
University ”Politehnica” of Bucharest
Faculty of Electronics, Telecommunications and Information Technology

Self-organizing system using collective robots

Diploma thesis

Submitted in partial fulfillment of the requirements
for the degree of Engineer

in the domain of Electronics, Telecommunications and Information
Technology

study program Applied Electronics

Thesis Advisor(s) Student
Prof. Dr. Ing. Corneliu Burileanu
As. Univ. Drd. Ing. Ana Neacs,u

Teodora-Cătălina Vaman

July 2021

6/30/2021 https://etti.pub.ro/absolvire/vizualizeaza_.php

https://etti.pub.ro/absolvire/vizualizeaza_.php 1/1

Universitatea “Politehnica” din Bucureşti
Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei
Program de studiu ELA

Anexa 1

TEMA PROIECTULUI DE DIPLOMĂ

a studentului VAMAN F. Teodora-Cătălina , 442B-ELA

1. Titlul temei: Sistem de auto-organizare folosind roboți colaborativi

2. Descrierea temei și a contribuției personale a studentului (în afara părții de documentare):
Auto-organizarea este procesul prin care un sistem aflat initial intr-o starelipsita de ordine evolueaza prin interactiuni si
feedback pozitiv catre ostare de echilibru. Inspirat de coloniile de furnici si de bancurile de pestidin natura care reusesc sa
se auto aranjeze in forme diverse am decis cascopul proiectului sa fie implementarea unui sistem de roboti carecomunica
si se organizeaza singuri. Robotii folositi (KiloBots) folosesc vibromotoare pentre deplasare si și își transmit informațiile
intre ei prinintermediul undelor infraroșu. Pentru a facilita comunicarea, un controllereste montat deasupra roiului de
roboti, astfel toate operatiile, precumincarcarea unui program sau verificarea bateriei, se pot realiza asupragrupului intreg
in acelasi timp. Studentul va proiecta si testa un algoritmpentru a muta roiul de roboti din pozitia lor initiala catre o
formaprestabilita. Pentru a se organiza in forma robotii trebuie sa se deplasezepe o cale fara coliziuni, fara blocaje si fara
coordonare centralizata (fiecarerobot trebuie sa aiba acelasi program incarcat in memorie).Pentru a demonstra abilitatea
grupului de roboti sa se organizeze,utilizatorul va putea sa specifice orice forma isi doreste, algoritmul vaprelua forma si o
va trimite catre roboti. Dupa aceasta, robotii vor trebuisa comunice unii cu altii si sa isi stabileasca calea catre interiorul
formeidorite fara a se ciocni intre ei si fara a crea blocaje

3. Discipline necesare pt. proiect:
AMP, SDA, POO, MC

4. Data înregistrării temei: 2020-11-24 12:49:52

Conducător(i) lucrare,
As. drd. Ing. Ana-Antonia NEACȘU Student,

VAMAN F. Teodora-Cătălina

Prof. Corneliu Burileanu

Director departament,
Ș.L. dr. ing Bogdan FLOREA

Decan,
Prof. dr. ing. Mihnea UDREA

Cod Validare: eb71754cf3

Anexa 5

Declaratie de onestitate academic�

Prin prezenta declar c� lucrarea cu titlul "Sistem de auto-organizare folosind roboti colaborativi',

prezentat� în cadrul Facultä�i de Electronic�, Telecomunica�ii �i Tehnologia Informa�iei a Universit��ii

"Politehnica" din Bucuresti ca cerin�� par�ial� pentru obtinerea titlului de Inginer în domeniul Electronic�

�i Telecomunicatii, programul de studi Electronic� aplicat� este scrisä de mine si nu a mai fost prezentat�
niciodat� la o facultate sau institu�ie de înv���mânt superior din tar� sau str�inätate.

Declar c� toate sursele utilizate, inclusiv cele de pe Internet, sunt indicate în lucrare, ca referin�e

bibliografice. Fragmentele de text din alte surse, reproduse exact, chiar �i în traducere proprie din altä
limb�, sunt scrise între ghilimele �i fac referin�ä la surs�. Reformularea în cuvinte proprii a textelor scrise
de c�tre al_i autori face referint� la sursä. înteleg c� plagiatul constituie infrac�iune �i se sanctioneaz�

conform legilor în vigoare.

Declar c� toate rezultatele simulärilor, experimentelor �i mäsur�torilor pe care le prezint ca fiind

fäcute de mine, precum �i metodele prin care au fost obtinute, sunt reale �i provin din respectivele

simuläri, experimente �i m�surätori. înteleg c� falsificarea datelor �i rezultatelor constituie fraud� �i se
sanctioneaz� conform regulamentelor în vigoare.

Bucure_ti, 30.06.2021

Absolvent Teodora-Ct�lina VAMAN

(semnätura în original)

Statement of Academic Honesty

1 hereby declare that the thesis Self-organizing system using collective robots, submitted
to the Faculty of Electronics, Telecommunications and Information Technologies, University
POLITEHNICA of Bucharest, in partial fulfillment of the requirements for the degree of
Engineer in the domain Electronics and Telecommunications, study programApplied Electronics
is written by myself and was never before submitted to any faculty or higher learning institution
in Romania or any other country.

I declare that all information sources I used, including the ones I found on the Internet,
are properly cited in the thesis as bibliographical references. text fragments cited "as is" or

translated from other languages are written between quotes and are referenced to the source.
Reformulation using different words of a certain text is also properly referenced. I understand
that plagiarism constitutes an offence punishable by law.

I declare that all the results I present as coming from simulations or measurements T
performed, together with the procedures used to obtain them, are real and indeed come from
respective simulations or measurements. I understand that data faking is an offence punishable
according to the University regulations.

Bucharest, June 2021.
Student: Teodora-C�tälina Vaman

Table of Contents

List of figures . iii

List of tables . v

List of abbreviations . vi

1. Introduction . 1

1.1. Motivation . 1

1.2. Objectives . 2

1.3. State of the art . 2

2. Theoretical concepts . 7

2.1. Swarm Behaviour . 7

2.2. Kilobots . 9

2.2.1. Movement . 10

2.2.2. Communication . 10

2.3. Kilobot System . 11

2.3.1. Workspace organisation . 11

2.3.2. ATmega328p microcontroller . 12

2.3.3. Overhead Controller . 13

2.3.4. KiloGUI . 14

2.3.5. Programming Environment . 16

2.3.5.1. AVR-GCC compiler . 16

2.3.5.2. Kilolib . 16

2.3.6. CoppeliaSim . 20

2.3.6.1. Features . 20

2.3.6.2. Kilobot Model . 23

3. Algorithms . 26

3.1. Edge Following . 26

3.1.1. Orbiting with one stationary robot . 26

3.1.2. Orbiting with multiple stationary robots 27

3.2. Gradient Formation . 27

3.3. Shape Formation 1 . 30

3.3.1. Matrix Generator . 32

3.4. Shape Formation 2 . 33

3.4.1. Trilateration . 35

3.4.2. Ray-Casting Algorithm . 36

3.4.3. Ramer-Douglas–Peucker Algorithm . 37

4. Results and comparisons . 39

4.1. Results using the real Kilobots . 39

4.2. Results using the simulation . 41

5. Conclusion . 45

5.1. General Conclusions . 45

5.2. Personal Contributions . 45

5.3. Further developments . 46

References . 47

Anexa A. Code for Edge Following . 50

Anexa B. Code for Edge Detection using gradient 52

Anexa C. Code for shape formation algorithm 1 56

Anexa D. Code for shape formation algorithm 2 62

Anexa E. Code for Matrix Generation . 68

Anexa F. Code for Ramer-Douglas-Peucker Algorithm 71

ii

List of figures

1.1. Kilobots in the trail avoidance (stigmergy) condition [1] 3

1.2. Swarms of robots forming spots (left) and stripes (right) [2] 4

1.3. Overview of the platform and results of the experiments conducted with the
Kilobot Soft Robot.[3] . 5

1.4. Different configurations obtained with a Kilobot system [4] 6

2.1. Flock Simulation . 8

2.2. Kilobots Components [5] . 10

2.3. Image showing the reflection path of robot communication 11

2.4. Picture of the work station, including the overhead controller (A), the group of
10 kilobots (B), the control station (C) and the charger (D) 12

2.5. Picture of the overhead controller [6] . 13

2.6. Picture of KiloGUI app and the Calibration Menu [5] 15

2.7. Compilation Process . 17

2.8. CoppeliaSim IDE . 24

2.9. Kilobot Parts . 25

3.1. Flowchart for orbiting algorithm . 26

3.2. Kilobots engaged in orbiting behaviour . 27

3.3. Schematic representation of the experiments demonstrating that the bicoid gene
encodes the morphogen responsible for patterns in Drosophila 28

3.4. Flowchart of Gradient Algorithm . 29

3.5. Gradient formation with real Kilobits . 29

3.6. Gradient formation with 30 robots in CoppeliaSim simulation 29

3.7. Matrix Formation for a rectangle and a cross-like shape 31

3.8. Representation of robots occupying position in the shape 31

3.9. Two experiments for shape formation using real kilobots and CoppeliaSim . . . 32

3.10. The steps taken to modify a given picture . 33

3.11. Image showing the first 57 elements in the shape matrix 34

3.12. The steps of shape formation . 34

3.13. Robots demonstrating the shape formation algorithm by forming the letter L . . 35

3.14. Trialateration process . 36

3.15. Example of ray-casting of a polygon . 37

3.16. Thirty six robots forming the word ”KILO” . 37

3.17. The various results of Ramer-Douglas–Peucker algorithm 38

iii

https://drive.google.com/file/d/1d0l7SL8aflCWuYy1WeQVFEc1SJ6Nhn73/view?usp=sharing
https://drive.google.com/file/d/1pKGWYUv4g6DCYi92eA6ctnVNp591Y-q-/view?usp=sharing
https://drive.google.com/file/d/12HrF7bQIpR2Rj7jQgjrGGInmlmoW-fv1/view?usp=sharing

4.1. The results of four test in which the robots organize in a small rectangle using
the Matrix Algorithm . 39

4.2. The results of four test in which the robots organize in a small rectangle using
the Polygon Algorithm . 40

4.3. The results of the kilobots forming a rectangle in CoppeliaSim using the Matrix
Algorithm . 42

4.4. Fifteen robots in the process of forming a 150x150 rectanlge 43

4.6. Two experiments to illustrate the differences between the physics engines 43

iv

https://drive.google.com/file/d/1BGCDPJPo9mT1Q3wmEhaxw2XqTloQtESF/view?usp=sharing
https://drive.google.com/file/d/1BGCDPJPo9mT1Q3wmEhaxw2XqTloQtESF/view?usp=sharing
https://drive.google.com/file/d/1Ufqkmaqgu9AuCm8TtH82a_hFBDnuEYqs/view?usp=sharing
https://drive.google.com/file/d/1Ufqkmaqgu9AuCm8TtH82a_hFBDnuEYqs/view?usp=sharing
https://drive.google.com/file/d/1g7LdKHkiwlH5F8MA_JIqjlcLtJsg1Kcm/view?usp=sharing

List of tables

2.1. Technical specifications of the Kilobot . 9

2.2. Motor calibration values . 15

4.1. Results for Algorithm 1 simulation in ODE . 42

4.2. Results for Algorithm 1 simulation in Bullet 2.83 42

4.3. Results for Algorithm 2 simulation in Bullet 2.83 44

4.4. Results for Algorithm 2 simulation in ODE . 44

v

List of abbreviations

GPS = Global Positioning System
LED = Light-Emitting Diode
IR = Infrared
OHC = Over-Head Controller
ADC = Analog to Digital Converter
PWM = Pulse Width Modulation
RISC = Reduced Instruction Set Computer
TTL = Transistor–transistor logic
API = Application Programming Interface
ROS = Robotic Operating System
ODE = Open Dynamics Engine
IDE = Integrated Development Environment
ELF = Executable and Linkable File
RDP = Ramer–Douglas–Peucker
USB = Universal Serial Bus
ARK = Augmented Reality for Kilobots

vi

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

The world of robotics is a vast, interesting and very diverse one. Nowadays, robots can be
found in an increasingly long list of domains, ranging from household helping robots, such as a
smart vacuum cleaner that avoids obstacles and creates a map of the room in memory for an
efficient cleaning strategy, to the Perseverance Rover1 on its exploration mission 54.6 million
kilometers away from Earth. From this vast industry, another sub-domain emerged, the field
of self-organizing robots, the main purpose of which is to have a group of autonomous entities
working together towards a common goal, without external human intervention.

The inspiration came from the natural world were small individuals collaborating to
gather food, defend from predators, or build impressive structures are often found. A great
example can be seen when looking at bee colonies which are able to divide the workforce into
well defined categories, such as the builders who communicate with one another and raise
the beehive, or the foragers who search for food and bring information back to the swarm.
Observed from the outside, it almost seems as though the group is controlled by a mysterious
force that dictates all the rules and activities, a force titled the spirit of the hive by the poet
Maurice Maeterlinck in his 1927 novel ”The life of Bees”. We know now there is no external or
internal authority that commands the others, it is rather the effect of each individual making
the right decisions every time.

The purpose of this paper is to analyse algorithms that make use of this naturally
occurring swarm behaviour and implement them using a group of kilobots2. The focus will
be on algorithms that compel the group to form different kinds of two-dimensional shapes.
Firstly, we examine a method that makes use of the distances among neighbouring robots and
uses them as an indicator to determine whether or not the robot is correctly placed in the
shape. The second method implements a local coordinate system shared between the robots
who use it to create the desired shape. Finally, we will take the algorithms and test them by
using a simulator and a real group of robots.

1https://mars.nasa.gov/mars2020/

2https://kilobotics.com

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

After presenting the main aspects of swarm robotics, this paper aims to implement a system
that uses those exact principles. That being said, the main objectives are:

• Organizing the workspace:
In order to properly control the robots, a special arrangement is needed which takes into
account all of their proprieties. They need a smooth surface to facilitate their movement
and they need the controller to be placed at an appropriate distance so that every robot
in the group receives the information concurrently.

• Implementing and testing simple robot behaviours:
All complex algorithms share some basic fundamentals such as movement, communication
or decision making. Therefore it is vital to test those fundamentals separately in order to
properly check if everything is working accordingly and to correct them if otherwise.

• Implementing and testing shape formation algorithms:
To better demonstrate the collaborative effect and the interactions between kilobots two
complex algorithms are to be examined. Another objective is to experiment with the
robots using these algorithms and record the result.

• Comparing the results:
After conducting the experiments, the outcomes will be compared depending on their
speed and accuracy. The advantages and disadvantages will be presented at the end of
the paper.

1.3 State of the art

Even though the kilobots are a relatively new product, a good number of research papers
have already been published. The papers tackle all aspects of collective behaviour, from
coordinating to form different shapes to transporting objects or mimic aspects from the natural
world.

Firstly, a classical task for robot swarms is area coverage and exploration. Stigmergy is
a form of communication in which the individuals exchange information not directly but
through some chemical agents or actions. In the world of ants, communication is established
through different pheromones left behind by individuals as they move. The main types are
attractive pheromones that alert other group members of something valuable such as food and
repellent pheromones which may be used to notify others of an unprofitable foraging pathway
[7]. In the word of robotics, researchers came to the conclusion that this phenomenon can be
very useful in the exploration of unfamiliar territory because it helps robots spend less time
searching in an area already visited by others. Therefore, they implemented different ways to
simulate the chemical pheromones. Stigmergy is also useful as a control mechanism because
the robots need little memory or processing power in order to operate in the environment
because they only need to analyse the chemicals surrounding them. Digital pheromones can
be achieved in different ways: as points on a map shared by all members in the swarm, by
using other robots as reference points, using augmented reality to track kilobots in a virtual
environment (a project called ARK)[8] or making use of the light sensor mounted on the
robots and utilizing projections of light as guidance [9]. An interesting project consisted of
designing a unique working space for the robots, called ”Kilogrid” [10], composed out of
a grid of computing nodes that provide a bidirectional channel between the robots and a

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Kilobots in the trail avoidance (stigmergy) condition [1]

programming station, which can be used to implement foraging algorithms. A research paper
published in 2019 by the Department of Engineering Mathematics from the University of
Bristol titled ”Testing the limits of pheromone stigmergy in high-density robot swarms”[1]
focused extensively on this topic and conducted a compelling experiment. They used a swarm
composed out of 324 kilobots, placed inside a 3 x 2 arena and programmed them with a simple
final state machine: either engage in a random walk-type movement or if detecting pheromones
start an avoidance behaviour. The random walk was implemented by generating a random
number which dictates the direction of movement. The avoidance behavior compels the robot
to turn either left or right for 0.5 seconds then move forward for 1 second if a pheromone is
detected. For identifying the robot position and simulating the pheromones image processing
in Matlab 2017b was used. A projector placed over the area creates a dynamic environment by
projecting blue light circles onto the pheromone locations. The set-up used in this experiment
can also be seen in figure 1.1. The study investigated and recorded the area occupied by
groups of kilobots which double in size (ranging from 2 to 400 robots) using classical search
algorithms and stigmergic strategies. The conclusion reached was that for normal groups the
differences were almost unnoticeable, however, when working with high-density robot swarms
more sophisticated exploration algorithms may not bring more advantages than simply using
random walk. However, implementing the pheromone trail avoidance algorithm showed an
improvement and proved it may be a key factor in other terrain mapping applications.

Secondly, there are a great number of self emerging patterns in nature, such as animal
skin or slime mold patterns which can be modeled by reaction diffusion systems. A study
issued by the Institute for Perception, Action and Behaviour from the University of Edinburgh
and Edinburgh Centre for Robotics [2] took a greater interest in these so-called Turing
Patterns and used a robot system to imitate this phenomenon. Introduced by Alan Turing in
his paper titled ”The Chemical Basis of Morphogenesis” [11], the Turing Patterns describe
the way patterns such as spots or stripes appear spontaneously from a uniform and stable
state. The reaction diffusion system uses two agents: an activator and an inhibitor with
different diffusion coefficients, and it measures the changes in concentration in the participating
elements, taking into account the interactions amongst them and the diffusion. The patterns
will emerge if the inhibitor is disappearing faster than the activator. The paper considered

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Swarms of robots forming spots (left) and stripes (right) [2]

two approaches, a stationary reaction diffusion system, where the robots were arranged in a
grid and the concentration value affected the LED light and a non-stationary one, in which
the concentration also affected their movement. In figure 1.2 one can observe the experiment
conducted in that research paper. A simulation of 500 agents was used to display the formation
of spot patterns, and a smaller swarm, of only 300 agents, but using a higher diffusivity
constant, led to the emergence of strip like patterns. Although the agents modify their values
over time, it was observed that the spot pattern deviates very little, compared to the stripes,
which are less stable and require the agents to be more tightly clustered, for a longer period of
time. These models are the stepping stone for many useful applications. Only by modifying
the system parameters it is possible to have the swarm create any model or pattern, such as a
triangle, quadangle or hexagon [12], and also switch between patterns after a specified amount
of time. Moreover, using the concentration value and the way it diffuses over time, specific
roles can be given to each individual, and even more complex algorithms can be developed.

