Multi-Channel Acquisition Module for EMG Signals

Student: Andrei-Cătălin Dăescu

Faculty of Electronics, Telecommunications and Information Technology

July 6, 2021

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusion

Schedule

- 1 Overview
- 2 The EMG Signal
- 3 The Acquisition System
- 4 The Software
- 5 Experimental Setup
- 6 Experimental Results
- 7 Conclusions

 Overview
 The EMG Signal
 The Acquisition System on the Signal of the Acquisition System of the Signal of the Signal of the Acquisition System of the Signal of

Overview

Overview

Overview

0

Motivation

- Electromyography means of human-computer interaction
- Surface EMG Easy to implement
- 2 types of sensors tested
- Custom Acquisition Module vs Commercial Device

erview The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions

The EMG Signal

EMG Signal Properties

Overview

Typical Characteristics

- Random nature [1];
- Max peak-to-peak amplitude: 10mV [2];
- Bandwidth: [50 150] Hz;
- Minimum Sampling Rate: 250 Sa/s [2];
- Subjective [1];
- Noise Sensitive;

Types of EMG Sensors

- Invasive (not covered);
- Non-Invasive, based on:
 - Gel Electrodes:
 - Dry Electrodes;

verview The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusion

O 00 000000000 000 000 0000000 0000

The Acquisition System

The Acquisition Chain

It is based on:

Overview

- Dry EMG Sensors
- Acquisition Module
- Wireless Adapter
- PC Software

Figure: 1. The Complete Acquisition Chain

Dry EMG Sensors

Overview

OyMotion Gravity [3]:

- Metal Dry Electrode;
- Preamplifier Circuit Included;
- Detection Range: +/- 1.5mV;
- Gain: 1000;
- Signal Level: 0 3V;
- Signal Offset: 1.5V;
- Typical Bandwidth: 20 300Hz;
- Working DC Voltage: 3.3 5V;
- Working DC Curent: 0.5mA;

Figure: 2. Gravity EMG Sensor (Source: DFRobot).

The Acquisition Module

The Prototype:

- A/D Converter
- 2 Microcontroller
- 3 Transceiver

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions

OO OO OOO OOO OOO OOO OOO

The Acquisition Module

Overview

A/D Converter - AD7124-8 [4]

- Sigma Delta Architecture;
- Max 19200Sa/s:
- 24 bit Conversion (16 bit Used);
- Up to 8 Channels (4 used);
- Sequential Converter;
- Input CrossBar Multiplexer;
- Internal 2.5v Reference;
- 3.3V Digital I/O Operation;
- 0 2.5V Analog Input Range;
- SPI Mode 3.
- 1 MHz SPI Clock (For Lower Latency).

Figure: 3. The A/D Converter (Source: Analog Devices).

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions

OO OOO●OOO OOO OOO OOO

The Acquisition Module

Overview

Microcontroller - STM32 [5]

- 32 bit ARM Cortex M4;
- Optimized for Low Power;
- 256kB Flash/ 64kB RAM;
- 26 I/O, 5V tolerant;
- 3.3V Device;
- High Speed Internal (HSI) 32MHz Clock;

Figure: 4. The Microcontroller (CubeMX Utility View).

The Acquisition Module

Bluetooth Transceiver - HC-05 [6]

- Bluetooth 2.0 Technology;
- 3.5 5V Supply;
- Curent Draw: 35 40mA;
- Transparent Communication via UART;
- Configurable in AT Mode;
- Max UART Baud Rate: 921600bps;
- 8 Data Bits, 1 Stop Bit, No parity

Figure: 5. HC-05 Module (Source: components101.com).

Figure: 6. Sample Stream through UART.

The Adapter

Adapter consists of:

- Bluetooth Transceiver
- UART-USB Converter

Figure: 7. Adapter Module

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusion

OO OOOOOOO●O OOO OOO OOO

The Electrical Diagram

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions 0000000000 000 000 000 00000000 0000

The PCB

PCB Characteristics:

- Dimensions: 62 × 22 mm;
- FR4 Substrate,0.8mm Thickness;
- 2 oz Copper, 2 Layers;
- ENIG Copper Finish;

Figure: 10. OSHPark PCB

Figure: 9. 3D Model of Prototype

Figure: 11. Assembled Prototype

rerview The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions

The Software

The Software Experimental Setup Experimental Results 000

The Firmware

Overview

Firmware Characteristics:

- Embedded C;
- Low Level Framework used:
- 7.21 kB Flash with CMSIS;
- 1.53 kB BAM

