;

85

86 print( "Choose the number of channels (from 2 to 8):", end=’ ’ ) # User

Input - the number of channels;

87

88 channel_number = int( input() )

89

90 signal = [ None ] * channel_number #

Define a signal vector for each channel;

91

92 line = [ None ] * channel_number # Line

is the variable that holds channels data samples;

93

94 plt.ion() # Set

Matplotlib non -blocking execution;

95

96 fig = plt.figure () #

Create the figure and the number of subplots;

97

98 grid_spec = fig.add_gridspec( channel_number , hspace = 0 ) # Add

grids for each channel plot;

99

100 ax = grid_spec.subplots( sharex = True , sharey = True ) # Axis

share settings for the plots;

101

102

103 if channel_number == 1: # In

case of a single channel , a single plot is needed

104 ls = list() # but

the code works on a list of plots , so a single

105 ls.append( ax ) #

element must be converted into a single element list ,

106 ax = ls #

which fixes a bug in the code when only one channel is selected;

107

108
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109 fig.suptitle( "Time Domain Signals" ) # Draw

the title of the figure;

110

111 for ch in range( channel_number ): #

First time initialize the signals for plotting;

112

113 signal[ ch ] = np.zeros( window_size ) #

Initialise signal buffers with zero;

114

115 window = range( window_size ) #

Define the range of samples for display;

116

117 for ch in range( channel_number ):

118

119 line[ ch ], = ax[ ch ].plot( window , signal[ ch ], "b-") #

Create one subplot for each channel;

120

121 ax[ ch ]. set_xlim( [ 0, window_size ] ) # Time

domain limits (expressed as number of samples);

122

123 ax[ ch ]. set_ylim( [ 0, 2.5 ] ) #

Vertical limits;

124

125 ax[ ch ].grid() # Add

Grids for easier reading;

126

127 ax[ ch ]. set_ylabel( " Ch " + str(ch + 1) + " [V]" ) #

Display the channel number for each suboplt;

128

129 ax[ channel_number - 1]. set_xlabel( " Number of Samples , 300 Sa/s " ) #

Informative subtitle for time Axis;

130

131 plt.show( block = False ) # for

Python IDLE plots to work , this instruction is added;

132

133 while True: #

Update the plots in an infinite Loop;

134

135 # start = time.time() # Used

only for speed measurement purposes;

136

137 buffer = acquire( channel_number , sliding_window_size )

138

139 # time_elapsed = time.time() - start # Used

only for speed measurement purposes;

140 # print(time_elapsed)

141

142 for ch in range(channel_number):

143 signal[ ch ] = np.append( signal[ ch ], buffer[ ch ]) # Add

the newly acquired samples

144

145 signal[ ch ] = signal[ ch ][ sliding_window_size: ] # And

remove the old ones;

146

147 line[ ch ]. set_ydata( signal[ ch ] ) # Set

the plot line data;

148

149 fig.canvas.draw_idle () #

Finally Update the plot;

150 fig.canvas.flush_events ()

151

152

153 #-----------------------------------------------------------------------------

154 # END OF CODE

155 #-----------------------------------------------------------------------------
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