Thirdly, a vital element in the robotics industry is the interconnectivity between all
branches and fields. Keeping this in mind, swarm robotics, although interesting on its own,
when used in conjunction with other domains can lead to the creation of more unique and
fascinating projects. One such project, titled ”A Soft-Bodied Modular Reconfigurable Robotic
System Composed of Interconnected Kilobots”, was presented in 2019 at the International
Symposium on Multi-Robot and Multi-Agent Systems and featured a new concept that merges
the notion of swarm robotics with the one of soft robotics [3]. Soft robotics is a research field
most active in the last decade, which focuses on the study of biologically inspired machines
constructed out of flexible and easily deformable materials, such as elastomers, gels or fluids.
They present abilities not found in common rigid robots, for instance squeezing through
a narrow opening, growing in dimensions or adapting their shape to fit the environmental
conditions. The new concept introduced by the research is a soft body system that is both
modular and reconfigurable, and able to change its size and shape to cope with unknown
situations [3]. The system is composed out of a group of kilobots organized in a grid whose
rows and columns, and therefore the number of modules used, can be manually changed before
each experiment. Each kilobot is equipped with a 3D printed holding structure from which
small springs of approximately 3.1 cm length can be attached in order to connect all the
modules in the grid. This is done for simplifying the control of the system and making it more
fault tolerant. Each module senses the distance from its neighbours and has predetermined
knowledge of the dimensions of the grid. After using this information to calculate its relative
position, the robot will start to estimate local deformation in the desired shape, which can be

4

CHAPTER 1. INTRODUCTION

Figure 1.3: Overview of the platform and results of the experiments conducted with the Kilobot
Soft Robot.[3]

a normal, extended, or shrunk lattice, and based on that adjust its direction of movement. A
series of experiments were conducted to test the Kilobot Soft Robot’s abilities, experiments
also shown in figure 1.3. In addition to the soft body systems, the experiments also worked
with ARK technology 3, for real time position tracker and feedback. The first experiment (b)
had the purpose to determine the relationship between the swarm’s size and the accuracy of
movement. The robot was tasked to move in a straight line, without external coordination,
while also trying to maintain the given shape. It was observed that as the number of
modules increases, also did the accuracy, the large number of individuals compensating for
the inaccuracies. The second experiment (c) tested the ability to follow a predefined curve
trajectory. The Kilobot Soft Robot did not store the path in memory, the robot located in the
front did however receive feedback from the ARK system, which indicated if the path headed
towards left or right. The last experiment examined the system’s performance to change
its shape from a normal to a shrunk grid while also moving in a straight line. The results
established the soft-bodied robot can alter and return to the original shape with success. The
Kilobot Soft Robot is an interesting study which combines two different robotics fields and
brings into question the advantages of soft links versus rigid connections.

Lastly, as mentioned before, in swarm robotics the conventional goal is to use local
interactions between robots and program them to self-organize and form different predefined
shapes [13]. All the knowledge about the shape and the desired positions is stored inside the
memory of the robot. Nonetheless, another approach exists. With colloidal particles in mind,
which convert energy from their environment such as light, heat, electric or magnetic fields into
propulsion forces, a team from the Department of Chemical Engineering from the University
of Michigan proposed a new concept in which the information about the desired outcome is
stored in the design of the system’s structure [4], more specifically, its the physical relations
between elements that control the behaviour. In order to imitate the moving particles, the
researchers used robots linked together into closed loops, limiting the robot’s movement to
only the 2 dimensional plane of the loop. These chains of robots can be programmed to morph
into different configurations by sequencing the motor’s orientation. There are six parameters
that affect the mechanical interactions and allow programmability and also ensure the system’s
scalability: the loop’s size, motor orientation in relation to the loop, relative strengths of each
motor’s propulsion force, relative motor sizes, the stochastic forces that act on the motors and
internal pressure within the loop.

Several experiments using Kilobots were conducted to demonstrate this morphing behaviour

3Augmented Reality for Kilobots [8]

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Different configurations obtained with a Kilobot system [4]

and in addition to that, demonstrate the system’s capability of dynamic behavior, proved by
the formation of a closing and opening griper, and complex static behaviour, determined by
the formation of the letter ”M” out of three different loops. The most simple design which
imitates a colloidal motor has the robots connected with wooden sticks, one between every two
kilobots and each kilobot programmed to propel forward. In this design, the motor can exist
in two states of orientation. When two robots linked together face opposite orientations, the
propulsion forces stretch the shape into a straight chain. This also called straightening force
can be used to create forms with straight segments such as triangles, rectangles, or hexagons.
Furthermore, one of the robots in the kilobot - hinge - kilobot formation can be replaced with
a wooden stick, meaning now the motors can exist in one more additional stage, a passive
stage. This has the effect of introducing a new curving force whose value affects the degree of
curvature of the edge and creates curved shapes. Another force used in creating the shapes is
called Notching Force and appears when neighbouring segments attempt to fold beyond what is
physically permissible, leading to foldings and zigzag features, such seen on arrow heads or stars.
Moreover, all these loops can also be linked together to form even more complex structures.
The griper was formed by joining two triangle shapes at one of the vertices. By switching the
motors between the passive and active states the effect of griping and tearing was obtained.
The letter ”M” was formed by fusing two straight segments with a loop obtained with the use of
notching force. Some examples of the shapes generated in this research can be seen in figure 1.4.

In conclusion, there are a plethora of studies interested in swarm robotics, self organization
and the way individuals manage to rise above their capabilities and perform complex tasks.
We have discussed several of them but we have only scratched the surface of this vast domain.
It is to be expected that as technology evolves, so will the prospects of using collective systems
in real life applications.

6

CHAPTER 2. THEORETICAL CONCEPTS

Chapter 2

Theoretical concepts

2.1 Swarm Behaviour

Hive intelligence is a scientific branch with roots deeply implanted into the way biological
systems, made out of seemingly unimportant entities, emerge in nature, evolve and behave
as if they were a much bigger organism, and perform tasks that were previously impossible
for them. For instance, we look at fish, bees or ants, small and vulnerable living things that
have a very small chance of survival if they live alone, but when organized in groups they
are able to gather food efficiently, build impressive and safe shelters to protect themselves
from external conditions and in some cases even attack predators much bigger than them.
This is also the case of robotic systems, formed of a large number of autonomous robots that
have a minimal set of capabilities such as limited communication or freedom of movement,
but which are highly useful in applications such as collaborative search [14], transportation
[15], unknown terrain exploration and mapping [16], pattern formation [17, 18] and many more.

This fascination for nature lead many researchers to try and recreate biological behaviors.
A well-known example is Craig Reynolds’s computer model for coordinated animal motion
created in 1986. In that model, boids (a generic name given for the entities in the system)
start from an apparently random movement and after a short period of time start to act in a
coordinated manner, comparable with a flock of birds. Each boid has a sense and a direction
and can also react to neighbours in close vicinity (a circle with a fixed radius). The flocking
action is generated from three steering behaviours that describe the way each individual
chooses his direction, based on the position and velocities of nearby boids. These principles
are separation, in which the boid steers away from local neighbours in order to avoid collision,
cohesion, where the boid steers towards the average position of local flockmates and alignment,
where the boids steers towards the average heading of adjoined boids. A simulation of this
model compiled in C++ is presented in figure 2.1, where a flock also tries to avoid an obstacle
in the middle.

Eventually, a consensus about the principles of swarm intelligence was reached. In order
for a system to exhibit collective behaviour it must implement at leas two of the following
functions: coordination, cooperation, deliberation and collaboration [19].

Coordination can also be called organisation and refers to the spatio-temporal distribution
of individuals in the group. The bees swarms are a clear example of this, where the interaction

7

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.1: Flock Simulation

between individuals create synchronized (temporal organisation) and oriented (spatial
organisation) movement toward a specific goal. Another example can be found in the way
ants forage for food. They leave pheromone trails from the nest to the food source and
back in order to help other ants reach the same source and transport the food faster. These
pheromone networks can be seen as spatial organisation. In a similar case, in robotic swarms
we can observe this principle in the way robots use local communication to create their own
coordinate system.

Cooperation occurs when the group manages to complete a task that was impossible
for a single individual to achieve. The entities involved combine their efforts and strength
for the greater good of the colony. This can be seen in prey retrieval, when the individual is
too weak to transport the item, but with the help of others the task is accomplished. This
behaviour can be observed in many species, but the most obvious one are ants, especially the
Pheidologeton diversus. It was reported that, in this species, the ants engaged in cooperative
transport can lift weights at least ten times heavier than did solitary transporters [19]. Robots
can also display this behavior, for instance they work together to form an image or a pattern
or can also transport different kind of objects.

Deliberation ensues when the swarm has to make a decision. When faced with
multiple opportunities, the swarm must deliberate and collectively decide upon the best one.
Particularly, the honeybees decide to gather pollen from the most productive flower parcels
due to the dance performed by forager bees returning from different parcels. Deliberation can
be found in path-finding or terrain exploring applications.

Collaboration is when individuals are working simultaneously but perform different
activities. Leaf-cutter ants are divided based on their size into four main castes that have
different jobs. The ants with a head size of approximately 1.6 millimeters are the only ones
that can cut leaves that are used to grow a special kind of mushroom, used as food for the
group. Ants with a head size smaller than 0.5 millimeters are in charge of cultivating that
mushroom [7]. Another example is the Indian paper wasp. They all look the same, however,
they do not perform the same task, some of them are charged with finding food, others are
builders for the nest and others work as protectors against invaders.

Most of the collective behaviours found in nature are a combination of this four main
functions. All the examples were taken from the world of social insects, however, even

8

CHAPTER 2. THEORETICAL CONCEPTS

though they are the main source of inspiration for many swarm intelligence algorithms, one
must not forget that other biological systems also manifest this sort of behaviours and meet
the aforementioned functions, systems such as colonies of bacteria or amoeba [20], capuchin
monkeys [21], fish schools [22] or even crowds of human beings [23]. Nevertheless, the
fundamental objective of swarm intelligence is to create a system that thinks and acts as a
bigger entity but is composed out of limited components.

2.2 Kilobots

A kilobot is a low-cost robot designed by the Self-Organizing Systems Research Group at
Harvard University in 2012 to help the researchers test collective algorithms on a large scale.
The name comes from the idea of having ”kilos” of robots working together for a common
goal.

Technically speaking, they are microbots with a 33 millimeter diameter, an ATmega 328p

microprocessor that allows them to run different programs, a rechargeable battery, an IR
transceiver for sensing and transmitting messages to other kilobots or to the controller, and
a movement system made out of two vibro motors. Their specifications are also presented in
table 2.1. Compared to other robots used in swarm robotics such as Swarmanoids [24], SAGA
robots [25], Colias robots [26] or Khepera robot [27], they do not move with considerable
speed, have little knowledge about their environment, and can only communicate with others
at a close range. However, the greatest advantage is the cost, since for a smaller price a greater
group can be purchased.

Processor ATmega328p (8 MHZ)

Memory
32KB Flash for user program and bootloader, 1KB EEPROM for
storing calibration data and other non-volatile values and 2KB SRAM

Battery Rechargeable Li-Ion 3.7V

Autonomy 3 - 10 hours continuously and up tp 3 months in sleep mode

Communication Infrared communication, up to 32kb/s and 1kbyte/s with 25 robots

Sensing IR and light intensity

Movement
2 vibration motors with 255 power levels, which allow for forward
movement at 1cm/s and rotation at 45deg/s

Light one RGB LED pointed upward

Software Kilobot Controller software for controling the robot

Programming C language with WinAVR compiler

Dimensions diameter: 33 mm, height 34 mm

Table 2.1: Technical specifications of the Kilobot

Figure 2.2 depicts a 3D model of the kilobot taken from the official site. The component
labeled 1 is the 3.7 Volt battery. Component 2 is the jumper used to turn ON and OFF the
robot. Part 3 is the two motors used for motion, part 4 is an RBG LED, which can be used
to signal different states of the robot, element 5 is the light sensor that can be utilized in
light-based algorithms. Component 6 is the serial output header that can be connected to the
overhead controller and used to send data to the computer for debugging purposes. Part 7 is a
direct programming socket for loading firmware to the microprocessor unit of the robot. Part
8 is a charging tab that can be remove if wanted. Element 9 is the infrared LED transmitter

9

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.2: Kilobots Components [5]

for sending IR signals and 10 is the infrared photo diode receiver, that receives messages from
other robots or from the controller.

2.2.1 Movement

The movement of the robots is based on the slip-stick phenomenon. Stick-slip can be described
as the alteration between two surfaces sticking one to another or sliding over each other. At
the contact surface between two objects, there is a friction force resisting the relative motion
between them. There are two types of friction: static and kinetic. Static friction is caused
by the molecular bonding that occurs when entities are in contact, whereas the kinetic one
arises because of the roughness of the surface which impedes the motion. The dynamic friction
coefficient is relatively constant, not depending on the velocity. The static coefficient, however,
increases with the passing of time (the longer the objects are in connection the higher the
coefficient will be). This is why the stick-slip phenomenon occurs. In order to set an object in
motion, a force greater than the static friction must act upon it, but considering the fact that the
static coefficient is bigger than the kinetic one when the object starts to transition to movement,
a sudden jump in velocity appears. The object we want to move is the kilobot and the force
acting on it is the force generated by the vibrating motors. The motors are placed centered on
the sides of the robot as seen in figure 2.2, therefore just using one motor leads the robot to turn
around his vertical axis in a direction depending on which motor was activated. If both motors
are switched on, the robot has a forward motion. The motors can be individually and manually
controlled and have 255 different power levels. This enables the kilobot to move approximately
1 cm/s and rotate approximately 45 ◦/s [28]. A big disadvantage to this movement system
is that there is no way to estimate change in position over time and thus, moving precisely
for long periods of time is difficult. Another limitation is the environments in which they can
operate. In order to defeat friction they need a smooth and flat surface, for instance a white
board.

2.2.2 Communication

In many collective behavior algorithms, robot-to-robot communication is of paramount
importance. Without the ability to sense one’s neighbours or measure the distances between
them there is no way to imitate the interactions amidst entities found in nature. Located in
the center of the kilobot and pointing directly downward are an IR transmitter and receiver.
This allows the robot to pick up signals equally from all directions. Moreover, both the receiver

10

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.3: Image showing the reflection path of robot communication

and transmitter are wide-angle, with an angle of 60◦ from the robot’s vertical axis [28]. As
seen in figure 2.3, the information sent by the robot is reflected on the working surface and
can be caught by any robot in the proximity. Messages are conveyed by pulsating the IR
LED in accordance with the standard line coding technique. Using this simple communication
principle, robots can communicate at rates of 30 kb/s with robots up to 10 cm away [28].

However, using the same channel for communication means that there is a big possibility
that at a given time more than one robot will want to transmit a message. A solution to
this problem is using the standard carrier sense multiple access with collision avoidance
(CSMA/CA) method. The main principle of carrier sense multiple access is the requirement
that each robot first checks the state of the medium before sending a message. If the state
is idle, then the robot can begin to send data into the channel, otherwise, it waits until the
channel becomes idle. However, due to propagation delay, there is a chance that two or more
robots begin the communication at the same time. For example, robot 1 checks the state of the
channel, finds it idle, and stars transmitting. However, the transmission is not instantaneously,
and by the time the first bit of data is sent another robot found the medium idle and started to
send data. This is called a collision between two nodes. A method through which CSMA/CA
avoids collision is interframe space. That means that when a robot detects the medium to be
idle it does not begin sending data immediately, but waits a period of time (interframe space
or IFS). After this interval, the robot inspects the medium again and only if it is still idle it
starts the communication.

During communication, the receiving robot also measures the intensity of the IR light.
Infrared light is electromagnetic radiation with wavelength between 0.74 — 103 micrometers
and a frequency between 300 GHz – 430 THz. Its intensity also depends on the distance:
the farther away the transmitter is from the receiver, the more the intensity of the light will
decrease. This indicates that by storing a table that links lengths to intensity of infrared
radiation in memory the robots can be calibrated to estimate the distance from one another.
In reality, the intensity of light can also be affected by noise or measuring errors which manifest
in differences of about 2 millimeters between the estimated distance and the real one.

2.3 Kilobot System

2.3.1 Workspace organisation

The system used for this thesis is composed out of 10 Kilobots, an overhead controller,
the charger for the robots and the programming environment presented in figure 2.4. The
controller is placed at approximately 30 cm above the group of kilobots and connected to the

11

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.4: Picture of the work station, including the overhead controller (A), the group of 10
kilobots (B), the control station (C) and the charger (D)

computer through a USB to RS-232 adapter. The kilobots are placed on a 85 cm x 65 cm
white erase board because of its smooth surface and reflective proprieties which will help with
the robot movement. As stated before, the robots communicate using infrared light, and the
communication is dependent on the distance between the transmitter and the receiver. As the
distance increases, the power of the signal decreases. Therefore, because the kilobots need
only an impulse to recognize the message received, it is recommended to use an external light
source, so that the power of the signal exceeds the threshold of the photodiode. In order to
receive as much light as possible they are placed near a window and during night time one can
also turn on the lamp.

Each robot has a 3.4V 160 mAh lithium-ion battery. This battery can power the robot
for 3 and up to 24 hours of functioning, depending on the activity level. When the battery is
depleted it can be recharged by connecting the legs of the robot to a positive 6V voltage and
the charging tab to the ground. To simplify the process and to minimize the risk of inverting
the polarity and damaging the robots a new charger was designed [6]. Made with a 12V Voltage
Adapter and an adjustable step-down power supply module, it maintains a stable 6V voltage
and offers short circuit protection; the 3D printed parts offer stability and allow up to ten
kilobots to be charged simultaneously from 0 to 100% battery level in about 4 hours.

2.3.2 ATmega328p microcontroller

ATmega328p is a microcontroller chip part of the megaAVR family created by Atmel. It is a
high-performance integrated circuit based on AVR enhanced RISC architecture. As features,
the microcontroller has a 32KB Flash memory with read-while-write ability, 1KB of EEPROM
memory, 2KB SRAM, 28 pins, 32 general purpose working registers, internal and external
interrupts and a maximum working frequency of 20Mhz [29]. Moreover, the chip has an
instruction set of 131 instructions, and by executing them in a single clock cycle, the device is
able to achieve up to 20 MIPS (million instructions per second) throughput at 20MHz. The
most useful elements of a microcontroller must be the peripheral features with the help of which
various different applications can be implemented. Some of them are [29]:

• Two 8-bit Timers with separate prescaler and compare mode

• One 16-bit Timer with prescaler, compare and capture mode

• Six PWM Channels

12

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.5: Picture of the overhead controller [6]

• One 8-channel 10-bit Analog to Digital Converter

• UART, SPI and I2P Serial Interfaces

• Programmable Watchdog Timer with separate On-chip Oscillator

As a special aspect, the ATmega328p can be placed in five different sleep modes in order
to save energy: Idle, ADC Noise Reduction, Power-save, Standby and Extended Standby. At
1MHz, in active mode the device consumes 0.2mA and 0.1µA in power-down mode. Also, it can
operate between -40 and 80 Celsius degrees and at a voltage between 1.8 and 5.5V. ATmega328p
is used both on the kilobots and the overhead controller as the central unit of processing.