Figure: 13. UART Sample Encoding

The PC Program

Overview

Figure: 14. Software Execution Flowchart

Figure: 15. Reception and Decoding Subroutine

verview The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions
0 00 00000000 000 000 0000000 0000

Experimental Setup

OpenBCI

Characteristics		
Device	OpenBCI Cyton [7]	Prototype
Biopotential type	EEG, EMG, ECG	EMG
No. of Chan- nels used	4	4
ADC Type	Sigma Delta	Sigma Delta
Precision (bits)	24	16
Conversion Type	Simultaneous	Sequential
Sample Rate (Sa/s)	250	360
Wireless	Yes	Yes
Easy to equip	No	Yes

Figure: 16. Prototype Setup

Figure: 17. OpenBCI Setup

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusions

OO OOOOOOOO OO OOO OOO

Hand Gestures

Figure: 18. Resting Hand

Figure: 29. Wrist Extension

Figure: 20. Wrist Flexion

Figure: 22. Fist

Figure: 23. Pronation

Figure: 24. Supination

Figure: 21. Open Hand

Overview The EMG Signal The Acquisition System The Software Experimental Setup **Experimental Results** Conclusions

Experimental Results

Time Domain Waveforms

Overview

Resting Hand

Figure: 25. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Time Scale: 2.5s

Noise Level: 17.7uVrms (x1000 Gain)

Figure: 26. Prototype Plot

Sampling Rate: 360Sa/s

Amplitude Scale: 0 - 2.5V

Time Domain Waveforms

Overview

Wrist Extension

Figure: 27. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Time Scale: 5s Noise Level: 17.7uVrms The state of the s

Figure: 28. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 – 2.5V

Time Scale: 2.5s Noise Level: 17.7uVrms (x1000 Gain)

The Acquisition System The Software Experimental Setup Experimental Results 00000000

Time Domain Waveforms

Overview

Wrist Flexion

Figure: 29. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Figure: 30. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 - 2.5V

Time Scale: 2.5s Noise Level: 17.7uVrms (x1000 Gain)

Student: Andrei-Cătălin Dăescu

The Software The Acquisition System Experimental Setup Experimental Results 00000000

Time Domain Waveforms

Overview

Open Hand

Figure: 31. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Figure: 32. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 - 2.5V

Time Scale: 2.5s

Noise Level: 17.7uVrms (x1000 Gain)

The EMG Signal The Acquisition System The Software Experimental Setup Experimental Results Conclusion

OO OOOOOOOO OOO OOO OOO

Time Domain Waveforms

Overview

Fist

Figure: 33. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Figure: 34. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 – 2.5V

Time Scale: 2.5s Noise Level: 17.7uVrms (x1000 Gain)

The Acquisition System The Software Experimental Setup Experimental Results 00000000

Time Domain Waveforms

Overview

Pronation

Figure: 35. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Figure: 36. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 - 2.5V

Time Scale: 2.5s Noise Level: 17.7uVrms (x1000 Gain)

Time Domain Waveforms

Overview

Supination

Figure: 37. Cyton Plot

Sampling Rate: 250Sa/s Amplitude Scale: +/- 400uV Time Scale: 5s

Noise Level: 17.7uVrms

Figure: 38. Prototype Plot

Sampling Rate: 360Sa/s Amplitude Scale: 0 – 2.5V

Time Scale: 2.5s

Noise Level: 17.7uVrms (x1000 Gain)

Conclusions •000

Conclusions

UPB

Conclusions

Overview

Project Conclusions

- Gestures are difficult to replicate;
- Sensor Positioning in Critical;
- Dry Sensors are comparable to Gelled Equivalent;

Contributions

- Designing and building the acquisition chain;
- Designing a wearable module;
- Comparing the types of sensors;

Further Improvements

- Replace MCU and Bluetooth with Wireless SoC;
- DMA communication on Acquisition Device;
- Multiprocessing in PC program;

References

Overview

- 1 Jeffrey R Cram and Glenn S Kasman. The basics of surface electromyography. to Surface Electromyography, 1998;
- 2 Ioana Bădițoiu. Electrofiziologie digitalizarea şi prelucrarea semnalelor EMG asociate. 2020;
- 3 https://www.dfrobot.com/product-1661.html, 2020;
- 4 https://www.mikroe.com/adc-6-click, 2019;
- 5 https://www.st.com/en/microcontrollers-microprocessors/stm32l432kc.html, 2020;
- 6 https://components101.com/wireless/hc-05-bluetooth-module, 2019;
- 7 https://docs.openbci.com/docs/Welcome.html, 2019.

Thank You for Attention! Questions?