2.3.3 Overhead Controller

In regards to updating or programming the kilobots, using a cable for each bot is not only
time consuming, but also very ineffective, especially for large swarms. Therefore, the robots
can be programmed via the IR communication channel. This is done using a controller that
converts the information received from a computer through a USB - RS232 cable into IR
instructions. Placing the over head controller at a height of about one meter ensures the fact
that all robots inside a one meter diameter circle, beneath the controller will be able to receive
commands. The OHC will program all the robots in the group at a fixed rate, independent
of the number of robots. To interface the over head controller with the computer, a graphical
user interface app, provided by the Kilobotics team, called KiloGUI is used. Although the
team that markets the robots also offers the controller, it was considered not to be an essential
purchase. Instead, the controller used for this project was designed and manufactured by a
recent graduate of the Faculty of Electronics, Telecommunications and Information Technology
[6]. The components used for the Overhead Controller are: the ATmega328p microcontroller,
the MAX232 integrated circuit, for converting the signals used by the RS232 standard into
TTL logic levels used by the microcontroller, L78S05CV voltage regulator from 12V to 5V, a
reset button, a LED, used for checking if everything is working accordingly and a header that
can be used for serial transmission. For sending the commands to the robots, the message must
be converted to a binary sequence the will be sent to a board of infrared LEDs. The board has
eight LEDs that will turn on if the symbol received from the overhead controller has a value of
“1” and turn off for a value of “0”. Although one board is able to send messages on its own,
for a better coverage, six identical boards were assembled.

13

CHAPTER 2. THEORETICAL CONCEPTS

2.3.4 KiloGUI

KiloGUI is a free software component for using the overhead controller to upload new programs
on the robots and execute basic operations such as checking the voltage level, switching the
LED on and off, or placing the robots in sleep mode. To demonstrate the process we take
the simple case of making the robots blink red and blue consecutively. Firstly, we compile
our program, which results in a .hex file; we then choose it in the Program box. Secondly,
the robots must jump to their bootloader and be ready to receive new instructions. This is
done by clicking the Bootload button and waiting until the robots start blinking their LED
blue. The next step is to click Upload and wait for the program to be fully transmitted, the
moment in which the robot will start to blink green twice per second, meaning the operation
was successful. To run the program we just click the Run button and watch the robots blink
red and blue. All the functionalities of KiloGUI are:

1. FTDI/Serial : For selecting the interface to connect the overhead controller to the PC,
for our experiments we used Serial Communication.

2. Program - [select file] : For choosing the “.hex” file (produced after compiling a C
program for the kilobots) that will be sent to the robots.

3. Bootload : As explained before, this command makes the robots jump to their bootloader
in order to receive new instructions. Clicked once leads the robots to turn their LED blue
almost immediately, clicked twice and the robots start blinking, indicating they are ready
for the upload step.

4. Upload : Send a new program to robots in bootloader mode. While they receive the
commands, the robots alternate between a green and a blue light. Once the upload is
finished, the led will blink green indicating the success of the operation, otherwise, it will
maintain a blue light.

5. Reset : Causes the robots to jump to the starting point of the program, reset all flags
and states and remain idle until further instructions.

6. Run : Begin the execution of user program.

7. Pause : Places the robots in a idle state, but preserves the variables of the program so
that when they run again the program can resume from where it was interrupted.

8. Sleep : Switches the robots to a low-power state called sleep mode. The led will flash
white once every 8 seconds. Note that the robots must be placed in sleep or pause mode
for them to charge.

9. Voltage : Helps to check the level of voltage by turning the LED blue or green if the
battery is fully charged and yellow or red if the battery needs to recharge. It is to be
taken into consideration that this mode only displays an approximation. It was observed
through experiments that if the robot has a low battery it starts to behave poorly and it
affects its decision-making abilities, this being a better indication that the robot should
be recharged.

10. LedToggle : Toggle the LEDs of the controller, its usage is for verifying that the
connection between the PC and controller is working accordingly.

11. Serial Input : By connecting the kilobot with a 2-wire serial cable to the controller it
is possible to display messages from the robot. It is helpful in debugging.

14

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.6: Picture of KiloGUI app and the Calibration Menu [5]

12. Calibration : Because not all robots are manufactured the same and some differences
may appear and also because the working surfaces may vary from application to
application, the PWM value needed for controlling the motors cannot be the same for
all robots. That being the case, the robots can be independently calibrated using this
command. Furthermore, a unique identifier (UID) can be allocated to each robot for
better awareness of an individual in the swarm.

Calibration is extremely important for the movement to happen smoothly. Especially in the
forward motion, when both motors have to be activated at the same time, if one of them is not
as powerful, the tendency will be to move not in a straight line but rather in a circular manner.
Moreover, considering the different terrains on which the robots can operate, the same values
that allow a robot to move effortlessly on a surface will make it move almost chaotically or
even not at all on another one. To avoid that, the robots need fine-tuning. In EEPROM memory
there are four 8-bit values that describe the duty-cycle that can be used for the motors when
the robot is moving: left, right, straight-left and straight-right. These values can be calibrated
using KiloGUI. In table 2.2 are presented the values we used in the experiments. We also gave
each robot an ID. One can observe the fact that the values have almost no correlation between
each other, they were chosen through testing and analyzing to see what fits best for every robot.

Unique ID Turn left Turn right Go straight

1 72 63 65 - 60
2 75 68 67 - 66
3 71 65 62 - 58
4 73 70 63 - 61
5 70 64 58 - 60
6 75 68 66 - 58
7 81 72 72 - 60
8 72 67 65 - 71
9 75 68 66 - 64
10 75 71 62 - 58

Table 2.2: Motor calibration values

15

CHAPTER 2. THEORETICAL CONCEPTS

2.3.5 Programming Environment

The kilobots are programmed using embedded C and for an easier control a special library,
provided by the same team that manufactured the robots is used, called Kilolib. A simple
way to start experimenting with the robots is using the Web-based Editor from the kilobotics
website. It uses the Amazon serves for compilation and Dropbox for storing the files, so anyone
with a Dropbox account can write and compile programs. It also comes with an example file
united.c with the basic loop and set up definitions. However, the web editor comes with a
few disadvantages such as dependence on a connection to internet, the compilation time or the
small programming window. It is not recommended for programming the kilobots on a regular
basis.

For this project, all the code was written using Visual Studio Code and compiled locally
using the avr-gcc compiler.

2.3.5.1 AVR-GCC compiler

In general, when we write code for different projects we do not take into consideration the type
of computer that we use. This is because we work with high level programming languages,
such as C, C++ or Java, that are more or less independent from the instruction set the machine
on which the program was written uses. However, when executing the program or uploading
it to a microcontroller all those details become important. Therefore, we need a compiler to
convert the high level code into instructions the machine can understand. AVR-GCC does
exactly that, it takes code written in C language and creates a binary source file that can be
uploaded into an AVR microcontroller.

The compilation process can be divided into four parts: Preprocessing, Compilation,
Assemble and Linking. Pre-processing is when all the headers and libraries (#include) are
added to the source code and also, when all the macros (#define) are expanded. The compiler
then takes the file and turns it into assembly code for a specific processor that will also be later
transformed into machine code in the Assemble part. Finally, the linker will link the object
code resulting from the previous steps with the library code to produce an executable file. To
upload the file to a microcontroller, an additional step is needed: converting the ELF program
(Executable and Linkable File) into a hex file. The upload can be done using avrdude (AVR
Downloader Uploader), an easy to use program for reading or writing all chip memory types,
like EEPROM or flash, of Atmel’s AVR microcontrollers. For this project we encapsulated the
compilation process into a makefile and we used KiloGui to send the resulting file to the robots.
A diagram for the compilation process is also presented in 2.7.

2.3.5.2 Kilolib

Kilolib is an essential component for programming the robots. It is an open-source C library,
also created by the kilobotics team, that facilitates robot control by encapsulating all operations
that directly access the microcontroller’s registers and resources into separate functions. This is
a tremendous help for the user, for it is no longer needed to understand low-level code to start
programming and, also, the resulting project will be much easier to understand. Documentation
where all the functions and their usage is presented is also available online on the kilobotics

16

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.7: Compilation Process

website 1. The library has fourteen functions, nine variables and two data structures presented
as follows:
The functions:

• void delay (uint16 t ms) :
Pauses the program for a certain period of time. As an argument, it receives a 16-bit
unsigned integer value that represents the number of milliseconds in which the program
is paused. During this time, the processor cannot complete other tasks, therefore, instead
of using the delay function it is better to use timers (kilo ticks) .

• uint8 t estimate distance(const distance measurement t * d) :
Returns the distance in millimeters based on the strength of the received message. The
only parameter is a pointer to an object of type distance measurement t in which
signal strength measurements taken during message reception are saved. Using a distance
calibration table, stored internally on the EEPROM memory of the kilobots, the function
estimates the distance between itself and the robot that sent the message.

• uint8 t rand hard() ; uint8 t rand soft(); void rand seed(uint8 t seed)

All three of these functions can be used to generate a random 8-bit number. rand hard()

is a hardware number generator. The microcontroller of the robot has a circuit inside
called an analog-to-digital converter or ADC. The function takes the robot’s own battery
voltage level, uses it as input for the ADC, and extracts a seemingly random number
from the least significant bit by applying the Von Neumann’s fair-coin algorithm. The
algorithm is based on tosing a coin two times. If it lands on head (associated with the
binary value of 1) and then tails (binary value of 0) the output will be 1. If it lands on tails
and then heads the output will be 0. Otherwise, (heads-heads or tails-tails) the process
will be repeated. By its nature, this function is slow. For a faster solution rand soft()

can be used. This function uses rand seed() to generate a seed and implements a linear-
shift-register to generate a pseudo-random-number.

• int16 t get ambientlight()

This function returns a 10-bit measurement that represents the amount of ambient
light detected by the photodiode from the kilobot. Considering the fact that all the
measurements in the kilobot are performed using the same analog-to-digital converter
and the ADC requires a certain amount of time to change the source of the input, it can

1https://kilobotics.com/docs/index.html

17

CHAPTER 2. THEORETICAL CONCEPTS

happen to receive a message at the same time as the light is measured. Therefore it is
possible to get either an eronated distance estimation or a wrong light value.

• int16 t get voltage()

Reads the battery voltage level. Int16 t is a variable type that is always 16-bit,
regardless of the board used. However, this function (and get ambientlight() and
get temperature()) only use 10 bits to convey the information. Therefore, the resulting
values will be between 0 and 1023. When the ADC is unavailable the function will return
-1.

• int16 t get temperature()

The function returns a value between 0 and 1023 representing the temperature of the
kilobot. It is worth mentioning that the sensor only captures drastic changes in the
environment, in the order of 2 Celsius degrees or more.

• void set motors(uint8 t left, uint8 t right)

This function is used to set the power of the motors. Each motor can be controlled using
pulse width modulation or PWM. The function has two positive 8-bit integer values (0 –
255) that represent the duty-cycle of the PWM signal. Strictly speaking, setting a motor
to 0% duty cycle turns the motor is off and setting the motor at 100% duty cycles means
it will run at full power. To avoid having to guess the perfect values for which the robot
will have a good enough movement it is recommended to used as arguments the calibrated
values: kilo turn left, kilo turn right, kilo straight left and kilo straight right. Also, it is
important not to have motor running at full speed (100% duty cycle – 255) more than
2 seconds for it can lead to a permanent damage of the motor. The regular operation
values should be between 50 and 90, meaning a between a duty cycle of 20% and 35%.

• void spinup motors()

When a robot transitions from being stationary (0% duty cycle) to being mobile (more
than 10% duty cycle for one or both motors) it must defeat the static friction forces.
For that, the motors should by turned on for 15 milliseconds at full power using this
function. However, the same effect can be obtained by using the set motors() function
in association with delay(15).

• void set color (uint8 t color)

Used to set the output of the RBG led mounted on the kilobot. The function uses
the 8-bit value received as a parameter to set each color channel individually. We have
three colors: REG, GREEN, and BLUE with a 2-bit resolution, therefore, four-level of
brightness can be set: from 0 (led is turned off) to 3 (the led is at full-brightness). In
order to simplify the process of setting the bits manually, the library provides a special
data structure called RGB. For example, using RGB(0,0,0) will turn off the LEDs, and
RGB(3,0,0) will only switch on the red channel, causing the led to turn on a bright red.

• void kilo init()

This function initializes kilobot hardware and ensured everything works acordingly. It
deals with setting the hardware timers, calibrating the hardware oscillator, configuring
the ports, setting up the digital to analog converter, registering system interrupts and
initializing the messaging subsystem. It is advisable to call this function as early as
possible inside the main function of the program.

• void kilo start (void(*setup)(void), void(*loop)(void))

This is the function that begins the kilobot functionality. The kilobot’s program is divided
into two parts: the set-up that will run only once and the loop, where all the code will

18

CHAPTER 2. THEORETICAL CONCEPTS

run repeatedly. Kilo start receives as parameters the two functions. The loop event
can be interrupted by certain triggering events such as program start, resume, pause or
restart, sent by the overhead controller. The set-up must contain data initialisation or
anything that can be calculated only one time at the beginning of the program. A very
simple example of a code that can run on the kilobots is:

1 uint32_t counter;

2 void setup() {

3 counter = 0;

4 }

5

6 void loop() {

7 counter ++;

8 }

9

10 int main() {

11 kilo_init ();

12 kilo_start(setup , loop);

13 return 0;

14 }

• uint16 t message crc (const message t *msg)

Is used to compute the cyclic redundancy check or CRC before transmitting a message.
Cyclic redundancy check is a method of detecting errors in received data. This is done
by adding a redundant value to the message (a value with no use for the information
conveyed). The value is used to determine if the information is the same as the one
sent by the transmitter. The CRC algorithm is based on considering a string of bits as
polynomial representation (1011 = x3 + x1 +x0). The redundant value added at the and
of the message represents another polynomial that is divisible module 2 with a control
polynomial chosen before. This function must be called before any transmission otherwise
the received message will be considered corrupt and will be discarded.

In addition to these functions, the Kilolib library also provides several helpful variables.
Some of these variables are declared with the keyword extern and volatile. Extern ensures the
variables can be accessed anywhere in any of the files of the program with the condition that
those files contain a definition for the variable. Volatile is a special keyword that announces
the compiler that the value of the variable may change unexpectedly, at any time, even if the
program does not interact with it. The variables are:

• extern volatile uint32 t kilo ticks

This variable stores the internal Kilobot clock. It is a 32-bit positive integer that is
initialized to zero every time the robot’s program is reset and it is incremented once
every 30 milliseconds, roughly 32 times per second. This variable is preferable to be used
instead of the delay() function when programming certain events. Because this variable
depends on the internal clock and not on the program it is declared volatile.

• extern uint16 t kilo uid

This variable stores a 16-bit unsigned integer used as a unique identifier for the kilobots.
The identifier can be chosen during the calibration process. Considering the fact that we
have 16 bits, that means a maximum of 65535 robots can have unique IDs in a swarm.

• extern uint8 t kilo turn left

The variable stores an 8-bit unsigned integer which is the calibrated value for the duty-
cycle of the signal applied to the right motor needed for a good left turn.

• extern uint8 t kilo turn right

The variable stores an 8-bit unsigned integer which is the calibrated value for the duty-
cycle of the signal applied to the left motor needed for a good right turn.

19

CHAPTER 2. THEORETICAL CONCEPTS

• extern uint8 t kilo straight left

This variable stores an 8-bit unsigned integer which is the calibrated value for the duty-
cycle of the signal applied to the left motor needed for moving straight. This is different
from the turning variable because a lower power is needed for the forward movement.

• extern uint8 t kilo straight right

This variable stores an 8-bit unsigned integer which is the calibrated value for the duty-
cycle of the signal applied to the right motor needed for moving straight. In order
for the robot to move forward, the set motors function has to receive both this and
kilo straight left variable.

• struct message t

This is a structure used to store the message. It is composed out of the message payload,
which is a 8-bit integer array called data, the message type, which is a value between 0
and 127 for user messages and the message CRC, calculated using the message crc()

function.

The Kilolib library is indispensable when working with the robots. It provides an easy-
to-understand interface over the tasks that are rather abstruse for a high-level programmer, a
task such as sending and receiving a message or controlling the motors. Moreover, the library
is open source, posted on github, so that anyone can modify it, improve it, or just consult it to
better understand the functionalities.

2.3.6 CoppeliaSim

2.3.6.1 Features

Swarm behavior algorithms have much more impressive results if the number of robots is
greater, hence the origin of the name “kilobots”. But having “kilos” of robots working in
unison can be quite expensive. Furthermore, in the implementation stage, some unforeseen
errors can occur, for example, an imperfect algorithm can lead to the collision of two or more
robots and can cause irreparable damage, or using a poorly chosen variable for the motor
control can affect them permanently. In order to minimize the risk of this happening and to
test the algorithms on a larger scale, the best solution is to use a simulator.

There are many robotics simulators, some examples being Microsoft Robotics, Webots,
or Gazebo, but for this application, it was decided that the best one is CoppeliaSim, for
its great versatily and also because it already had the kilobot model created. CoppeliaSim,
previously known as V-REP, is a free simulator with many useful functionalities and tools
used by big companies in the industry, including Audi, Kuka, Amazon Robotics and Google
[30]. A big advantage is the fact that CoppeliaSim is cross-platform, meaning all content is
portable between all platforms (Linux, Windows, Mac), scalable, and easy to preserve. A
single portable file contains not only the scene, but all the models used and the control code.
Another advantage of this simulator is its highly customizable nature. Through the use of an
elaborate API, or Application Programming Interface, every aspect of a simulation can be
personalized. The program supports six different coding approaches, all compatible with each
other and which can be used separate or at the same time. Thus, one can control a model
or a scene using an embedded script (scripts written in the Lua programming language; a
very easy and flexible method compatible with all CoppeliaSim installations), an add-on or
the sandbox script (add-ons also written in Lua that can start automatically or be called
as functions), a plugin (plugins are used in combination with the first method, used for

20

https://github.com/acornejo/kilolib/blob/master/kilolib.h

CHAPTER 2. THEORETICAL CONCEPTS

adding special functionalities to the simulation, for example, a fast calculation capability that
if written inside a script would take to much time), a remote API client, a ROS node
(this method allows an external program, situated on a real robot or machine, to connect
to CoppeliaSim through the Robotic Operating System) or a node talking TCP/IP (allows
an external application to connect to CoppeliaSim through distinct communication means).
For our experiments we selected the first method, writing control scrips using the Lua language.

Lua language is a scripting language developed by the Pontifical Catholic University of
Rio de Janeiro in Brazil with the reputation of being one of the fastest scripting languages
according to several benchmarks [31]. Moreover, Lua has been largely used in the industry,
some notorious projects using the language for their embedded systems include Adobe’s
Photoshop Lightroom, the classical MMORPG Word of Warcraft and the popular game
Enigma. Its strength comes from combining procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics and also from its automatic
memory management with incremental garbage collection [31]. Another advantage is its well
detailed and clear online documentation where one can find not only information about the
language itself but also a large variety of tutorials. Considering the syntax, Lua is quite easy
to learn. It has a total of 20 defined keywords, multiple commands can be written on the same
line (if delimited by semicolon) and data types can be converted at any point in the script,
meaning Lua is dynamically typed. The data types accepted are: table, userdata, function,
thread, nil, boolean, string, and number; table being the only structured data type. Function
blocks are also delimited by keywords, they start with goto or then and end with end, elseif or
else. As a disadvantage, Lua works exclusively as an embedded part of a host application, not
having its own main program. In a few words, Lua is compact, fast in execution, easy to learn
and free to use, making it a perfect choice for the robotics simulator.

A simulation generated in CoppeliaSim has two indispensable parts: scene objects and
calculation modules. Scene objects are visible elements in the scene’s hierarchy and view used
for building the scene. It is recommended for the objects to be arranged in a tree-like hierarchy.
Calculation modules are what make the simulation “come to life” by directly operating on one
or several scene objects. The scene objects found in CoppeliaSim are:

• Shapes : Shapes are rigid meshes composed of triangular faces, used for body simulation
and visualization. They can be optimized for fast collision responses and can be grouped
together to form other objects.

• Joints : The equivalent of joints in reality are actuators. Joints are used to link scene
objects together with one or three degrees of freedom. The types supported by the
simulation are revolute joints (that act as a hinge), prismatic joints (for a linear sliding
movement), screws, and spherical joints (that offer three degrees of freedom). The joints
are used in conjunction with calculation modules such as the inverse kinematics mode or
the force mode.

• Proximty Sensors : Are used to calculate the minimum distance between the sensor
and an object situated in a field of view. The volume of the field of view can be modified
into a pyramid, a cone, a cylinder, or a disk.

• Vision Sensors : Are camera-type sensors, reacting to light, colors and depth and used
to extract information from the simulation scene. They also have an internal filtering and
image processing function.

21

CHAPTER 2. THEORETICAL CONCEPTS

• Force Sensors : Are objects that are usually placed as links between other shapes
and have the ability to record and react to the forces and torques applied to them. An
interesting aspect is the fact that these sensors can also break if the force exceeds a certain
threshold.

• Graphs : Used to record and display simulation data. Data can be visualized directly
(time graph) or combined with each other to display X/Y graph or 3D curves.

• Cameras : When associated with a viewpoint allows the user to look at the simulation
under different angles.

• Lights : Are objects that allow illumination of the simulation scene or individual objects.
They also directly influence cameras and vision sensors.

• Paths : Are a succession of points in the given space used to define trajectories and
complex movements. Paths can also include rotations and pauses in order to better
describe a robot’s course.

• Mills : Represent convex figures that can be customized and used to simulate surface
cutting operations such as laser cutting or milling.

• Dummies : A dummy is a point with orientation, mainly used as a reference frame.

Some of the objects presented have attributes that can be modified in order to let other
shapes or functions interact with them. The object can be set to be collidable, measurable,
detectable, rendable and viewable. But without the calculation modules we can only use the
program to display different shapes and objects, not to reproduce reality. The main calculation
modules are:

• Kinematics module : Is used for kinematics calculations, both inverse and forward
kinematics, for any type of mechanism. Kinematics, also called “the geometry of motion”,
is the branch of mechanics that describes the motion of points, objects and systems,
without reference to the causes of motion (forces).

• Dynamics module : Is responsible for the real-time interaction between rigid bodies and
the way objects operate inside the simulation. CoppeliaSim offers four alternatives for
the physics engine that can be used: Bullet Physics, ODE, Newton and Vortex Dynamics.
All of them have different parameters that can be consulted inside the application and
the recommendation is to use and test all four of them to determine which one is best
suited for each individual project.

• Collision detection module : Is utilized for a fast checking of impacts between shapes
or collection of shapes. Considering that the collisions are a critical part of simulations,
the calculation must be done rapidly, therefore this module is independent of the dynamics
module. In order to accelerate the process, the module uses as data structure a binary tree
out of bounding boxes. Also, more optimization is achieved with a temporal coherence
caching technique.

• Path/motion planning module : Supported by the OMPL library (Open Motion
Planning Library) this module handles path planning tasks. The library includes
implementations for a large number of planning algorithms such as a derivation of Rapidly-
exploring Random Tree (RRT) algorithm

22

CHAPTER 2. THEORETICAL CONCEPTS

• Dynamic particles : Another module supported by CoppeliaSim is dynamic particles
that can be used to simulate air flow, water jets, jet engines or propellers. This is
important for drone or quadricopter simulations or can be used in concomitance with
other robots to simulate a bigger scene, for example, a robot hand painting a fence or
creating an image using dye.

The simulator has a very intuitive and easy to use IDE (Integrated Development
Environment) shown in figure 2.8. In that figure some of the most important elements of
the IDE are highlighted.

1. This is the workspace. When the simulator first opens it is blank, but it can be modified
to look like a real surface. Also, every model added to the simulation appears in the middle
of the workspace

2. Some objets that can be used inside CoppeliaSim. We have three robots that exist in
reality: NAO, the Quadcopter, (where the dynamic particles used to mimic the air jet
can also be observed) and Kuka youBot. All three of them can operate just as they do
in reality. The other object shown is created by the user by linking a sphere to a cuboid.
When an object is selected their XYZ axis appears, with red indicating the X axis, green
for the Y axis and blue for Z. An object can be moved or rotated in reference to any axis.
All the objects can be selected and added to the scene from the model browser, flagged
with number 7 in figure 2.8.

3. This is the simulation Control Toolset. From here one can play, pause and stop the
simulation. In the picture, the simulation is paused. Four simulation modes can be
selected: Real-time Mode, Speed-up Mode, Slow-down Mode and Visualization Mode,
where the user can see what the vision sensor sees if one is included in the simulation.

4. Here is an important toolbar. From left to right we have the Camera Pan button, which
moves the workspace vertically or horizontally, Camera Rotate button, Camera Shift
button, which acts as a zoom option, moving the camera away or near an object, Fit-to-
view that positions the camera to fit the selected object, Object/item shift, used to move
an object either to an absolute position or relative to a desired point, and Object/item
rotate.

5. This is the hierarchical model display. Placing an object in the scene automatically
adds it to the hierarchical structure. The user can create its own hierarchies, for example,
the Cuboid and the Sphere are connected, the sphere being a child to the cuboid object,
and acts as a separate object.

6. The left side toolbar is very important to simulations. From here one can modify the
physical attributes of an object, like height or weight. By selecting the Scene object
properties button, one can alter the kinematics and dynamic parameters, and also add
scripts to control the objects. The other buttons in the toolbar are used for customization.

2.3.6.2 Kilobot Model

A model for the Kilobot was provided by the K-Team, the team from where the robots
were purchased, therefore it is safe to assume the model was tested and used in many other
applications. Fortunately, the model is open source, meaning we are allowed to tinker with
it, analyze it and understand how it was constructed. In figure 2.9 one can observe the initial

23

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.8: CoppeliaSim IDE

Kilobot model, the deconstructed one with all parts categorized and also the object’s hierarchy.

The body of the kilobot is made out of seven shapes: the BatHold, short for battery
holder, the Base, the equivalent of the robot’s PCB, the two motors and three legs. The base,
battery holder and motors are only for design purposes, to make the model resemble the real
robot. To simulate the LED mounted on the kilobot, the BatHold can modify its color using
special functions inside the program. In order for the model to act like its real counterpart,
some sensors must be added.

Firstly, we look at the proximity sensor. It is a special object supported by CoppeliaSim,
used for calculating the distance between itself and other objects. This particular proximity
sensor is a sphere with a radius of 5 millimeters, situated in the middle of the kilobot. It is
set to be an Infrared sensor and to detect only other Kilobots. Also, it has a default range of
84 millimeters that can be modified to better suit experiment conditions. The range can be
observed in figure 2.9 as the pink circular ring surrounding the components.

Secondly, we have the message sensor, which is a dummy object, a point with orientation
used as a reference frame. The way the model simulates messaging between robots is included
in the robot’s script. Inside the script is a particular array, called message tx that can be
used to send data, and an array called message rx used for storing received data and the
distance estimation from the sending robot. Every 0.2 seconds the robot updates message tx

and activates a special flag, signaling the fact that the message is valid. At every step it also
checks for incoming messages, meaning it checks if other MessageSensor dummies are in a 7
millimeter range and if they have valid data. If the conditions are met, the robot updates
message rx.

Thirdly, we must consider the movement system. As previously stated, the two motors
are only for design and play no part in the way the model moves. The legs too are only for
support. If one looks closely, one can observe that above the contact point of the legs with
the floor, there are two joints, one for the left leg and one for the right one. Joints are special
elements, used to link the leg with the contact point and to operate in a force/torque mode.

24

CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.9: Kilobot Parts

This means that by applying a velocity to the joint, the leg, and therefore the robot, will start
to move. On the front leg, one can find a Force Sensor that reacts to the forces of the two
legs and helps with a smoother motion. The velocity applied to the left and right leg is not
random, in fact, the user only chooses a value between 0 and 255 (just as for the real robot) to
signify the desired power, and the script takes that value and multiplies it with a predefined
motor ration in order to produce an acceptable effect.

25

CHAPTER 3. ALGORITHMS

Chapter 3

Algorithms

3.1 Edge Following

3.1.1 Orbiting with one stationary robot

Orbiting is a classic example to start and verify that everything is working accordingly. Its
objective is to have a robot moving at a fixed distance around a stationary robot. The stationary
robot shall be called a star and the moving robot a planet . This can later be extended to
edge following if there is more than one stationary robot.

The star will be emitting a constant message used by the planet robot to estimate the
distance between them. The communication range is between 33 mm when the robots are
colliding, and 110 mm; so we chose the orbiting distance to be 50 mm. If the planet robot
senses that its current distance is less than the desired distance it will start turning left until it
leaves the orbit; at that moment it will start rotating right. This alternate movement between
left and right will cause the robot to move in a clockwise direction around the star. For a
smoother movement when the distance is exactly 50 mm the robot will move forward. One
can observe the diagram for this code in figure 3.1

Figure 3.1: Flowchart for orbiting algorithm

26

CHAPTER 3. ALGORITHMS

(a) Kilobot orbiting a star (b) Kilobot orbiting multiple stars

Figure 3.2: Kilobots engaged in orbiting behaviour

The algorithm was tested with two real robots, the setup is presented in figure 3.2a (The
video for this demonstration is also available as a link in the title of the figure). The planet
is robot labeled 5 and its orbiting robot 10 at a radius of about 5 cm. The robot took almost
2 minutes to complete a full circle. After numerous experiments, it was also observed that if
the planet does not receive a message in time, due to perturbations or errors, the orbit will
be compromised, either by the robot moving too far to the left and no longer being able to
get back to the orbit or by the robot moving right too much and colliding with the star. The
solution was to wait for at least four messages, estimate the distance for every message received,
remember the minimum one, and only then make a decision regarding the direction. This leads
the robot to maintain a finer orbit but the trade-off was the time, now 3 minutes for a full
circle.

3.1.2 Orbiting with multiple stationary robots

The Orbit algorithm can be extended to edge following if more than one stationary robot is
used. However, using the previous algorithm unaltered can lead to faults such as the planet
colliding with one of the stars. For the new version, each kilobot will have an array to to keep
track of all its neighbours. The array will be updated with the current distance every time
a message will be received. The robot shall wait for four successful messages, check for the
minimum distance in the array, and make a decision accordingly. A demonstration is presented
in figure 3.2b, in which a robot orbits three stars for two full rotations, in eleven minutes and
thirty nine seconds. If one of the star robots is moved, the planet will adjust its trajectory to
better suit the new arrangement. The code for this algorithm is presented in annex A.

3.2 Gradient Formation

An interesting study commonly found in nature is pattern formation due to morphogen
gradients. A clasic example is the case of the Bicoid gene that divides the Drosophila (fruit fly)
embryo into head, thorax, and abdominal regions. The protein inside the gene is transferred
between the cells of the organism and after a period of time the fate of the cell is determined
based on the concentration inside the nuclei [32].

27

https://drive.google.com/file/d/1nSTO1lUHmP4yyivxnMo5Ar9RwXfUbEfB/view?usp=sharing
https://drive.google.com/file/d/1d0l7SL8aflCWuYy1WeQVFEc1SJ6Nhn73/view?usp=sharing

CHAPTER 3. ALGORITHMS

Figure 3.3: Schematic representation of the experiments demonstrating that the bicoid gene
encodes the morphogen responsible for patterns in Drosophila

To demonstrate this process an experiment was conducted in which bicoid RNA was
injected into bicoid-deficient embryos. It was observed that any location where the gene
was injected became the head. Inserted into one side of the organism lead to a normal
anterior-posterior evolution, but injecting into the center caused the head to appear in the
middle of the embryo and the regions on either side of it to become thorax structures. Also,
when injected into both sides of the entity, two heads emerged, one at either end, as presented
in figure 3.3 [33]. In general, in morphogen gradients one cell is the source of the chemical
that propagates over a surface of cells that record the value of the gradient and use that to
determine what part of the pattern to become.

This algorithm’s goal is to mimic that behavior. For that, we first chose a robot to be a
source and to continuously transmit its gradient value of 0. Any other robot will be listening
for messages, record the minimum value they received and set their gradient to be that
minimum value plus one. After that, they too will be transmitting their gradient to other
robots in their vicinity, creating the gradient effect. The diagram for the algorithm is presented
in figure 3.4. In figures 3.5 and 3.6, to visualise the gradient value we associated it with a
different color for the LED. Green is used for the source with the value of 0, yellow is for the
gradient of 1, light blue is for 2, red for 3, pink for 4 and any robot with a gradient equal or
greater than 5 is colored with dark blue. In figure 3.6, just as in the double bicoid experiment,
we used two source robots to see how the gradient propagates.

The gradient value can also be used to approximate the distance between two robots. The
process comes from networking where the number of intermediate devices such as routers
through which a given piece of data must pass in a transmission path, also called the hop-
count, gives an estimation of the distance between two given hosts. In our case, the gradient
represents the number of times the message was passed from the source to a particular robot.
For example, a robot with a gradient value of 5 means the message was passed through at least
4 robots before arriving here, and by knowing the average communication range to be 65 mm
we can assume that this robot is at about 65 × 4 mm distance from the source. This algorithm
can be extended to edge detection by recording the maximum value of gradient received from
the neighbours for a period of time (the code can be found in annex B).

28

CHAPTER 3. ALGORITHMS

Figure 3.4: Flowchart of Gradient Algorithm

Figure 3.5: Gradient formation with real Kilobits

(a) One gradient source (green robot) (b) Two gradient sources

Figure 3.6: Gradient formation with 30 robots in CoppeliaSim simulation

29

https://drive.google.com/file/d/1d0l7SL8aflCWuYy1WeQVFEc1SJ6Nhn73/view?usp=sharing

CHAPTER 3. ALGORITHMS

3.3 Shape Formation 1

Shape formation algorithms must ensure that a group of robots with limited capabilities and
local communication can work together to form a predefined shape without external control.
This first algorithm combines the previously discussed concepts of edge following, where a robot
orbits around a larger group by measuring the distances from the robots in its proximity and
gradient formation, where a source robot sends a gradient value that propagates through the
swarm, giving each robot a sense of spatial distance from the source. The main focus of this
algorithm is the robot’s ability to measure the distance from other robots and based on that,
determine if its position is valid (part of the shape) or not. The algorithm was adapted from a
previous research project published in 2019 [34]. Each kilobot has stored in memory a matrix
that describes the desired shape.

The matrix is constructed as follows (also shown in figure 3.7) :

1. We divide the image into circles with a radius of 3 cm and we assign each circle a unique
id in the order that we want the robots to enter the shape

2. We chose 3 robots that will start in the shape, they are called seed-robots and will have
the ids 0, 1 and 2, the gradient of 0 and the status stable

3. For the remaining robots we chose 2 neighbours and store their index and the distance
from them into a structure such as this:

(Neighbour1 Desired distance1 Neighbour2 Desired distance2)

We considered a generic distance of 1 between robots, this will later be multiplied with a
constant depending on how dispersed we want the robots to be.

4. Then we place all the structures into a matrix; the index of the rows will be the index of
the robot plus the value of three. For example, on the first row will be the instruction for
the robot number three.

The robots start arranged in a random shape, without any knowledge about their
position and with a default id of -1. After they calculate their gradient value the robot
with the highest gradient starts orbiting the group (maximum gradient means the robot is
on the edge). The orbiting robot is moving until he finds a valid and not occupied point
in the shape matrix. At that moment he stops, sets its id and becomes a beacon for other
incoming robots. For instance, in figure 3.8, the robot represented with yellow is moving
around the seed robots, constantly checking the distance from them and traversing the
shape matrix. When it reaches a length of 50 mm from from robot 1 and 2 that means
it is on the position indexed 3 in the matrix, therefore the robot changes its id from -1 to
3 and sets its status as stable. When the next kilobot will orbit the group and reach the
distance of 70.7 mm (50 *

√
2) from robot 3 and 50 mm from robot 2 it will stop and update

its id as 4. This process continues until all the robots have valid ids and the shape is completed.

Thus, the robots have four distinct states. They start in the wait stage, where they
compute their gradient and check if they are clear for moving, which happens if they do not
receive a gradient with a value higher than their own and if a certain amount of time has
passed. After that, they transition into the search stage where they start orbiting the group.

30

CHAPTER 3. ALGORITHMS

Figure 3.7: Matrix Formation for a rectangle and a cross-like shape

Figure 3.8: Representation of robots occupying position in the shape

The robots keep an array in memory with all their neighbours, including the distance from
them, their gradient value, and whether or not they are localised inside the shape. The array
is refreshed continuously and any neighbours from which no messages have been received for a
predetermined period of time are discarded from the array. They also have stored the matrix
containing the instructions for the desired shape and at every step, they check if the distances
from their neighbours match any index in the matrix. If that condition is met, they change
their status to local, stopping the movement and letting other robots know they took that
place. For the time being the algorithm uses special colors to differentiate between each state.
The LED is off while the robots are waiting, in the orbiting phase the robots switch between
yellow if they are turning left, blue for right and red for forward and when they find a stable
position, meaning they will have the local status, the LED will have a magenta color. For
future developments, another coloring system can be used in which each index in the shape
can be associated with a different color, allowing for the formation of even more interesting
shapes.

Two experiments are presented in figures 3.9a and 3.9b, with the videos available as a link
in the title and the code presented in annex C. In the first experiment, which took thirteen
minutes and thirty five seconds the robots arranged themselves in a simplified house shape,
composed out of a 2 by 3 rectangle and a robot on top which represents the roof. In the

31

CHAPTER 3. ALGORITHMS

(a) Kilobts forming a simplified house shape (b) Kilobts forming a cross-like shape

Figure 3.9: Two experiments for shape formation using real kilobots and CoppeliaSim

second experiment, done using CoppeliaSim, the twelve kilobots had the goal to form a cross.
The simulation took twelve minutes and forty four minutes, but only because it was run at a
higher speed, in real time the simulation would take forty nine minutes. It is noticeable that
the shapes are not perfect due to errors in estimating the distance, but they are close to the
desired outcome.

Another problem is matrix generation. For easier shapes, the matrix can be calculated by
hand, however for complex ones the process is far too complicated and time consuming. That
being the case, an algorithm for generating the data structure from an existing picture was
developed.

3.3.1 Matrix Generator

First of all, some image processing is needed. An image with a size of approximately 100 by 100
pixels is taken as input. The next step is removing the background. This is usually a difficult
task that involves using either complex algorithms or even neural networks. However, for this
application, pictures with a simple background, of a completely different color from the object
of interest, for example, a plane or star in the sky, were selected. Therefore, it is easy to create
a mask by extracting the color of the background from the image. The current image is in RGB
format, meaning, it is a data structure with 3 channels, one for each main color: Red, Green,
and Blue. For the next steps these channels are irrelevant so, by using the formula

Gray Image = 0.299×Red Channel + 0.587×Green Channel + 0.114×Blue Channel

we convert the RGB image into grayscale, a 2D array where all the pixels have values
between 0 and 255. Sometimes, for complex images, it is necessary to apply a median filter to
smoothen the picture. The next step is binarizing the image. The process is simple, if a pixel
has a value greater than a threshold, the pixel will take the value of 1 and if it is smaller it will
take the value of 0. The resulting array will be used for the next part of the algorithm. All
the steps taken to adjust the image were written in Matlab and are also presented in figure 3.10.

Second of all, the user must specify the starting point by choosing three points from the

32

https://drive.google.com/file/d/18sgTdWd30Lf2EbyOtVwHo7rrbxr5q0RG/view?usp=sharing
https://drive.google.com/file/d/15xpNCApmT7Ezpt_Dli6HD8z79pNylKJG/view?usp=sharing

CHAPTER 3. ALGORITHMS

Figure 3.10: The steps taken to modify a given picture

shape that will be localized from the beginning. The essential idea is the fact that each pixel
in the shape represents a robot and must have a distinct index. The algorithm uses three main
data structures:

• map :the initial matrix, received as input from the original image

• auxiliary matrix : of the same size with the map array but which has, in the beginning,
only the user selected nodes, numbered 1, 2 and 3 and the rest of the elements having a
value of 0

• shape index matrix: which is the matrix that will be sent to the robots before starting
the shape formation process; its columns will have the form:(
Neighbour1 Desired distance1 Neighbour2 Desired distance2

)
and will have as many rows as not null values in the initial matrix.

While there are valid nodes in the initial matrix, one of the nodes is chosen and inserted
into the auxiliary array where the distance from exiting neighbours are recorded and inserted
into the shape index array along with a new id, the number of order in which the robot
enters the shape. In this manner the gradual generation of the data structure is assured,
meaning a robot will not depend on another robot with a greater index, which should get
in the shape after itself. As illustrated in figure 3.11 the shape of the plane was converted
into numbers representing the ids of robots. A portion of the tail was highlighted in
which we can see the starting point, the robots numbered 1, 2 and 3. Also, in the right
are the first 57 elements of the shape index matrix that can be sent to the kilobots to start
the formation algorithm. The code for this part was written in C++ and can be found in annex E.

3.4 Shape Formation 2

The previous algorithm had the disadvantage that every robot had a predefined spot therefore,
errors propagate with ease and can alter the resulting shape. On that account, we took a
different approach. We defined the shape not as a matrix but as a polygon in the euclidean
space. Now, the position of the robots is no longer defined by the number of localized
neighbours but by their own coordinates, leaving some space for errors. This idea was first
introduced by Michael Rubenstein, the leader of the team responsible for the invention of

33

CHAPTER 3. ALGORITHMS

Figure 3.11: Image showing the first 57 elements in the shape matrix

Figure 3.12: The steps of shape formation

kilobots, in his scientific paper ”Programmable self-assembly in a thousand-robot swarm” [13].

At first, all the robots are packed together in a group without any knowledge about their
location. Four of these robots are chosen to be seed robots, hence they will form the origin of
the image and be the source of a gradient that will traverse the entire group. The kilobot with
the highest gradient value (meaning the kilobot found furthest away from the seed) will start
edge following the group. To avoid the blockage that can occur if all robots with a maximum
gradient start moving at the same time some randomness is involved. The kilobots are
unaware of the global positions, they can only communicate with nearby neighbours, however,
they can estimate the distance from each other and can use that distance to determine their
position and construct a local coordinate system with a basic implementation of trilateration.
The localized robots continuously transmit a message containing their (x, y) position in the
coordinate system. A new robot listens and measures distance from its localised neighbours,
and when three stationaries are found, it uses this information to compute its own (x, y)
position [13]. Once a robot has found its location it can determine if its inside the shape or
not. If it is not, it continues to orbit around the group. Once it enters the shape, it will stop
moving when it reaches the edge of the polygon or if it reaches a robot with the same gradient
value. This process leads the shape to be formed successively in layers.

The steps of the algorithm are also presented in figure 3.12 and the code can be found
in annex D. The seed robots are represented with green and the robots waiting in the group
are colored yellow. The numbers represent their gradient values at the start of the algorithm.

34

CHAPTER 3. ALGORITHMS

Figure 3.13: Robots demonstrating the shape formation algorithm by forming the letter L

The first to start and orbit the group will be the robots with the gradient value of 3, but the
robots continuously calculate new values. Once inside the shape, the robot which changed its
color to a light blue will stop at the edge of the shape. The following robot will stop when is
too close to robot numbered 1. In the last image, the numbers represent the order in which
the robots join the shape. An example for this algorithm in which the kilobots try to organize
themselves in the shape represented in blue was simulated and is presented in figure 3.13. The
robots participating in the formation are placed in a straight line to facilitate the gradient
formation phase. The robots are colored in relation to their gradient, the seed robots with the
gradient of 0 are colored green, yellow, blue red and purple are used to differentiate between
the gradient values smaller than five. One can observe the robot from end of the queue already
started the movement phase. The video for this simulation is also available as a link in the title.

For simple polygons like rectangles or squares is easy to determine if a point is inside the
shape or not by comparing their coordinates to the edges of the shape. However, this algorithm
can receive as input any polygon, with a non-limited number of vertices. For a fast verification
of the location of the point, we used a variation of the well-known algorithm of Ray-Casting.
Moreover, although the images can have an unlimited number of edges this will slow down the
process, and considering the fact the robots are circles with a 33 mm diameter, the resulting
shape will not have a very good resolution. Therefore, we proposed an algorithm to reduce the
number of points inside a polygon but still maintaining the integrity of the shape.

3.4.1 Trilateration

Trilateration is an algorithm for finding the coordinates of a point in space. In GPS (Global
Positioning System) it is used to localize the position of a Transmitter/Receiver station in a 2D
plane, using the positional knowledge of three nodes. For example, it can be used to determine
the position of a mobile phone located within the range of three radio transmitting towers [35].
Trilateration works with the length between points. With only one reference node we know that
a point situated at a fixed range must be on the circumference of the circle with a radius equal
to that range. By adding another reference node we narrow down the location of the desired
point to two alternatives: the intersection of the circles. The true location is determined by
using three reference nodes (figure 3.14). In our case, the reference nodes represent the seed
robots, which have a predefined knowledge of their (x,y) position, and the node we want to find
the location for is the orbiting robot. If we name the reference points: P1(x1, y1), P1(x1, y1)
and P3(x3, y3) and consider the equation of the circle we get the following system of equations:

(x− x1)2 + (y − y1)2 = r21
(x− x2)2 + (y − y2)2 = r22
(x− x3)2 + (y − y3)2 = r23

(3.1)

35

https://drive.google.com/file/d/1pKGWYUv4g6DCYi92eA6ctnVNp591Y-q-/view?usp=sharing

CHAPTER 3. ALGORITHMS

Figure 3.14: Trialateration process

We subtract the second equation from the first one and the third from the second one and
we have the result:

x (−2x1 + 2x2) + y (−2y1 + 2y2) = r21 − r22 − x21 + x22 − y21 + y22
x (−2x2 + 2x3) + y (−2y2 + 2y3) = r22 − r23 − x22 + x23 − y22 + y23

(3.2)

After we name each parenthesis with a letter we can easily find the result:{
Ax+By = C
Dx+ Ey = F

⇒ x =
CE − FB

EA − BD
; y =

CD − FA

DB − AE
(3.3)

3.4.2 Ray-Casting Algorithm

In order to quickly check if a point is inside a shape, a basic implementation for the Ray-
Casting algorithm was used. This is one of the basic algorithms used in computer graphics for
determining what is visible inside a field of view. For each pixel, light rays are “cast” from
the focal point of a virtual camera towards a 3D scene and based on what they encounter in
their path the intensity of the pixel is modified. For our application we used this idea only to
check the placement of points in the 2D space. The premise is simple: we have a point and we
want to determine if it is inside a polygon or not, therefore we draw a line extending from it
to infinity. Then we count the number of times that line intersects the polygon. If the number
is even that means that the point is outside the region, if it is odd then the point is inside. As
one can see in the example presented in figure 3.15, there are lines stretching across the shape
from different points. The points marked with red have intersected the polygon in four or two
points, meaning they are outside the area. Lines stretching from the points marked with green
intersect the shape in an odd number of times, three or one, and are therefore inside the polygon.

In order to checks if this algorithm works on our system, we programmed the kilobots to
spell some words, as each letter can be drawn as a polygon. We have 36 robots organized in
a 6x6 grid, at a distance of 50 mm from each other and they also know from the start their
position in the grid. They receive as input a string, and every six seconds they display a letter
from that string. This is possible because in their memory each letter is stored as a polygon,
and they continuously calculate, using ray-casting, to see if they are inside the polygon, in
which case the LED turns purple, or outside the polygon, which results in the LED turning

36

CHAPTER 3. ALGORITHMS

Figure 3.15: Example of ray-casting of a polygon

Figure 3.16: Thirty six robots forming the word ”KILO”

light blue. In figure 3.16 we sent the word “KILO” to the robots and observed the results.
The video for this experiment is also available in the title.

3.4.3 Ramer-Douglas–Peucker Algorithm

Ramer–Douglas–Peucker is a well known algorithm that is used for line simplification or to
lower the resolution of a given set of points. The also called iterative end-point fit algorithm
was presented by D. Douglas and T. Peucker in 1973 but it is very popular even to this day
due to its speed and efficiency in areas ranging from image processing and computer graphics
to cartographic generalization or even simplifying ship trajectories [36]. The algorithm
implements a recursive split-and-merge strategy. The input is represented by a list of points in
the 2-dimensional space, which together form a curved composed out of line segments, and a
distance threshold called epsilon ε. Initially, the first and last points from the list are marked
to be preserved in the final polyline. Then, using perpendicular distance, the furthest away
point from the line segment stretching from the first to the last point is selected. If the distance
is smaller than ε, the point can be discarded for it does not influence the final approximated
curve. However, if the distance is greater than ε it means the point must be kept. Now, the
algorithm will divide the point list into two halves, one from the starting point to the furthest
away point and the other from that point to the last one, and repeat the process until no
points remain unchecked. The threshold is the only user defined parameter and it directly
influences the final result, an increase in the threshold value decreases the accuracy of the data
but offers a small resulting set, at the same time, decreasing the epsilon offers a more precise

37

https://drive.google.com/file/d/12HrF7bQIpR2Rj7jQgjrGGInmlmoW-fv1/view?usp=sharing

CHAPTER 3. ALGORITHMS

Figure 3.17: The various results of Ramer-Douglas–Peucker algorithm

representation but a list with a greater number of elements.

For example, in figure 3.17, the starting point list had 361 elements. After applying the
algorithm with a small value of 0.5 for ε the list shrinks to more than a half: 79 unique
elements and the picture had practically no change. However, using a value of 5 for ε results
in a rough approximation of the initial image with only 13 elements in the list. The algorithm
was tested in Matlab and all the code can be found in annex F. In order to create the data set,
the same binary picture as in section 3.3 was used and with the help of Matlab’s pre-existing
function imcontour we extracted the contour. Compared to other smoothing and compression
algorithms, moving-average filters for example, the RDP algorithm has the advantage that the
simplified shape is created from the original points, through a quite fast manner, making it a
good choice to use for the kilobot application.

38

CHAPTER 4. RESULTS AND COMPARISONS

Chapter 4

Results and comparisons

4.1 Results using the real Kilobots

In order to test the first algorithm, it was decided to try and form a 2 x 3 rectangle. The
seed robots, with the ids 1, 2 and 3, were placed on the work surface, on an auxiliary grid to
facilitate the measurements. The other robots, starting with the id of -1, were placed left of
the origin, in a straight line. The algorithm starts with the edge detection part. Each robot
calculates its gradient and if no other robot has a greater value it will consider its position to
be on the edge and start moving. While it is moving, the robot will keep constantly storing in
memory the distance from its neighbours and checking if it reached a valid spot in the shape.
If this happens, the robot will stop and start signaling other robots his position. This exact
algorithm was tested seven times, out of which 4 times the robots successfully managed to
arrange themselves in approximately 12 minutes. Twice during the failed experiments, due
to errors in communication or movement, one of the robots positioned itself wrongly and
deranged the whole system and a third time robot numbered two ran out of battery, thus
other robots could no longer use it for coordination. The results for the successful experiments
are presented in picture 4.1. For the first test we observed the robots managed to find valid
spots in the rectangle, but the resulting shape was a little bended to the left, so it was decided
to increase the message hop, the number of states in which the robot should only listen for
the neighbouring messages, from four to six. An improvement can be noticed, however the
robots still consider to be stable before they reach the ideal place. Therefore, we introduced a
delay between the moment the robot realises it has a valid position and the moment it stops

Figure 4.1: The results of four test in which the robots organize in a small rectangle using the
Matrix Algorithm

39

https://drive.google.com/file/d/1BGCDPJPo9mT1Q3wmEhaxw2XqTloQtESF/view?usp=sharing
https://drive.google.com/file/d/1BGCDPJPo9mT1Q3wmEhaxw2XqTloQtESF/view?usp=sharing

CHAPTER 4. RESULTS AND COMPARISONS

Figure 4.2: The results of four test in which the robots organize in a small rectangle using the
Polygon Algorithm

the movement by making the robot orbit for two extra steps. In experiment number three the
delay was to big and the robot overshoot their position but by using only one additional step
the outcome was satisfactorily.

An important thing on which the proper functioning of the system depends is the
calibration of robots. If they are not well calibrated they can get stuck on their way and lead
to the formation of the so called ”traffic jams”. Also, if they have a low battery level, the
motors will no longer function accordingly and can lead to the same effect. A disadvantage
would be the fact that the kilobots can only arrange themselves in a grid with a even spacing
of 50 millimeters. Nevertheless, this algorithm proved to be quite efficient and although with
a large swarm more complex shapes can be formed, the algorithm has good results even with
a smaller group.

The next step is testing shape algorithm number two, in which the kilobots calculate their
position in a local coordinate system and determine if they are inside a shape or not. We
decided to have a common goal as before, forming a rectangle so we can better compare the
two solutions. This time we used robots labeled 10, 4 and 3 to have a predetermined knowledge
of their position and placed them on top of the drawn grid, to form the origin of the system.
Also, using a marker on the white board we delimited the area in which the kilobots were
supposed to gather. We ran the tests several times and recorded the results. The first thing
we had to modify was the message hop, from 6 to 8, to allow the robots more time to listen
for their neighbours and the distances from them, to minimize the errors in estimation that
could interfere with the trilateration part and cause the robots to incorrectly determine their
location. However, we observed that even though the robots correctly estimate the moment
they enter the shape (observed by their led turning a light blue), they realize they left the
shape far to late. Therefore, we introduce a new plan. The kilobots will no longer use the
same polygon to check if they are leaving the shape, but will use scaled down version of it. For
instance, in the first test, the polygon given to the robots was a rectangle with the length of
175 millimeters and with of 100 millimeters, and after determining valid coordinates the robot
would check if it is inside the polygon or not. If inside the shape, the robot would continue to
move and calculate its location and when it determines it is outside of the perimeter it will stop.
The new approach considers that once inside the polygon, a scaled down version of the original
polygon is used, in this example, a rectangle with the length of 142 millimeters (142 = 175 -
the radius of a kilobot) and a width of 77 millimeters. It was observed that the solution had
the expected outcome, however, this time the robots position themselves way before the edge
of the shape and also robot seven had an approximation error and stopped outside the area.

40

https://drive.google.com/file/d/1Ufqkmaqgu9AuCm8TtH82a_hFBDnuEYqs/view?usp=sharing
https://drive.google.com/file/d/1Ufqkmaqgu9AuCm8TtH82a_hFBDnuEYqs/view?usp=sharing

CHAPTER 4. RESULTS AND COMPARISONS

So, we used another rectangle 160 millimeters long and 90 millimeters wide, which produced a
more suitable result. In experiment three, robot labeled nine had a problem in movement and
deviated from the orbiting path, but still managed to approximate its position and stabilized
itself. This caused the following robots to also change their trajectories. However, all four of
them stabilized themselves in the region of the rectangle. We then repeated the experiment
and managed to reach a satisfying result, all robots stopped inside the shape. One can observe
the formation is created gradually from the bottom to the top. This happens because, while
inside the shape, one of the stopping conditions is whether a robot reaches a certain distance
from another robot with the same gradient value. In our tests we used 50 millimeters as that
distance. All the tests took an average 30 minutes to complete and are presented in figure 4.2.

The main disadvantage of this algorithm is the dependence on the communication range.
For a robot to correctly localize itself it needs a stable connection with at least three other
robots. If that connection is unstable and the distance is estimated with errors, the robot will
fail to determine its position. Moreover, if even just one robot assumes a wrong position in
the shape, the errors can propagate and affect other robots as well. One can be sure of the
fact that if a bigger swarm is used for the experiments, the resulting shape will have a better
resolution, but for smaller groups of eight to ten robots, the shapes do not have a very well
defined contour.

4.2 Results using the simulation

The algorithms were tested in the simulator as well. As mentioned before, CoppeliaSim offers
4 options for its physics engine: Bullet Library, Open Dynamics Engine, Vortex Studio and
Newton Dynamics. Both Bullet library and ODE are open source physics engines focused
on rigid body dynamics and collision detection and are mainly used for visual effects or for
video games physics. Newton Dynamics implements a deterministic solver, which is not based
on classic iterative methods [37], making it better suited for real-time physics simulations
according to the official CoppeliaSim website. Vortex Studio is a commercial physics engine,
that works with real world parameters and it is mainly used in research projects that require
a higher precision, however, Vortex Studio is not available to test for free and was not used
during the test. Moreover, after numerous tests, it was found that Newton Dynamics engine
does not work with the provided kilobot robot model because it causes unnatural spins or
blocks in the movement of the robot. Considering this facts, the algorithms were tested using
Bullet Library and Open Dynamics Engine. The simulations were performed on a machine
running Windows 10 Education with 8GB Memory and 4 cores with an Intel i7-6700HQ
2.6GHz processor.

Firstly, we start with the algorithm based on the distances between neighbours and we
propose the same experiment as the one conducted with the real kilobots, constructing a 2
by 3 rectangle. The test simulated with ODE took five minutes and thirty-eight seconds and
resulted in all the robots correctly finding their spots. Using CoppeliaSim’s features we are
able to acquire their exact positions, and compare them with the ideal ones. We are then able
to calculate the percentage error with the following formula:

∆ε = |xreal − xideal |

εr% =
∆ε

xreal
× 100%

(4.1)

41

CHAPTER 4. RESULTS AND COMPARISONS

Figure 4.3: The results of the kilobots forming a rectangle in CoppeliaSim using the Matrix
Algorithm

For the second engine, the simulation took nine minutes and twenty seconds, almost double
the time as ODE, but the results were not so different, unperceivable to the naked eye. The
calculated error was 5.66% and it was higher than the 4.23% which resulted before, but not by
much. The positions and calculation were all cataloged in tables 4.1 and 4.2. One can observe
from the data that the first robot managed to place itself accurately enough, however, because
every robot depends on the penultimate participant who entered the shape, the following robots
have an increasingly higher error in their position. The Mean Error is the average of all
percentage values. On account of the result being so similar, we included only a picture of the
final result, in figure 4.3.

Open Dynamics Engine

x real y real x ideal y ideal Relative Error on Ox Relative Error on Oy
Mean
Error

94,6 -34,3 95 -40 0,42 1,2

4.23%94,2 20 95 10 0,85 10,4

143,3 -23,4 145 -40 1,19 17

142,9 30,8 145 10 1,9 21,4

Table 4.1: Results for Algorithm 1 simulation in ODE

Bullet 2.83 Engine

x real y real x ideal y ideal Relative Error on Ox Relative Error on Oy
Mean
Error

94,8 -38,8 95 -40 0,2 1.2

5.67%94,2 20,4 95 10 0,8 10,4

143,81 -23 145 1,19 0,83 17

143,1 31,4 145 10 1,9 21,4

Table 4.2: Results for Algorithm 1 simulation in Bullet 2.83

Secondly, we tested the shape formation algorithm with the local coordinate system. The
goal was similar, have four robots cover the surface of a square with the edge length of 100 mm.
The ODE simulation took four minutes and five seconds and the one using Bullet 2.83 took
five minutes and twenty seconds, this time, however, the results were not as similar. The final
results are presented in figure 4.6. For analysing the results we also used CoppeliaSim’s feature

42

CHAPTER 4. RESULTS AND COMPARISONS

Figure 4.4: Fifteen robots in the process of forming a 150x150 rectanlge

(a) Bullet 2.83 (b) ODE

Figure 4.6: Two experiments to illustrate the differences between the physics engines

to determine the coordinates of the robots and we compared them to the coordinates computed
by each robot after using the trilateration algorithm. The information was introduced in
tables 4.3 and 4.4. From the data, we conclude that the robots are able to calculated their
coordinates with an acceptable margin of error. As expected, the first robot to enter the shape
has the most accurate knowledge of its position due to the fact that it only communicates
with the seed robots, which have predetermined coordinates. Other kilobots, who follow next,
take into consideration all their localized neighbours, that means any differences from reality
in previous calculated points propagate throughout the system, thus explaining the fact that
the last point in the tables has the biggest error.

Another experiment we tried was with a 150 x 150 square. Unfortunately, due to the
limitations of the machine on which the program is working, the simulation freezes after adding
fifteen robots. We can observe however the fact that the algorithm works as expected. The
robots have three important states represent with the following colors: yellow for the orbiting
part, a light-blue color when they think they entered the desired shape and magenta when they
consider to be stable and stop the movement. It can be observed the fact that besides the
first robot, others stop before reaching the edge of the square. This is because they calculate
their gradient based on a fixed range of communication that is bigger than the length of two
adjacent robots (60 mm), and they are conditioned to stop when they are too close to a robot
with the same gradient. The video for this demonstration is available as a link in the title of
picture 4.4. Also, all the videos presented in this thesis can be accessed on Google Drive1

1https://drive.google.com/drive/folders/1weGDtCmvJIWS3-TwIypSJ4E6DED8Scq ?usp=sharing

43

https://drive.google.com/file/d/1g7LdKHkiwlH5F8MA_JIqjlcLtJsg1Kcm/view?usp=sharing
https://drive.google.com/drive/folders/1weGDtCmvJIWS3-TwIypSJ4E6DED8Scq_?usp=sharing

CHAPTER 4. RESULTS AND COMPARISONS

Bullet 2.83 Engine

x real y real x sim y sim Relative Error on Ox Relative Error on Oy
Mean
Error

58,6 32,4 58,58 32,7 0,02 0,3

5.06%40,2 66,79 39,38 66,55 0,82 0,24

10,6 93,68 10,603 94,026 0,003 0,346

48,69 105,4 63,39 98,5 14,7 6,9

Table 4.3: Results for Algorithm 2 simulation in Bullet 2.83

ODE Engine

x real y real x sim y sim Relative Error on Ox Relative Error on Oy
Mean
Error

66,82 28,35 67,2 32,66 0,38 4,31

8.12%44,25 70,1 45,07 71 0,82 0,9

101,12 62,42 100,01 63,18 1,11 0,76

50,9 100,4 70,8 95,7 19,9 4,7

Table 4.4: Results for Algorithm 2 simulation in ODE

44

CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

5.1 General Conclusions

Shape formation is one of the essential problems swarm robotics is keen on solving. The task
is usually framed as such: starting from a group of robots with random locations and no
knowledge of their environment, have the group use local interactions and arrange themselves
in any given form without any collisions. This thesis started from this idea and presented
a similar process in which a group of robots communicates with one another and exchange
information, all for the common goal to create different shapes.

The Kilobots represent a good system for testing these sort of algorithms. They have
a simple moving principle based on vibration and they use infrared light for sending and
receiving information, and because of that they come at a relatively affordable price. Moreover,
within this project a virtual simulation was also used in order to test the algorithms before
implementing them. The algorithms proved to be successful and the results of the observations
were also documented in this paper. The first completed algorithm was based on the distances
between each neighbouring robots. Each robot had a matrix in which all the valid points
inside a shape were specified. The goal of the robot was to identify such a point and occupy
that position. The shape created gradually as more robots found empty positions. Another
algorithm created a local coordinate system by placing three seed robots in the origin of the
shape. Other robots use the seed to orientate in the coordinate system and determine if they
are inside a polygon or not. Out of the two algorithms the first one proved to have better
results, but with a greater swarm the results might differ.

5.2 Personal Contributions

Within this project, several proprieties of swarm robotics were discussed and analyzed. That
being said, my personal contributions were:

• review of the current state-of-the-art in swarm robotics studies : Taking
into consideration the fast-changing nature of this domain, we presented some of the
most recent research papers available, the most recent being published in 2020, and we
investigated some of the most interesting aspects of their results.

• workspace setup organization : Considering the kilobot’s proprieties, we proposed
a reflective and smooth surface to ensure correct movement, proper lighting to maximize

45

CHAPTER 5. CONCLUSION

the communication range, and placed the controller at the appropriate height to assure
all the information can be received by the entire group of robots at once.

• suggested a simulation program for working with kilbots : In order to test the
algorithms on a greater number of units, and also to check if everything is working
accordingly before uploading the instructions to the robots we present the use of
CoppeliaSim.

• implemented and tested shape formation algorithms After implementing some
basic applications such as edge following, gradient formation, and edge detection, we
used those principles and combined them into more complex algorithms in which the
group of robots self organizes into any given shape.

• compared the algorithms both in real time and in the simulator : After having
an adequate implementation for the algorithm, we ran experiments for multiple times
and discussed the different situations which may occur. Also, we presented a comparison
between CoppeliaSim’s physics engines

5.3 Further developments

The project described in this paper is not an encapsulated one, it can be scaled and combined
with other concepts to create something even more complex. Some of the improvements that
can be added to this system include:

• using augmented reality to better record the movements of the kilobots, and also, use
it to develop systems that require a feedback loop from the kilobots to the programming
center

• acquiring a greater number of kilobots to test the algorithms in bigger scenarios

• testing or even implementing other simulations to find the best solution for
simulating the robots

An interesting project that can be implemented in the future is having the robots search
for targets in a virtual environment. Using cameras mounted above the workspace and system
similar to ARK [8], one can combine reality with simulated objects, for example, create the
desired targets, a nest for the robots to return to when the target is found and even walls or
obstacles to observe the way the swarm will search for the most efficient solution. Also, one
can have the swarm traverse a labyrinth and search for the exit. Another project that can
be implemented in the future can use the kilobots to mimic real time drawing. The robots
arranged in a grid, will be associated with the pixels of a canvas on which a user can create
pictures with every color and shape. Every few seconds the robots will be updated with the
new picture, creating the impression of real time drawing. Furthermore, with a greater number
of robots, an entire ecosystem could be simulated. Some kilobots could be delegated to be
gatherers of food, others explorers, and some even predators. This experiment can also be
scaled up by having more than one swarm in the system and compel them to compete for
resources.

In conclusion, the kilobots can be used in a variety of projects in all sorts of domains. It is
my presumption that as the technology evolves, microrobots will become not only “smarter”
with the addition of more sensors and computational power but even smaller in size, even at
molecular levels, so that they could have a real impact in the world of medicine and non-invasive
treatments and investigations.

46

CHAPTER 5. CONCLUSION

References

[1] Edmund R Hunt, Simon Jones, and Sabine Hauert. Testing the limits of pheromone
stigmergy in high-density robot swarms. Royal Society open science, 6(11):190225, 2019.

[2] Calum Imrie and J Michael Herrmann. Self-organised transitions in swarms with turing
patterns.

[3] Federico Pratissoli, Andreagiovanni Reina, Yuri Kaszubowski Lopes, Lorenzo Sabattini,
and Roderich Groβ. A soft-bodied modular reconfigurable robotic system composed of
interconnected kilobots. In 2019 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), pages 50–52. IEEE, 2019.

[4] Mayank Agrawal and Sharon C Glotzer. Scale-free, programmable design of morphable
chain loops of kilobots and colloidal motors. Proceedings of the National Academy of
Sciences, 117(16):8700–8710, 2020.

[5] Kilobotics Website. https://kilobotics.com/documentation.

[6] Andrei-Daniel Dedu. Sistem inteligent bazat pe robot, i colaborativi. In Diploma thesis,
pages –. UPB, 2020.

[7] Duncan E Jackson and Francis LW Ratnieks. Communication in ants. Current biology,
16(15):R570–R574, 2006.

[8] Andreagiovanni Reina, Alex J Cope, Eleftherios Nikolaidis, James AR Marshall, and
Chelsea Sabo. Ark: Augmented reality for kilobots. IEEE Robotics and Automation
letters, 2(3):1755–1761, 2017.

[9] Simon Garnier, Faben Tache, Maud Combe, Anne Grimal, and Guy Theraulaz. Alice in
pheromone land: An experimental setup for the study of ant-like robots. In 2007 IEEE
swarm intelligence symposium, pages 37–44. IEEE, 2007.

[10] Gabriele Valentini, Anthony Antoun, Marco Trabattoni, Bernát Wiandt, Yasumasa
Tamura, Etienne Hocquard, Vito Trianni, and Marco Dorigo. Kilogrid: a novel
experimental environment for the kilobot robot. Swarm Intelligence, 12(3):245–266, 2018.

[11] Alan Turing. The chemical basis of morphogenesis (1952). B. Jack Copeland, page 519.

[12] Yusuke Ikemoto, Yasuhisa Hasegawa, Toshio Fukuda, and Kazuhiko Matsuda. Gradual
spatial pattern formation of homogeneous robot group. Information Sciences, 171(4):431–
445, 2005.

47

CHAPTER 5. CONCLUSION

[13] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[14] J. Pugh and A. Martinoli. Inspiring and modeling multi-robot search with particle swarm
optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, page
332–339, USA, 2007. IEEE Computer Society.

[15] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi, James McLurkin, and
Radhika Nagpal. Collective transport of complex objects by simple robots: Theory and
experiments. In Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS ’13, page 47–54, Richland, SC, 2013. International
Foundation for Autonomous Agents and Multiagent Systems.

[16] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping. In Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 321–328.
IEEE, 2000.

[17] Huaxing Xu, Haibing Guan, Alei Liang, and Xinan Yan. A multi-robot pattern
formation algorithm based on distributed swarm intelligence. In 2010 Second International
Conference on Computer Engineering and Applications, volume 1, pages 71–75. IEEE,
2010.

[18] Mario Coppola, Jian Guo, Eberhard Gill, and Guido CHE de Croon. Provable self-
organizing pattern formation by a swarm of robots with limited knowledge. Swarm
Intelligence, 13(1):59–94, 2019.

[19] Simon Garnier, Jacques Gautrais, and Guy Theraulaz. The biological principles of swarm
intelligence. Swarm intelligence, 1(1):3–31, 2007.

[20] Eshel Ben-Jacob, Ofer Schochet, Adam Tenenbaum, Inon Cohen, Andras Czirok, and
Tamas Vicsek. Generic modelling of cooperative growth patterns in bacterial colonies.
Nature, 368(6466):46–49, 1994.

[21] Odile Petit, Jacques Gautrais, J-B Leca, Guy Theraulaz, and J-L Deneubourg. Collective
decision-making in white-faced capuchin monkeys. Proceedings of the Royal Society B:
Biological Sciences, 276(1672):3495–3503, 2009.

[22] Steven V Viscido, Julia K Parrish, and Daniel Grünbaum. The effect of population size
and number of influential neighbors on the emergent properties of fish schools. Ecological
modelling, 183(2-3):347–363, 2005.

[23] Dirk Helbing, Péter Molnár, Illés J Farkas, and Kai Bolay. Self-organizing pedestrian
movement. Environment and planning B: planning and design, 28(3):361–383, 2001.

[24] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Stefano
Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla, Arne
Brutschy, et al. Swarmanoid: a novel concept for the study of heterogeneous robotic
swarms. IEEE Robotics & Automation Magazine, 20(4):60–71, 2013.

[25] Vito Trianni, Joris IJsselmuiden, and Ramon Haken. The saga concept: Swarm robotics
for agricultural applications. Technical report, Technical Report. 2016. Available online:
http://laral. istc. cnr. it/saga . . . , 2016.

48

CHAPTER 5. CONCLUSION

[26] Farshad Arvin, John Murray, Chun Zhang, and Shigang Yue. Colias: An autonomous
micro robot for swarm robotic applications. International Journal of Advanced Robotic
Systems, 11(7):113, 2014.

[27] Francesco Mondada, Edoardo Franzi, and Andre Guignard. The development of khepera.
In Experiments with the Mini-Robot Khepera, Proceedings of the First International
Khepera Workshop, number CONF, pages 7–14, 1999.

[28] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low cost scalable
robot system for collective behaviors. In 2012 IEEE International Conference on Robotics
and Automation, pages 3293–3298, 2012.

[29] Microchip Technology. megaAVR Data Sheet, 5 2019.

[30] CoppeliaSim customers. https://www.coppeliarobotics.com/customers.

[31] Lua Official Page. http://www.lua.org/about.html.

[32] Jan L Christian. Morphogen gradients in development: from form to function. Wiley
Interdisciplinary Reviews: Developmental Biology, 1(1):3–15, 2012.

[33] Scott F Gilbert. Axis formation in amphibians: the phenomenon of the organizer. In
Developmental Biology. 6th edition. Sinauer Associates, 2000.

[34] Sudhakar Kumar Anurag, Ponala Venkata Eswara Srisai and Kishan Chouhan. Systems
and control engineering laboratory (sc 626) kilobotics. page 44, 2019.

[35] Joseph Thomas. A novel trilateration algorithm for localization of a transmitter/receiver
station in a 2d plane using analytical geometry. 09 2014.

[36] Liangbin Zhao and Guoyou Shi. A method for simplifying ship trajectory based on
improved douglas–peucker algorithm. Ocean Engineering, 166:37–46, 2018.

[37] CoppeliaSim’s dynamics modules. coppeliarobotics.com/helpFiles/en/dynamicsModule.htm.

49

https://www.coppeliarobotics.com/customers
http://www.lua.org/about.html
https://www.coppeliarobotics.com/helpFiles/en/dynamicsModule.htm

ANEXA A. CODE FOR EDGE FOLLOWING

Anexa A

Code for Edge Following

1 #include "kilolib.h"

2

3 #define STOP 0

4 #define FORWARD 1

5 #define LEFT 2

6 #define RIGHT 3

7

8 #define TOO_CLOSE 30

9 #define DESIRED_DISTANCE 50

10

11 message_t message;

12 int message_hop = 0;

13 int total_msg_hop = 6;

14

15 int new_message;

16 int new_dist;

17 int dist_min;

18

19 // Function to handle motion.

20 void set_motion(int new_motion)

21 {

22 if (new_motion == STOP)

23 {

24 set_motors (0, 0);

25 }

26 else if (new_motion == FORWARD)

27 {

28 spinup_motors ();

29 set_motors(kilo_straight_left , kilo_straight_right);

30 }

31 else if (new_motion == LEFT)

32 {

33 set_motors (255 ,0);

34 delay (15);

35 // spinup_motors (); //this function starts the both motors for 15ms

36 set_motors(kilo_turn_left , 0);

37 delay (500);

38 set_motors (0, 0);

39 }

40 else if (new_motion == RIGHT)

41 {

42 set_motors (0 ,255);

43 delay (15);

44 // spinup_motors ();

45 set_motors (0, kilo_turn_right);

46 delay (500);

47 set_motors (0, 0);

48 }

49 }

50

51 // function for deciding the direction of orbiting

52 void orbit(const int d)

53 {

50

ANEXA A. CODE FOR EDGE FOLLOWING

54 if(d < TOO_CLOSE)

55 {

56 set_color(RGB(1,0,0));

57 set_motion(STOP);

58 }

59

60 else if(d > DESIRED_DISTANCE)

61 {

62 set_color(RGB(1,1,0));

63 set_motion(RIGHT);

64 }

65 else if (d < DESIRED_DISTANCE)

66 {

67 set_color(RGB(0,0,1));

68 set_motion(LEFT);

69 }

70 else

71 {

72 set_color(RGB(1,0,0));

73 set_motion(FORWARD);

74 }

75 }

76

77 //setup function that runs only once

78 //used for inisialisation

79 void setup()

80 {

81 dist_min = 200;

82 new_dist = 0;

83 new_message = 0;

84 message_hop = 0;

85 }

86

87 //the main code - will run repeatedly

88 void loop()

89 {

90 //check if a new message arrived

91 if (new_message == 1)

92 {

93 new_message = 0;

94 message_hop ++;

95

96 // remember the minimum distance

97 if (new_dist < dist_min)

98 dist_min = new_dist;

99

100 //when the total number of messages has been reached

101 //begin the orbiting process

102 if(message_hop == total_msg_hop)

103 {

104 message_hop = 0;

105 orbit(dist_min);

106 dist_min = 200;

107 }

108 }

109 }

110

111 // function for receiveing messages

112 void message_rx(message_t *m, distance_measurement_t *d)

113 {

114 new_message = 1;

115 new_dist = estimate_distance(d);

116 }

117

118 int main() {

119 kilo_init ();

120 kilo_message_rx = message_rx;

121 kilo_start(setup , loop);

122 return 0;

123 }

51

ANEXA B. CODE FOR EDGE DETECTION USING GRADIENT

Anexa B

Code for Edge Detection using gradient

1 #include "kilolib.h"

2

3 #define STOP 0

4 #define FORWARD 1

5 #define LEFT 2

6 #define RIGHT 3

7

8 #define TOO_CLOSE 30

9 #define DESIRED_DISTANCE 50

10 #define NEIGHBOUR_DIST 60

11

12 #define seedID 0

13

14 #define WAIT 0

15 #define MOVING 1

16

17 int current_motion = STOP;

18

19 int message_hop = 0;

20 int total_message_hop = 8;

21

22 int new_message = 0;

23 float new_dist = 0;

24 int dist_min = 200;

25

26 message_t message;

27 uint32_t last_update = 0;

28

29 int my_id = 7;

30

31 int myGradient = 255;

32 int received_gradient = 0;

33 int minGradient = 255;

34 int maxGradient = 0;

35

36 float dist = 9000;

37

38 int status = WAIT;

39

40 int edge_wait = 0;

41

42 // Function to handle motion.

43 void set_motion(int new_motion)

44 {

45

46 current_motion = new_motion;

47

48 if (current_motion == STOP)

49 {

50 set_motors (0, 0);

51 }

52 else if (current_motion == FORWARD)

53 {

52

ANEXA B. CODE FOR EDGE DETECTION USING GRADIENT

54 spinup_motors ();

55 set_motors(kilo_straight_left , kilo_straight_right);

56 }

57 else if (current_motion == LEFT)

58 {

59 set_motors (255 ,0);

60 delay (15);

61 // spinup_motors ();

62 set_motors(kilo_turn_left , 0);

63 delay (500);

64 set_motors (0, 0);

65 }

66 else if (current_motion == RIGHT)

67 {

68 set_motors (0 ,255);

69 delay (15);

70 // spinup_motors ();

71 set_motors (0, kilo_turn_right);

72 delay (500);

73 set_motors (0, 0);

74 }

75

76 }

77

78 // function for deciding the direction of orbiting

79 void orbit(const int d)

80 {

81 if(d < TOO_CLOSE)

82 {

83 set_color(RGB(1,0,0));

84 set_motion(FORWARD);

85 }

86

87 else if(d > DESIRED_DISTANCE)

88 {

89 set_color(RGB(1,1,0));

90 set_motion(RIGHT);

91 }

92 else if (d < DESIRED_DISTANCE)

93 {

94 set_color(RGB(0,0,1));

95 set_motion(LEFT);

96 }

97 else

98 {

99 set_color(RGB(1,0,0));

100 set_motion(FORWARD);

101 }

102 }

103

104 //setup function that runs only once

105 //used for inisialisation

106 void setup() {

107 message.type = NORMAL;

108 message.data [1] = 0;

109 message.crc = message_crc (& message);

110

111 if(my_id == seedID)

112 {

113 myGradient = 0;

114 }

115 }

116

117 //the main code - will run repeatedly

118 void loop()

119 {

120 //check for incoming messages

121 if (new_message == 1 && my_id != seedID)

122 {

123 new_message = 0;

124 message_hop ++;

125 last_update = kilo_ticks;

126

127 //use the received information to determine the minimum and maximum gradient value

128 //and also the minimum distance

129 if(received_gradient < minGradient && new_dist <= NEIGHBOUR_DIST)

53

ANEXA B. CODE FOR EDGE DETECTION USING GRADIENT

130 {

131 minGradient = received_gradient;

132 }

133

134 if(received_gradient > maxGradient && new_dist <= NEIGHBOUR_DIST)

135 {

136 maxGradient = received_gradient;

137 }

138

139 if (new_dist < dist_min)

140 dist_min = new_dist;

141

142 //check if the number of total messages has been reahced

143 if(message_hop == total_message_hop)

144 {

145 message_hop = 0;

146

147 myGradient = minGradient + 1;

148 message.type = NORMAL;

149 message.data [1] = myGradient;

150 message.crc = message_crc (& message);

151

152 if(myGradient > maxGradient)

153 {

154 edge_wait ++;

155 }

156

157 minGradient = 255;

158

159 if(status == MOVING)

160 orbit(dist_min);

161 dist_min = 200;

162 }

163 }

164

165 //if the robot had the maximum gradient in its region for one second it will enter the

MOVING state

166 if(edge_wait > 32 && status == WAIT)

167 status = MOVING;

168

169 //color coding depending on the gradient

170 if(myGradient == 0)

171 {

172 set_color(RGB(0,1,0));

173 }

174 else if (myGradient == 1)

175 {

176 set_color(RGB(1,1,0));

177 }

178 else if (myGradient == 2)

179 {

180 set_color(RGB(0,0,1));

181 }

182 else if (myGradient == 3)

183 {

184 set_color(RGB(1,0,0));

185 }

186 else

187 {

188 set_color(RGB(0,0,0));

189 }

190

191 //if no more messages were received in the last two seconds the robot will stop any movement

and increase its gradient

192 if(kilo_ticks > (last_update + 64) && myGradient < 255 && my_id != seedID)

193 {

194 set_motion(STOP);

195 set_color(RGB(0,0,0));

196 myGradient = myGradient + 1;

197 }

198

199 }

200

201 // function for transmiting a message

202 message_t* message_tx ()

203 {

54

ANEXA B. CODE FOR EDGE DETECTION USING GRADIENT

204 return &message;

205 }

206

207 // function for receiving messages

208 void message_rx(message_t *m, distance_measurement_t *d)

209 {

210 new_message = 1;

211 new_dist = estimate_distance(d);

212 received_gradient = m->data [1];

213

214 }

215

216

217 int main() {

218 kilo_init ();

219 kilo_message_rx = message_rx;

220 kilo_message_tx = message_tx;

221

222 kilo_start(setup , loop);

223

224 return 0;

225 }

55

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

Anexa C

Code for shape formation algorithm 1

1 #include "kilolib.h"

2 #include <math.h>

3 #include <stdbool.h>

4

5 #define MAXIM 11

6 #define INF 10000

7

8 #define STOP 0

9 #define FORWARD 1

10 #define LEFT 2

11 #define RIGHT 3

12

13 #define TOO_CLOSE 40

14 #define DESIRED_DISTANCE 50

15 #define NEIGHBOUR_DIST 50

16

17 #define seedID 0

18

19 #define WAIT 0

20 #define MOVING 1

21 #define INSIDE_SHAPE 2

22 #define LOCAL 3

23

24 // declaring the variables used

25

26 message_t message;

27 uint32_t last_update = 0;

28 uint32_t new_message;

29 uint16_t message_hop = 0;

30 uint16_t total_message_hop = 6;

31

32 int status;

33 int current_motion = STOP;

34 int edge_wait = 0;

35

36 int dist;

37 int gradient;

38 int id;

39 int localised_flag;

40 int shape_index;

41

42 int received_dist;

43 int received_id;

44 int received_timestamp;

45 int received_gradient;

46 int received_shape_index;

47 int received_local_flag;

48

49 //data structure to encapsulate all the information from the neighbouring robots

50 struct Neighbour

51 {

52 int dist;

53 int gradient;

56

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

54 int id;

55 int timestamp;

56 int localised_flag;

57 uint8_t flag;

58 int shape_index;

59 };

60

61 struct Neighbour neighbours[MAXIM];

62

63 //the matrix used for creating a house shape

64 int rowsShape = 5;

65 int colsShape = 4;

66 float shape_array [5][4] = { {3,1,2,1}, {4,1,2,1.4142} ,

67 {2,1,5,1}, {6 ,1.4142 ,4 ,1}, {2, 1, 6, 1.41}

68 };

69

70

71 float distance_array[MAXIM] = {-1, -1, -1, -1, -1, -1, -1, -1,-1,-1,-1};

72

73 // function to handle the motion

74 void set_motion(int new_motion)

75 {

76 if (new_motion == STOP)

77 {

78 set_motors (0, 0);

79 }

80 else if (new_motion == FORWARD)

81 {

82 spinup_motors ();

83 set_motors(kilo_straight_left , kilo_straight_right);

84 }

85 else if (new_motion == LEFT)

86 {

87 set_motors (255 ,0);

88 delay (15);

89 // spinup_motors ();

90 set_motors(kilo_turn_left , 0);

91 }

92 else if (new_motion == RIGHT)

93 {

94 set_motors (0 ,255);

95 delay (15);

96 // spinup_motors ();

97 set_motors (0, kilo_turn_right);

98 }

99

100 delay (500);

101 set_motors (0, 0);

102 }

103

104 // function for deciding the direction of orbiting

105 void orbit(const int d)

106 {

107 if(d < 30)

108 {

109 set_color(RGB(1,0,0));

110 set_motion(FORWARD);

111 }

112

113 else if(d > (DESIRED_DISTANCE))

114 {

115 set_color(RGB(1,1,0));

116 set_motion(RIGHT);

117 }

118 else if (d < (DESIRED_DISTANCE))

119 {

120 set_color(RGB(0,0,1));

121 set_motion(LEFT);

122 }

123 else

124 {

125 set_color(RGB(1,0,0));

126 set_motion(FORWARD);

127 }

128 }

129

57

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

130 // helper function to set the message before transmitting

131 void set_message ()

132 {

133 if(status == LOCAL)

134 localised_flag = 1;

135 else

136 localised_flag = -1;

137 message.type = NORMAL;

138 message.data [0] = kilo_uid; //id

139 // message.data [1] = kilo_ticks; // timestamp

140 message.data [2] = gradient;

141 message.data [3] = shape_index;

142 message.data [5] = localised_flag;

143

144 message.crc = message_crc (& message);

145 }

146

147 // helper function to set the elements in the neighbours array

148 void set_neighbour ()

149 {

150 neighbours[received_id].dist = received_dist;

151 neighbours[received_id].flag = 1;

152 neighbours[received_id]. gradient = received_gradient;

153 neighbours[received_id]. localised_flag = received_local_flag;

154 neighbours[received_id]. timestamp = kilo_ticks;

155 neighbours[received_id]. shape_index = received_shape_index;

156 }

157

158 // helper function to discard any robot with whom he could not communicate in the last 3

seconds

159 void eliminateNeighbour ()

160 {

161 for(uint8_t i = 0; i < MAXIM; i++)

162 {

163 if(kilo_ticks > (neighbours[i]. timestamp + 96))

164 {

165 neighbours[i].dist = -1;

166 neighbours[i].flag = -1;

167 neighbours[i]. gradient = -1;

168 neighbours[i]. localised_flag = -1;

169 neighbours[i]. timestamp = -1;

170 neighbours[i]. shape_index = 1000;

171 }

172 }

173 }

174

175 //data structure to encapsulate the concept of a point in space

176 struct point

177 {

178 float x;

179 float y;

180 int dist;

181 };

182

183 void setup()

184 {

185 for(uint8_t i = 0; i < MAXIM; i++)

186 {

187 neighbours[i].flag = -1;

188 neighbours[i].dist = -1;

189 neighbours[i]. timestamp = -1;

190 neighbours[i]. gradient = -1;

191 neighbours[i]. shape_index = 1000;

192 }

193

194 status = WAIT;

195 if(kilo_uid <= 3)

196 {

197 gradient = 0;

198 localised_flag = 1;

199 status = LOCAL;

200 }

201 else

202 {

203 gradient = 255;

204 localised_flag = 0;

58

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

205 }

206

207 switch (kilo_uid)

208 {

209 case 0:

210 shape_index = 0;

211 break;

212 case 1:

213 shape_index = 1;

214 break;

215 case 2:

216 shape_index = 2;

217 break;

218 case 3:

219 shape_index = 3;

220 break;

221

222 default:

223 shape_index = 1000;

224 }

225

226 set_message ();

227 }

228

229 void loop()

230 {

231 //check for incoming messages and update the neighbours array

232 if(new_message == 1)

233 {

234 new_message = 0;

235 last_update = kilo_ticks;

236 set_neighbour ();

237 if(received_local_flag == 1)

238 {

239 distance_array[received_shape_index] = received_dist;

240 }

241 message_hop ++;

242 }

243

244 //check if the number of total messages has been reahced

245 if(message_hop == total_message_hop)

246 {

247 message_hop = 0;

248 int dist_min = 200;

249 int gradient_min = 254;

250 int gradient_max = 0;

251

252 int valid = 0;

253 struct point aux [4];

254 int index = 0;

255 for(uint8_t i = 0; i < MAXIM; i++)

256 {

257 if(neighbours[i].dist != -1 && neighbours[i].dist < dist_min)

258 dist_min = neighbours[i].dist;

259 if(neighbours[i].dist < 55 && neighbours[i]. gradient != -1 && neighbours[i]. gradient <

gradient_min)

260 gradient_min = neighbours[i]. gradient;

261 if(neighbours[i].dist < 55 && neighbours[i]. gradient != -1 && neighbours[i]. gradient >

gradient_max)

262 gradient_max = neighbours[i]. gradient;

263 }

264

265 // update the gradient

266 if(kilo_uid > 3)

267 gradient = gradient_min + 1;

268

269 //edge detection part

270 if(kilo_uid > 3 && gradient > gradient_max)

271 edge_wait ++;

272 else if(kilo_uid > 3)

273 edge_wait = 0;

274

275 if(edge_wait > 32 && status == WAIT)

276 status = MOVING;

277

278 // update the message that will be sent to other robots

59

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

279 set_message ();

280

281 // switch (gradient)

282 // {

283 // case 0:

284 // set_color(RGB(0,1,1));

285 // break;

286 // case 1:

287 // set_color(RGB(1,1,0));

288 // break;

289 // case 2:

290 // set_color(RGB(0,0,1));

291 // break;

292 // case 3:

293 // set_color(RGB(1,0,0));

294 // break;

295 // case 4:

296 // set_color(RGB(1,0,1));

297 // break;

298 // case 5:

299 // set_color(RGB(0,1,0));

300 // break;

301

302 // default:

303 // set_color(RGB(0,0,0));

304 // break;

305 // }

306

307 // depending on the status of the robot either orbit around the group or chenge the color

of the led

308 if(kilo_uid >= 3 && dist_min < 200 && (status == MOVING || status == INSIDE_SHAPE))

309 orbit(dist_min);

310 else

311 set_motion(STOP);

312

313 if(status == LOCAL)

314 set_color(RGB(3,0,3));

315

316 if(status == INSIDE_SHAPE)

317 set_color(RGB(0,3,3));

318

319 //check for a valid position in the shape

320 if (kilo_uid > 3 && status != LOCAL)

321 {

322 float aux_dist;

323 int index;

324 for(int i = 0; i < rowsShape; i++)

325 {

326 char ok = 1;

327 for(int j = 0; j < colsShape; j = j + 2)

328 {

329 aux_dist = shape_array[i][j + 1] * 50;

330 index = shape_array[i][j];

331 if((distance_array[index] < (aux_dist - 10)) || (distance_array[index] > (

aux_dist + 10)))

332 ok = 0;

333 }

334

335 if(ok == 1)

336 {

337 shape_index = i + 4;

338 status = LOCAL;

339 localised_flag = 1;

340 orbit(dist_min);

341 set_message ();

342

343 break;

344 }

345 }

346 }

347 }

348 eliminateNeighbour ();

349 }

350

351 // function for sending messages

352 message_t* message_tx ()

60

ANEXA C. CODE FOR SHAPE FORMATION ALGORITHM 1

353 {

354 return &message;

355 }

356

357 // function for receiving messages

358 void message_rx(message_t *m, distance_measurement_t *d)

359 {

360 new_message = 1;

361 received_dist = estimate_distance(d);

362 received_id = m->data [0];

363 // received_timestamp = m->data [1];

364 received_gradient = m->data [2];

365 received_shape_index = m->data [3];

366 received_local_flag = m->data [5];

367 }

368

369 int main()

370 {

371 kilo_init ();

372 kilo_message_rx = message_rx;

373 kilo_message_tx = message_tx;

374

375 kilo_start(setup , loop);

376

377 return 0;

378 }

61

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

Anexa D

Code for shape formation algorithm 2

1 #include "kilolib.h"

2 #include <math.h>

3 #include <stdbool.h>

4

5 #define MAXIM 11

6 #define INF 10000

7

8 #define STOP 0

9 #define FORWARD 1

10 #define LEFT 2

11 #define RIGHT 3

12

13 #define TOO_CLOSE 40

14 #define DESIRED_DISTANCE 50

15 #define NEIGHBOUR_DIST 50

16

17 #define seedID 0

18

19 #define WAIT 0

20 #define MOVING 1

21 #define INSIDE_SHAPE 2

22 #define LOCAL 3

23

24 // declaring the variables used

25

26 message_t message;

27 uint32_t last_update = 0;

28 uint32_t new_message;

29 uint16_t message_hop = 0;

30 uint16_t total_message_hop = 6;

31

32 int status;

33 int current_motion = STOP;

34 int edge_wait = 0;

35

36 int dist;

37 int gradient;

38 int id;

39 int localised_flag;

40 int shape_index;

41

42 int received_dist;

43 int received_id;

44 int received_timestamp;

45 int received_gradient;

46 int received_shape_index;

47 int received_local_flag;

48

49 //data structure to encapsulate all the information from the neighbouring robots

50 struct Neighbour

51 {

52 int dist;

53 int gradient;

62

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

54 int id;

55 int timestamp;

56 int localised_flag;

57 uint8_t flag;

58 int shape_index;

59 };

60

61 struct Neighbour neighbours[MAXIM];

62

63 //the matrix used for creating a house shape

64 int rowsShape = 5;

65 int colsShape = 4;

66 float shape_array [5][4] = { {3,1,2,1}, {4,1,2,1.4142} ,

67 {2,1,5,1}, {6 ,1.4142 ,4 ,1}, {2, 1, 6, 1.41}

68 };

69

70

71 float distance_array[MAXIM] = {-1, -1, -1, -1, -1, -1, -1, -1,-1,-1,-1};

72

73 // function to handle the motion

74 void set_motion(int new_motion)

75 {

76 if (new_motion == STOP)

77 {

78 set_motors (0, 0);

79 }

80 else if (new_motion == FORWARD)

81 {

82 spinup_motors ();

83 set_motors(kilo_straight_left , kilo_straight_right);

84 }

85 else if (new_motion == LEFT)

86 {

87 set_motors (255 ,0);

88 delay (15);

89 // spinup_motors ();

90 set_motors(kilo_turn_left , 0);

91 }

92 else if (new_motion == RIGHT)

93 {

94 set_motors (0 ,255);

95 delay (15);

96 // spinup_motors ();

97 set_motors (0, kilo_turn_right);

98 }

99

100 delay (500);

101 set_motors (0, 0);

102 }

103

104 // function for deciding the direction of orbiting

105 void orbit(const int d)

106 {

107 if(d < 30)

108 {

109 set_color(RGB(1,0,0));

110 set_motion(FORWARD);

111 }

112

113 else if(d > (DESIRED_DISTANCE))

114 {

115 set_color(RGB(1,1,0));

116 set_motion(RIGHT);

117 }

118 else if (d < (DESIRED_DISTANCE))

119 {

120 set_color(RGB(0,0,1));

121 set_motion(LEFT);

122 }

123 else

124 {

125 set_color(RGB(1,0,0));

126 set_motion(FORWARD);

127 }

128 }

129

63

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

130 // helper function to set the message before transmitting

131 void set_message ()

132 {

133 if(status == LOCAL)

134 localised_flag = 1;

135 else

136 localised_flag = -1;

137 message.type = NORMAL;

138 message.data [0] = kilo_uid; //id

139 // message.data [1] = kilo_ticks; // timestamp

140 message.data [2] = gradient;

141 message.data [3] = shape_index;

142 message.data [5] = localised_flag;

143

144 message.crc = message_crc (& message);

145 }

146

147 // helper function to set the elements in the neighbours array

148 void set_neighbour ()

149 {

150 neighbours[received_id].dist = received_dist;

151 neighbours[received_id].flag = 1;

152 neighbours[received_id]. gradient = received_gradient;

153 neighbours[received_id]. localised_flag = received_local_flag;

154 neighbours[received_id]. timestamp = kilo_ticks;

155 neighbours[received_id]. shape_index = received_shape_index;

156 }

157

158 // helper function to discard any robot with whom he could not communicate in the last 3

seconds

159 void eliminateNeighbour ()

160 {

161 for(uint8_t i = 0; i < MAXIM; i++)

162 {

163 if(kilo_ticks > (neighbours[i]. timestamp + 96))

164 {

165 neighbours[i].dist = -1;

166 neighbours[i].flag = -1;

167 neighbours[i]. gradient = -1;

168 neighbours[i]. localised_flag = -1;

169 neighbours[i]. timestamp = -1;

170 neighbours[i]. shape_index = 1000;

171 }

172 }

173 }

174

175 //data structure to encapsulate the concept of a point in space

176 struct point

177 {

178 float x;

179 float y;

180 int dist;

181 };

182

183 void setup()

184 {

185 for(uint8_t i = 0; i < MAXIM; i++)

186 {

187 neighbours[i].flag = -1;

188 neighbours[i].dist = -1;

189 neighbours[i]. timestamp = -1;

190 neighbours[i]. gradient = -1;

191 neighbours[i]. shape_index = 1000;

192 }

193

194 status = WAIT;

195 if(kilo_uid <= 3)

196 {

197 gradient = 0;

198 localised_flag = 1;

199 status = LOCAL;

200 }

201 else

202 {

203 gradient = 255;

204 localised_flag = 0;

64

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

205 }

206

207 switch (kilo_uid)

208 {

209 case 0:

210 shape_index = 0;

211 break;

212 case 1:

213 shape_index = 1;

214 break;

215 case 2:

216 shape_index = 2;

217 break;

218 case 3:

219 shape_index = 3;

220 break;

221

222 default:

223 shape_index = 1000;

224 }

225

226 set_message ();

227 }

228

229 void loop()

230 {

231 //check for incoming messages and update the neighbours array

232 if(new_message == 1)

233 {

234 new_message = 0;

235 last_update = kilo_ticks;

236 set_neighbour ();

237 if(received_local_flag == 1)

238 {

239 distance_array[received_shape_index] = received_dist;

240 }

241 message_hop ++;

242 }

243

244 //check if the number of total messages has been reahced

245 if(message_hop == total_message_hop)

246 {

247 message_hop = 0;

248 int dist_min = 200;

249 int gradient_min = 254;

250 int gradient_max = 0;

251

252 int valid = 0;

253 struct point aux [4];

254 int index = 0;

255 for(uint8_t i = 0; i < MAXIM; i++)

256 {

257 if(neighbours[i].dist != -1 && neighbours[i].dist < dist_min)

258 dist_min = neighbours[i].dist;

259 if(neighbours[i].dist < 55 && neighbours[i]. gradient != -1 && neighbours[i]. gradient <

gradient_min)

260 gradient_min = neighbours[i]. gradient;

261 if(neighbours[i].dist < 55 && neighbours[i]. gradient != -1 && neighbours[i]. gradient >

gradient_max)

262 gradient_max = neighbours[i]. gradient;

263 }

264

265 // update the gradient

266 if(kilo_uid > 3)

267 gradient = gradient_min + 1;

268

269 //edge detection part

270 if(kilo_uid > 3 && gradient > gradient_max)

271 edge_wait ++;

272 else if(kilo_uid > 3)

273 edge_wait = 0;

274

275 if(edge_wait > 32 && status == WAIT)

276 status = MOVING;

277

278 // update the message that will be sent to other robots

65

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

279 set_message ();

280

281 // switch (gradient)

282 // {

283 // case 0:

284 // set_color(RGB(0,1,1));

285 // break;

286 // case 1:

287 // set_color(RGB(1,1,0));

288 // break;

289 // case 2:

290 // set_color(RGB(0,0,1));

291 // break;

292 // case 3:

293 // set_color(RGB(1,0,0));

294 // break;

295 // case 4:

296 // set_color(RGB(1,0,1));

297 // break;

298 // case 5:

299 // set_color(RGB(0,1,0));

300 // break;

301

302 // default:

303 // set_color(RGB(0,0,0));

304 // break;

305 // }

306

307 // depending on the status of the robot either orbit around the group or chenge the color

of the led

308 if(kilo_uid >= 3 && dist_min < 200 && (status == MOVING || status == INSIDE_SHAPE))

309 orbit(dist_min);

310 else

311 set_motion(STOP);

312

313 if(status == LOCAL)

314 set_color(RGB(3,0,3));

315

316 if(status == INSIDE_SHAPE)

317 set_color(RGB(0,3,3));

318

319 //check for a valid position in the shape

320 if (kilo_uid > 3 && status != LOCAL)

321 {

322 float aux_dist;

323 int index;

324 for(int i = 0; i < rowsShape; i++)

325 {

326 char ok = 1;

327 for(int j = 0; j < colsShape; j = j + 2)

328 {

329 aux_dist = shape_array[i][j + 1] * 50;

330 index = shape_array[i][j];

331 if((distance_array[index] < (aux_dist - 10)) || (distance_array[index] > (

aux_dist + 10)))

332 ok = 0;

333 }

334

335 if(ok == 1)

336 {

337 shape_index = i + 4;

338 status = LOCAL;

339 localised_flag = 1;

340 orbit(dist_min);

341 set_message ();

342

343 break;

344 }

345 }

346 }

347 }

348 eliminateNeighbour ();

349 }

350

351 // function for sending messages

352 message_t* message_tx ()

66

ANEXA D. CODE FOR SHAPE FORMATION ALGORITHM 2

353 {

354 return &message;

355 }

356

357 // function for receiving messages

358 void message_rx(message_t *m, distance_measurement_t *d)

359 {

360 new_message = 1;

361 received_dist = estimate_distance(d);

362 received_id = m->data [0];

363 // received_timestamp = m->data [1];

364 received_gradient = m->data [2];

365 received_shape_index = m->data [3];

366 received_local_flag = m->data [5];

367 }

368

369 int main()

370 {

371 kilo_init ();

372 kilo_message_rx = message_rx;

373 kilo_message_tx = message_tx;

374

375 kilo_start(setup , loop);

376

377 return 0;

378 }

67

ANEXA E. CODE FOR MATRIX GENERATION

Anexa E

Code for Matrix Generation

1 #include <iostream >

2 #include <fstream >

3

4 using namespace std;

5

6 //data structure for encapsulating an element inside the matrix

7 struct Index

8 {

9 int i;

10 int j;

11 int id;

12

13 Index()

14 {

15 i = j = 0;

16 id = -1;

17 }

18

19 void set(const int& a, const int& b, const int& new_id)

20 {

21 i = a;

22 j = b;

23 id = new_id;

24 }

25

26 friend ostream& operator <<(ostream& os, const Index& Aux)

27 {

28 os << Aux.id << " -> " << Aux.i << " " << Aux.j << endl;

29 return os;

30 }

31 };

32

33 int main()

34 {

35 //files used for input and output

36 ifstream f("plane.txt");

37 ofstream g("matrix.txt");

38 ofstream h("only_matrix.txt");

39

40 int n;

41 int m;

42 int nodes = 0;

43

44 f >> n >> m;

45 cout << n << " " << m;

46

47 // the original image

48 int map [300][300];

49 //an array to copy the original image only with the seed robots and the starting point

50 int matrix [300][300];

51 //an array to store the matrix that will be sent to the robots

52 float shape_index [2000][4];

53

68

ANEXA E. CODE FOR MATRIX GENERATION

54 Index seed [4];

55 Index start_point;

56

57 //read the image frim the file

58 for (int i = 0; i < n; i++)

59 for (int j = 0; j < m; j++)

60 {

61 f >> map[i][j];

62 if (map[i][j] == 7)

63 map[i][j] = -1;

64 }

65

66 for (int i = 0; i < n; i++)

67 for (int j = 0; j < m; j++)

68 {

69 matrix[i][j] = map[i][j];

70

71 if (map[i][j] == -1 || map[i][j] == 4)

72 {

73 matrix[i][j] = 0;

74 nodes ++;

75 }

76

77 if (map[i][j] == 1 || map[i][j] == 2 || map[i][j] == 3)

78 seed[map[i][j] - 1]. set(i, j, map[i][j]);

79

80 if (map[i][j] == 4)

81 start_point.set(i, j, 4);

82 }

83

84 cout << endl;

85 cout << nodes << endl;

86 cout << start_point.i << " "<< start_point.j << endl;

87

88 int valid_nodes = 0;

89 int i;

90 int j;

91 bool ok = false;

92 int vertex = 0;

93 int current_node = 0;

94 int id = 4;

95

96 //check a the point in the original matrix

97 while (valid_nodes != nodes && current_node < nodes && start_point.i < (n - 2) &&

start_point.j < (m - 2) && start_point.i > 1 && start_point.j > 1 && start_point.id < (

nodes + 4) && start_point.id >= -1)

98 {

99 i = start_point.i;

100 j = start_point.j;

101 vertex = 0;

102

103 //cout << start_point << endl;

104

105 //check the 8 elements surrounding the starting point

106 //when one valid element is found update the shape_index

107 for (int a = (i - 1); a < (i + 2); a++)

108 for (int b = (j - 1); b < (j + 2); b++)

109 {

110 if (matrix[a][b] != 0 && vertex < 4)

111 {

112 shape_index[current_node][vertex ++] = matrix[a][b]; //the index

113 shape_index[current_node][vertex ++] = ((a + b) % 2 == (start_point.i + start_point.j

) % 2) ? 1.41 : 1; //the distance

114 }

115 }

116

117

118 if (vertex == 4)

119 {

120 valid_nodes ++;

121 matrix[i][j] = start_point.id;

122 map[i][j] = start_point.id;

123 current_node ++;

124 }

125

126 int aux_vertex = 0;

69

ANEXA E. CODE FOR MATRIX GENERATION

127 ok = 0;

128 for (int i = 1; i < n - 2; i++)

129 {

130 for (int j = 1; j < m - 2; j++)

131 {

132 if (map[i][j] == -1)

133 {

134 //check if point inside map can be the new starting point

135 aux_vertex = 0;

136 for (int a = (i - 1); a < (i + 2); a++)

137 for (int b = (j - 1); b < (j + 2); b++)

138 {

139 if (matrix[a][b] != 0 && aux_vertex < 4)

140 {

141 aux_vertex ++;

142 aux_vertex ++;

143 }

144 }

145

146 //if point has neighbours inside the auxiliary matrix set it as the new starting

point

147 if (aux_vertex == 4)

148 {

149 id++;

150 start_point.set(i, j, id);

151 ok = 1;

152 break;

153

154 }

155 }

156 }

157

158 if (ok == 1)

159 break;

160 }

161 }

162

163 //write the matrix to file

164 for (int i = 0; i < nodes; i++)

165 {

166 g << i + 4 << " : ";

167 for (int j = 0; j < 4; j++)

168 g << shape_index[i][j] << " ";

169 g << endl;

170 }

171

172 //write the matrix containing the order of the robots in another file

173 for (int i = 0; i < n; i++)

174 {

175 for (int j = 0; j < m; j++)

176 {

177 h << map[i][j] << " ";

178 }

179 g << endl;

180 h << endl;

181 }

182

183 cout << endl;

184 system("pause");

185 return 0;

186 }

70

ANEXA F. CODE FOR RAMER-DOUGLAS-PEUCKER ALGORITHM

Anexa F

Code for Ramer-Douglas-Peucker Algorithm

The code for generating the reduced data set

1 clear;

2 Img = imread(’plane.jpg’);

3

4 figure (1);

5 imshow(Img);

6

7 %remove the background

8 S = size(Img);

9 for i = 1:S(1)

10 for j = 1:S(2)

11

12 if(Img(i,j, 3) > 150 && (Img(i,j, 1) < 100 || Img(i,j, 2) < 100))

13 Img(i,j, 1) = 0;

14 Img(i,j, 2) = 0;

15 Img(i,j, 3) = 0;

16

17 end

18 end

19 end

20

21 %make the picture grayscale and apply a median filter

22 Gray = 0.299* Img(:,:,1) + 0.587* Img(:,:,2) + 0.114* Img(:,:,3);

23

24 S = size(Gray);

25 Gray = medfilt2(Gray);

26

27 %binarize the image

28 for i = 1:S(1)

29 for j = 1:S(2)

30

31 if(Gray(i,j) < 50)

32 Gray(i,j) = 0;

33 end

34 end

35 end

36

37

38 for i = 1:S(1)

39 for j = 1:S(2)

40

41 if(Gray(i,j) > 40)

42 New_Matrix(i,j) = 7;

43 else

44 New_Matrix(i,j) = 0;

45 end

46 end

47 end

48

49 figure (10);

50 %extract the contour

51 [C,H] = imcontour(New_Matrix ,1);

71

ANEXA F. CODE FOR RAMER-DOUGLAS-PEUCKER ALGORITHM

52

53 S = size(C);

54 for i = 1:S(1)

55 for j = 2:S(2)

56 Aux(i,j - 1) = C(i,j);

57 end

58 end

59

60 figure (11);

61 plot(Aux(2,:), Aux(1,:))

62 S = size(Aux);

63 S(2) = S(2) - 2;

64 Points_plane = Aux(: , 1:S(2));

65 Points_plane = Points_plane ’;

66

67 %dispaly the original contour points

68 figure (1)

69 plot(Points_plane (:,2) ,Points_plane (:,1), ’ko’);

70 hold on

71 plot(Points_plane (:,2) ,Points_plane (:,1));

72

73 %display the reduced data set after RDP with epsilon = 0.5

74 epsi = 0.5

75 Result1 = RDP(Points_plane , epsi);

76 Result1 = unique(Result1 ,’rows’,’stable ’);

77

78 figure (2)

79 plot(Result1 (:,2) ,Result1 (:,1), ’ko’);

80 hold on

81 plot(Result1 (:,2) ,Result1 (:,1));

82

83 %display the reduced data set after RDP with epsilon = 5

84 epsi = 5

85 Result = RDP(Points_plane , epsi);

86 Result = unique(Result ,’rows’,’stable ’);

87

88 figure (3)

89 plot(Result (:,2) ,Result (:,1), ’ko’);

90 hold on

91 plot(Result (:,2) ,Result (:,1));

The function for Ramer-Douglas-Peucker algorithm

1 function [ResultList] = RDP(Points ,epsilon)

2

3 dmax = 0;

4 index = 0;

5 S = size(Points);

6 end_point = S(1);

7 Line = [Points (1,:);Points(end_point ,:)]

8 n = (S(1) - 1);

9

10 for i = 2:n

11 d = perpendicularDistance(Points(i,:), Line);

12

13 if d > dmax

14 dmax = d;

15 index = i;

16 end

17 end

18

19 ResultList = zeros(end_point , 2);

20 if (dmax > epsilon)

21 recursiveResult1 = RDP(Points (1:index , :), epsilon);

22 recursiveResult2 = RDP(Points(index:end_point , :), epsilon);

23

24 ResultList = [recursiveResult1; recursiveResult2]

25 else

26 ResultList = [Points (1,:);Points(end_point ,:)] ;

27 end

28

29 end

72

	List of figures
	List of tables
	List of abbreviations
	Introduction
	Motivation
	Objectives
	State of the art

	Theoretical concepts
	Swarm Behaviour
	Kilobots
	Movement
	Communication

	Kilobot System
	Workspace organisation
	ATmega328p microcontroller
	Overhead Controller
	KiloGUI
	Programming Environment
	AVR-GCC compiler
	Kilolib

	CoppeliaSim
	Features
	Kilobot Model

	Algorithms
	Edge Following
	Orbiting with one stationary robot
	Orbiting with multiple stationary robots

	Gradient Formation
	Shape Formation 1
	Matrix Generator

	Shape Formation 2
	Trilateration
	Ray-Casting Algorithm
	Ramer-Douglas–Peucker Algorithm

	Results and comparisons
	Results using the real Kilobots
	Results using the simulation

	Conclusion
	General Conclusions
	Personal Contributions
	Further developments

	References
	Anexa A. Code for Edge Following
	Anexa B. Code for Edge Detection using gradient
	Anexa C. Code for shape formation algorithm 1
	Anexa D. Code for shape formation algorithm 2
	Anexa E. Code for Matrix Generation
	Anexa F. Code for Ramer-Douglas-Peucker Algorithm

